train.py 10.7 KB
Newer Older
Louis Martin's avatar
Louis Martin committed
1
#!/usr/bin/env python3
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
#

import collections
import os
import torch
import math

15
from fairseq import data, options, utils
Sergey Edunov's avatar
Sergey Edunov committed
16
17
18
19
20
21
22
23
24
25
from fairseq.meters import AverageMeter, StopwatchMeter, TimeMeter
from fairseq.multiprocessing_trainer import MultiprocessingTrainer
from fairseq.progress_bar import progress_bar


def main():
    parser = options.get_parser('Trainer')
    dataset_args = options.add_dataset_args(parser)
    dataset_args.add_argument('--max-tokens', default=6000, type=int, metavar='N',
                              help='maximum number of tokens in a batch')
26
27
    dataset_args.add_argument('--max-sentences', type=int, metavar='N',
                              help='maximum number of sentences in a batch')
Sergey Edunov's avatar
Sergey Edunov committed
28
29
30
31
32
33
34
35
36
37
    dataset_args.add_argument('--train-subset', default='train', metavar='SPLIT',
                              choices=['train', 'valid', 'test'],
                              help='data subset to use for training (train, valid, test)')
    dataset_args.add_argument('--valid-subset', default='valid', metavar='SPLIT',
                              help='comma separated list ofdata subsets '
                                   ' to use for validation (train, valid, valid1,test, test1)')
    options.add_optimization_args(parser)
    options.add_checkpoint_args(parser)
    options.add_model_args(parser)

38
    args = utils.parse_args_and_arch(parser)
Sergey Edunov's avatar
Sergey Edunov committed
39
40
41
42
43
44
45
46
47
48

    if args.no_progress_bar:
        progress_bar.enabled = False
        progress_bar.print_interval = args.log_interval

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)
    torch.manual_seed(args.seed)

    # Load dataset
Myle Ott's avatar
Myle Ott committed
49
    dataset = data.load_dataset(args.data, ['train', 'valid'], args.source_lang, args.target_lang)
Sergey Edunov's avatar
Sergey Edunov committed
50
51
52
53
    if args.source_lang is None or args.target_lang is None:
        # record inferred languages in args, so that it's saved in checkpoints
        args.source_lang, args.target_lang = dataset.src, dataset.dst

Myle Ott's avatar
Myle Ott committed
54
    print(args)
Sergey Edunov's avatar
Sergey Edunov committed
55
56
    print('| [{}] dictionary: {} types'.format(dataset.src, len(dataset.src_dict)))
    print('| [{}] dictionary: {} types'.format(dataset.dst, len(dataset.dst_dict)))
57
    for split in ['train', 'valid']:
Sergey Edunov's avatar
Sergey Edunov committed
58
59
60
61
62
63
        print('| {} {} {} examples'.format(args.data, split, len(dataset.splits[split])))

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    num_gpus = torch.cuda.device_count()

64
65
    print('| using {} GPUs (with max tokens per GPU = {} and max sentences per GPU = {})'.format(
        num_gpus, args.max_tokens, args.max_sentences))
Sergey Edunov's avatar
Sergey Edunov committed
66

67
    # Build model and criterion
68
69
    model = utils.build_model(args, dataset.src_dict, dataset.dst_dict)
    criterion = utils.build_criterion(args, dataset.src_dict, dataset.dst_dict)
70
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
Sergey Edunov's avatar
Sergey Edunov committed
71

72
73
74
75
76
    # The max number of positions can be different for train and valid
    # e.g., RNNs may support more positions at test time than seen in training
    max_positions_train = (args.max_source_positions, args.max_target_positions)
    max_positions_valid = (model.max_encoder_positions(), model.max_decoder_positions())

Sergey Edunov's avatar
Sergey Edunov committed
77
    # Start multiprocessing
78
    trainer = MultiprocessingTrainer(args, model, criterion)
Sergey Edunov's avatar
Sergey Edunov committed
79
80

    # Load the latest checkpoint if one is available
81
82
83
84
85
86
87
88
89
90
    checkpoint_path = os.path.join(args.save_dir, args.restore_file)
    extra_state = trainer.load_checkpoint(checkpoint_path)
    if extra_state is not None:
        epoch = extra_state['epoch']
        batch_offset = extra_state['batch_offset']
        print('| loaded checkpoint {} (epoch {})'.format(checkpoint_path, epoch))
        if batch_offset == 0:
            epoch += 1
    else:
        epoch, batch_offset = 1, 0
Sergey Edunov's avatar
Sergey Edunov committed
91
92
93
94
95
96
97
98
99

    # Train until the learning rate gets too small
    val_loss = None
    max_epoch = args.max_epoch or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    while lr > args.min_lr and epoch <= max_epoch:
        # train for one epoch
100
        train(args, epoch, batch_offset, trainer, dataset, max_positions_train, num_gpus)
Sergey Edunov's avatar
Sergey Edunov committed
101
102
103

        # evaluate on validate set
        for k, subset in enumerate(args.valid_subset.split(',')):
104
            val_loss = validate(args, epoch, trainer, dataset, max_positions_valid, subset, num_gpus)
Sergey Edunov's avatar
Sergey Edunov committed
105
106
107
            if k == 0:
                if not args.no_save:
                    # save checkpoint
108
                    save_checkpoint(trainer, args, epoch, 0, val_loss)
Sergey Edunov's avatar
Sergey Edunov committed
109
110
111
112
113
114
115
116
117
118
119
120
                # only use first validation loss to update the learning schedule
                lr = trainer.lr_step(val_loss, epoch)

        epoch += 1
        batch_offset = 0
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))

    # Stop multiprocessing
    trainer.stop()


121
122
123
124
125
126
127
def get_perplexity(loss):
    try:
        return math.pow(2, loss)
    except OverflowError:
        return float('inf')


128
def train(args, epoch, batch_offset, trainer, dataset, max_positions, num_gpus):
Sergey Edunov's avatar
Sergey Edunov committed
129
130
    """Train the model for one epoch."""

131
132
133
    seed = args.seed + epoch
    torch.manual_seed(seed)
    trainer.set_seed(seed)
Myle Ott's avatar
Myle Ott committed
134

Myle Ott's avatar
Myle Ott committed
135
    itr = dataset.train_dataloader(
136
137
        args.train_subset, num_workers=args.workers,
        max_tokens=args.max_tokens, max_sentences=args.max_sentences,
Myle Ott's avatar
Myle Ott committed
138
        max_positions=max_positions, seed=seed, epoch=epoch,
139
140
        sample_without_replacement=args.sample_without_replacement,
        sort_by_source_size=(epoch <= args.curriculum))
Sergey Edunov's avatar
Sergey Edunov committed
141
142
143
144
145
    loss_meter = AverageMeter()
    bsz_meter = AverageMeter()    # sentences per batch
    wpb_meter = AverageMeter()    # words per batch
    wps_meter = TimeMeter()       # words per second
    clip_meter = AverageMeter()   # % of updates clipped
Myle Ott's avatar
Myle Ott committed
146
    extra_meters = collections.defaultdict(lambda: AverageMeter())
Sergey Edunov's avatar
Sergey Edunov committed
147
148
149
150
151

    desc = '| epoch {:03d}'.format(epoch)
    lr = trainer.get_lr()
    with progress_bar(itr, desc, leave=False) as t:
        for i, sample in data.skip_group_enumerator(t, num_gpus, batch_offset):
Myle Ott's avatar
Myle Ott committed
152
153
154
            loss_dict = trainer.train_step(sample)
            loss = loss_dict['loss']
            del loss_dict['loss']  # don't include in extra_meters or extra_postfix
Sergey Edunov's avatar
Sergey Edunov committed
155
156

            ntokens = sum(s['ntokens'] for s in sample)
157
158
159
            nsentences = sum(s['src_tokens'].size(0) for s in sample)
            loss_meter.update(loss, nsentences if args.sentence_avg else ntokens)
            bsz_meter.update(nsentences)
Sergey Edunov's avatar
Sergey Edunov committed
160
161
            wpb_meter.update(ntokens)
            wps_meter.update(ntokens)
Myle Ott's avatar
Myle Ott committed
162
163
164
165
166
167
            clip_meter.update(1 if loss_dict['gnorm'] > args.clip_norm else 0)

            extra_postfix = []
            for k, v in loss_dict.items():
                extra_meters[k].update(v)
                extra_postfix.append((k, '{:.4f}'.format(extra_meters[k].avg)))
Sergey Edunov's avatar
Sergey Edunov committed
168
169
170
171
172
173
174
175

            t.set_postfix(collections.OrderedDict([
                ('loss', '{:.2f} ({:.2f})'.format(loss, loss_meter.avg)),
                ('wps', '{:5d}'.format(round(wps_meter.avg))),
                ('wpb', '{:5d}'.format(round(wpb_meter.avg))),
                ('bsz', '{:5d}'.format(round(bsz_meter.avg))),
                ('lr', lr),
                ('clip', '{:3.0f}%'.format(clip_meter.avg * 100)),
Myle Ott's avatar
Myle Ott committed
176
            ] + extra_postfix), refresh=False)
Sergey Edunov's avatar
Sergey Edunov committed
177
178
179
180
181

            if i == 0:
                # ignore the first mini-batch in words-per-second calculation
                wps_meter.reset()
            if args.save_interval > 0 and (i + 1) % args.save_interval == 0:
182
                save_checkpoint(trainer, args, epoch, i + 1)
Sergey Edunov's avatar
Sergey Edunov committed
183

Myle Ott's avatar
Myle Ott committed
184
        fmt = desc + ' | train loss {:2.2f} | train ppl {:3.2f}'.format(
185
            loss_meter.avg, get_perplexity(loss_meter.avg))
Myle Ott's avatar
Myle Ott committed
186
187
188
189
190
191
192
193
194
        fmt += ' | s/checkpoint {:7d} | words/s {:6d} | words/batch {:6d}'.format(
            round(wps_meter.elapsed_time), round(wps_meter.avg), round(wpb_meter.avg))
        fmt += ' | bsz {:5d} | lr {:0.6f} | clip {:3.0f}%'.format(
            round(bsz_meter.avg), lr, clip_meter.avg * 100)
        fmt += ''.join(
            ' | {} {:.4f}'.format(k, meter.avg)
            for k, meter in extra_meters.items()
        )
        t.write(fmt)
Sergey Edunov's avatar
Sergey Edunov committed
195
196


197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
def save_checkpoint(trainer, args, epoch, batch_offset, val_loss):
    extra_state = {
        'epoch': epoch,
        'batch_offset': batch_offset,
        'val_loss': val_loss,
    }

    if batch_offset == 0:
        if not args.no_epoch_checkpoints:
            epoch_filename = os.path.join(args.save_dir, 'checkpoint{}.pt'.format(epoch))
            trainer.save_checkpoint(epoch_filename, extra_state)

        assert val_loss is not None
        if not hasattr(save_checkpoint, 'best') or val_loss < save_checkpoint.best:
            save_checkpoint.best = val_loss
            best_filename = os.path.join(args.save_dir, 'checkpoint_best.pt')
            trainer.save_checkpoint(best_filename, extra_state)

    last_filename = os.path.join(args.save_dir, 'checkpoint_last.pt')
    trainer.save_checkpoint(last_filename, extra_state)


219
def validate(args, epoch, trainer, dataset, max_positions, subset, ngpus):
Sergey Edunov's avatar
Sergey Edunov committed
220
221
    """Evaluate the model on the validation set and return the average loss."""

Myle Ott's avatar
Myle Ott committed
222
    itr = dataset.eval_dataloader(
223
224
        subset, max_tokens=args.max_tokens, max_sentences=args.max_sentences,
        max_positions=max_positions,
225
226
227
        skip_invalid_size_inputs_valid_test=args.skip_invalid_size_inputs_valid_test,
        descending=True,  # largest batch first to warm the caching allocator
    )
Sergey Edunov's avatar
Sergey Edunov committed
228
    loss_meter = AverageMeter()
Myle Ott's avatar
Myle Ott committed
229
    extra_meters = collections.defaultdict(lambda: AverageMeter())
Sergey Edunov's avatar
Sergey Edunov committed
230
231
232
233

    desc = '| epoch {:03d} | valid on \'{}\' subset'.format(epoch, subset)
    with progress_bar(itr, desc, leave=False) as t:
        for _, sample in data.skip_group_enumerator(t, ngpus):
Myle Ott's avatar
Myle Ott committed
234
235
236
237
            loss_dict = trainer.valid_step(sample)
            loss = loss_dict['loss']
            del loss_dict['loss']  # don't include in extra_meters or extra_postfix

Sergey Edunov's avatar
Sergey Edunov committed
238
239
            ntokens = sum(s['ntokens'] for s in sample)
            loss_meter.update(loss, ntokens)
Myle Ott's avatar
Myle Ott committed
240
241
242
243
244
245
246
247
248

            extra_postfix = []
            for k, v in loss_dict.items():
                extra_meters[k].update(v)
                extra_postfix.append((k, '{:.4f}'.format(extra_meters[k].avg)))

            t.set_postfix(collections.OrderedDict([
                ('loss', '{:.2f}'.format(loss_meter.avg)),
            ] + extra_postfix), refresh=False)
Sergey Edunov's avatar
Sergey Edunov committed
249
250

        val_loss = loss_meter.avg
Myle Ott's avatar
Myle Ott committed
251
        fmt = desc + ' | valid loss {:2.2f} | valid ppl {:3.2f}'.format(
252
            val_loss, get_perplexity(val_loss))
Myle Ott's avatar
Myle Ott committed
253
254
255
256
257
        fmt += ''.join(
            ' | {} {:.4f}'.format(k, meter.avg)
            for k, meter in extra_meters.items()
        )
        t.write(fmt)
Sergey Edunov's avatar
Sergey Edunov committed
258
259
260
261
262
263
264

    # update and return the learning rate
    return val_loss


if __name__ == '__main__':
    main()