train.py 10.9 KB
Newer Older
Louis Martin's avatar
Louis Martin committed
1
#!/usr/bin/env python3
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
#

import collections
import os
import torch
import math

15
from fairseq import data, options, utils
Sergey Edunov's avatar
Sergey Edunov committed
16
17
18
19
20
21
22
23
24
25
from fairseq.meters import AverageMeter, StopwatchMeter, TimeMeter
from fairseq.multiprocessing_trainer import MultiprocessingTrainer
from fairseq.progress_bar import progress_bar


def main():
    parser = options.get_parser('Trainer')
    dataset_args = options.add_dataset_args(parser)
    dataset_args.add_argument('--max-tokens', default=6000, type=int, metavar='N',
                              help='maximum number of tokens in a batch')
26
27
    dataset_args.add_argument('--max-sentences', type=int, metavar='N',
                              help='maximum number of sentences in a batch')
Sergey Edunov's avatar
Sergey Edunov committed
28
29
30
31
32
33
34
35
36
37
    dataset_args.add_argument('--train-subset', default='train', metavar='SPLIT',
                              choices=['train', 'valid', 'test'],
                              help='data subset to use for training (train, valid, test)')
    dataset_args.add_argument('--valid-subset', default='valid', metavar='SPLIT',
                              help='comma separated list ofdata subsets '
                                   ' to use for validation (train, valid, valid1,test, test1)')
    options.add_optimization_args(parser)
    options.add_checkpoint_args(parser)
    options.add_model_args(parser)

38
    args = utils.parse_args_and_arch(parser)
Sergey Edunov's avatar
Sergey Edunov committed
39
40
41
42
43
44
45
46
47
48

    if args.no_progress_bar:
        progress_bar.enabled = False
        progress_bar.print_interval = args.log_interval

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)
    torch.manual_seed(args.seed)

    # Load dataset
49
50
51
52
53
    splits = ['train', 'valid']
    if data.has_binary_files(args.data, splits):
        dataset = data.load_dataset(args.data, splits, args.source_lang, args.target_lang)
    else:
        dataset = data.load_raw_text_dataset(args.data, splits, args.source_lang, args.target_lang)
Sergey Edunov's avatar
Sergey Edunov committed
54
55
56
57
    if args.source_lang is None or args.target_lang is None:
        # record inferred languages in args, so that it's saved in checkpoints
        args.source_lang, args.target_lang = dataset.src, dataset.dst

Myle Ott's avatar
Myle Ott committed
58
    print(args)
Sergey Edunov's avatar
Sergey Edunov committed
59
60
    print('| [{}] dictionary: {} types'.format(dataset.src, len(dataset.src_dict)))
    print('| [{}] dictionary: {} types'.format(dataset.dst, len(dataset.dst_dict)))
61
    for split in splits:
Sergey Edunov's avatar
Sergey Edunov committed
62
63
64
65
66
67
        print('| {} {} {} examples'.format(args.data, split, len(dataset.splits[split])))

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    num_gpus = torch.cuda.device_count()

68
69
    print('| using {} GPUs (with max tokens per GPU = {} and max sentences per GPU = {})'.format(
        num_gpus, args.max_tokens, args.max_sentences))
Sergey Edunov's avatar
Sergey Edunov committed
70

71
    # Build model and criterion
72
73
    model = utils.build_model(args, dataset.src_dict, dataset.dst_dict)
    criterion = utils.build_criterion(args, dataset.src_dict, dataset.dst_dict)
74
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
Sergey Edunov's avatar
Sergey Edunov committed
75

76
77
78
79
80
    # The max number of positions can be different for train and valid
    # e.g., RNNs may support more positions at test time than seen in training
    max_positions_train = (args.max_source_positions, args.max_target_positions)
    max_positions_valid = (model.max_encoder_positions(), model.max_decoder_positions())

Sergey Edunov's avatar
Sergey Edunov committed
81
    # Start multiprocessing
82
    trainer = MultiprocessingTrainer(args, model, criterion)
Sergey Edunov's avatar
Sergey Edunov committed
83
84

    # Load the latest checkpoint if one is available
85
86
87
88
89
90
91
92
93
94
    checkpoint_path = os.path.join(args.save_dir, args.restore_file)
    extra_state = trainer.load_checkpoint(checkpoint_path)
    if extra_state is not None:
        epoch = extra_state['epoch']
        batch_offset = extra_state['batch_offset']
        print('| loaded checkpoint {} (epoch {})'.format(checkpoint_path, epoch))
        if batch_offset == 0:
            epoch += 1
    else:
        epoch, batch_offset = 1, 0
Sergey Edunov's avatar
Sergey Edunov committed
95
96
97
98
99
100
101
102
103

    # Train until the learning rate gets too small
    val_loss = None
    max_epoch = args.max_epoch or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    while lr > args.min_lr and epoch <= max_epoch:
        # train for one epoch
104
        train(args, epoch, batch_offset, trainer, dataset, max_positions_train, num_gpus)
Sergey Edunov's avatar
Sergey Edunov committed
105
106
107

        # evaluate on validate set
        for k, subset in enumerate(args.valid_subset.split(',')):
108
            val_loss = validate(args, epoch, trainer, dataset, max_positions_valid, subset, num_gpus)
Sergey Edunov's avatar
Sergey Edunov committed
109
110
111
            if k == 0:
                if not args.no_save:
                    # save checkpoint
112
                    save_checkpoint(trainer, args, epoch, 0, val_loss)
Sergey Edunov's avatar
Sergey Edunov committed
113
114
115
116
117
118
119
120
121
122
123
124
                # only use first validation loss to update the learning schedule
                lr = trainer.lr_step(val_loss, epoch)

        epoch += 1
        batch_offset = 0
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))

    # Stop multiprocessing
    trainer.stop()


125
126
127
128
129
130
131
def get_perplexity(loss):
    try:
        return math.pow(2, loss)
    except OverflowError:
        return float('inf')


132
def train(args, epoch, batch_offset, trainer, dataset, max_positions, num_gpus):
Sergey Edunov's avatar
Sergey Edunov committed
133
134
    """Train the model for one epoch."""

135
136
137
    seed = args.seed + epoch
    torch.manual_seed(seed)
    trainer.set_seed(seed)
Myle Ott's avatar
Myle Ott committed
138

Myle Ott's avatar
Myle Ott committed
139
    itr = dataset.train_dataloader(
140
141
        args.train_subset, num_workers=args.workers,
        max_tokens=args.max_tokens, max_sentences=args.max_sentences,
Myle Ott's avatar
Myle Ott committed
142
        max_positions=max_positions, seed=seed, epoch=epoch,
143
144
        sample_without_replacement=args.sample_without_replacement,
        sort_by_source_size=(epoch <= args.curriculum))
Sergey Edunov's avatar
Sergey Edunov committed
145
146
147
148
149
    loss_meter = AverageMeter()
    bsz_meter = AverageMeter()    # sentences per batch
    wpb_meter = AverageMeter()    # words per batch
    wps_meter = TimeMeter()       # words per second
    clip_meter = AverageMeter()   # % of updates clipped
Myle Ott's avatar
Myle Ott committed
150
    extra_meters = collections.defaultdict(lambda: AverageMeter())
Sergey Edunov's avatar
Sergey Edunov committed
151
152
153
154
155

    desc = '| epoch {:03d}'.format(epoch)
    lr = trainer.get_lr()
    with progress_bar(itr, desc, leave=False) as t:
        for i, sample in data.skip_group_enumerator(t, num_gpus, batch_offset):
Myle Ott's avatar
Myle Ott committed
156
157
158
            loss_dict = trainer.train_step(sample)
            loss = loss_dict['loss']
            del loss_dict['loss']  # don't include in extra_meters or extra_postfix
Sergey Edunov's avatar
Sergey Edunov committed
159
160

            ntokens = sum(s['ntokens'] for s in sample)
161
162
163
            nsentences = sum(s['src_tokens'].size(0) for s in sample)
            loss_meter.update(loss, nsentences if args.sentence_avg else ntokens)
            bsz_meter.update(nsentences)
Sergey Edunov's avatar
Sergey Edunov committed
164
165
            wpb_meter.update(ntokens)
            wps_meter.update(ntokens)
Myle Ott's avatar
Myle Ott committed
166
167
168
169
170
171
            clip_meter.update(1 if loss_dict['gnorm'] > args.clip_norm else 0)

            extra_postfix = []
            for k, v in loss_dict.items():
                extra_meters[k].update(v)
                extra_postfix.append((k, '{:.4f}'.format(extra_meters[k].avg)))
Sergey Edunov's avatar
Sergey Edunov committed
172
173
174
175
176
177
178
179

            t.set_postfix(collections.OrderedDict([
                ('loss', '{:.2f} ({:.2f})'.format(loss, loss_meter.avg)),
                ('wps', '{:5d}'.format(round(wps_meter.avg))),
                ('wpb', '{:5d}'.format(round(wpb_meter.avg))),
                ('bsz', '{:5d}'.format(round(bsz_meter.avg))),
                ('lr', lr),
                ('clip', '{:3.0f}%'.format(clip_meter.avg * 100)),
Myle Ott's avatar
Myle Ott committed
180
            ] + extra_postfix), refresh=False)
Sergey Edunov's avatar
Sergey Edunov committed
181
182
183
184
185

            if i == 0:
                # ignore the first mini-batch in words-per-second calculation
                wps_meter.reset()
            if args.save_interval > 0 and (i + 1) % args.save_interval == 0:
186
                save_checkpoint(trainer, args, epoch, i + 1)
Sergey Edunov's avatar
Sergey Edunov committed
187

Myle Ott's avatar
Myle Ott committed
188
        fmt = desc + ' | train loss {:2.2f} | train ppl {:3.2f}'.format(
189
            loss_meter.avg, get_perplexity(loss_meter.avg))
Myle Ott's avatar
Myle Ott committed
190
191
192
193
194
195
196
197
198
        fmt += ' | s/checkpoint {:7d} | words/s {:6d} | words/batch {:6d}'.format(
            round(wps_meter.elapsed_time), round(wps_meter.avg), round(wpb_meter.avg))
        fmt += ' | bsz {:5d} | lr {:0.6f} | clip {:3.0f}%'.format(
            round(bsz_meter.avg), lr, clip_meter.avg * 100)
        fmt += ''.join(
            ' | {} {:.4f}'.format(k, meter.avg)
            for k, meter in extra_meters.items()
        )
        t.write(fmt)
Sergey Edunov's avatar
Sergey Edunov committed
199
200


201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
def save_checkpoint(trainer, args, epoch, batch_offset, val_loss):
    extra_state = {
        'epoch': epoch,
        'batch_offset': batch_offset,
        'val_loss': val_loss,
    }

    if batch_offset == 0:
        if not args.no_epoch_checkpoints:
            epoch_filename = os.path.join(args.save_dir, 'checkpoint{}.pt'.format(epoch))
            trainer.save_checkpoint(epoch_filename, extra_state)

        assert val_loss is not None
        if not hasattr(save_checkpoint, 'best') or val_loss < save_checkpoint.best:
            save_checkpoint.best = val_loss
            best_filename = os.path.join(args.save_dir, 'checkpoint_best.pt')
            trainer.save_checkpoint(best_filename, extra_state)

    last_filename = os.path.join(args.save_dir, 'checkpoint_last.pt')
    trainer.save_checkpoint(last_filename, extra_state)


223
def validate(args, epoch, trainer, dataset, max_positions, subset, ngpus):
Sergey Edunov's avatar
Sergey Edunov committed
224
225
    """Evaluate the model on the validation set and return the average loss."""

Myle Ott's avatar
Myle Ott committed
226
    itr = dataset.eval_dataloader(
227
228
        subset, max_tokens=args.max_tokens, max_sentences=args.max_sentences,
        max_positions=max_positions,
229
230
231
        skip_invalid_size_inputs_valid_test=args.skip_invalid_size_inputs_valid_test,
        descending=True,  # largest batch first to warm the caching allocator
    )
Sergey Edunov's avatar
Sergey Edunov committed
232
    loss_meter = AverageMeter()
Myle Ott's avatar
Myle Ott committed
233
    extra_meters = collections.defaultdict(lambda: AverageMeter())
Sergey Edunov's avatar
Sergey Edunov committed
234
235
236
237

    desc = '| epoch {:03d} | valid on \'{}\' subset'.format(epoch, subset)
    with progress_bar(itr, desc, leave=False) as t:
        for _, sample in data.skip_group_enumerator(t, ngpus):
Myle Ott's avatar
Myle Ott committed
238
239
240
241
            loss_dict = trainer.valid_step(sample)
            loss = loss_dict['loss']
            del loss_dict['loss']  # don't include in extra_meters or extra_postfix

Sergey Edunov's avatar
Sergey Edunov committed
242
243
            ntokens = sum(s['ntokens'] for s in sample)
            loss_meter.update(loss, ntokens)
Myle Ott's avatar
Myle Ott committed
244
245
246
247
248
249
250
251
252

            extra_postfix = []
            for k, v in loss_dict.items():
                extra_meters[k].update(v)
                extra_postfix.append((k, '{:.4f}'.format(extra_meters[k].avg)))

            t.set_postfix(collections.OrderedDict([
                ('loss', '{:.2f}'.format(loss_meter.avg)),
            ] + extra_postfix), refresh=False)
Sergey Edunov's avatar
Sergey Edunov committed
253
254

        val_loss = loss_meter.avg
Myle Ott's avatar
Myle Ott committed
255
        fmt = desc + ' | valid loss {:2.2f} | valid ppl {:3.2f}'.format(
256
            val_loss, get_perplexity(val_loss))
Myle Ott's avatar
Myle Ott committed
257
258
259
260
261
        fmt += ''.join(
            ' | {} {:.4f}'.format(k, meter.avg)
            for k, meter in extra_meters.items()
        )
        t.write(fmt)
Sergey Edunov's avatar
Sergey Edunov committed
262
263
264
265
266
267
268

    # update and return the learning rate
    return val_loss


if __name__ == '__main__':
    main()