train.py 12.1 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
#!/usr/bin/env python3 -u
2
# Copyright (c) Facebook, Inc. and its affiliates.
Sergey Edunov's avatar
Sergey Edunov committed
3
#
4
5
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
Myle Ott's avatar
Myle Ott committed
6
7
8
"""
Train a new model on one or across multiple GPUs.
"""
Sergey Edunov's avatar
Sergey Edunov committed
9

10
11
import collections
import math
12
13
import random

14
import torch
Sergey Edunov's avatar
Sergey Edunov committed
15

Myle Ott's avatar
Myle Ott committed
16
from fairseq import checkpoint_utils, distributed_utils, options, progress_bar, tasks, utils
17
from fairseq.data import iterators
18
19
from fairseq.trainer import Trainer
from fairseq.meters import AverageMeter, StopwatchMeter
Sergey Edunov's avatar
Sergey Edunov committed
20

Myle Ott's avatar
Myle Ott committed
21

22
def main(args, init_distributed=False):
Myle Ott's avatar
Myle Ott committed
23
    utils.import_user_module(args)
24

25
26
    assert args.max_tokens is not None or args.max_sentences is not None, \
        'Must specify batch size either with --max-tokens or --max-sentences'
27

28
    # Initialize CUDA and distributed training
Myle Ott's avatar
Myle Ott committed
29
30
    if torch.cuda.is_available() and not args.cpu:
        torch.cuda.set_device(args.device_id)
31
    torch.manual_seed(args.seed)
32
33
34
    if init_distributed:
        args.distributed_rank = distributed_utils.distributed_init(args)

35
36
37
    if distributed_utils.is_master(args):
        checkpoint_utils.verify_checkpoint_directory(args.save_dir)

38
39
    # Print args
    print(args)
40

Myle Ott's avatar
Myle Ott committed
41
42
    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)
43

Myle Ott's avatar
Myle Ott committed
44
    # Load valid dataset (we load training data below, based on the latest checkpoint)
Naman Goyal's avatar
Naman Goyal committed
45
    for valid_sub_split in args.valid_subset.split(','):
46
        task.load_dataset(valid_sub_split, combine=False, epoch=0)
47

Myle Ott's avatar
Myle Ott committed
48
49
50
    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
51
    print(model)
52
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
53
54
55
56
    print('| num. model params: {} (num. trained: {})'.format(
        sum(p.numel() for p in model.parameters()),
        sum(p.numel() for p in model.parameters() if p.requires_grad),
    ))
57
58

    # Build trainer
Myle Ott's avatar
Myle Ott committed
59
    trainer = Trainer(args, task, model, criterion)
60
61
62
63
64
65
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

Myle Ott's avatar
Myle Ott committed
66
67
68
    # Load the latest checkpoint if one is available and restore the
    # corresponding train iterator
    extra_state, epoch_itr = checkpoint_utils.load_checkpoint(args, trainer)
69
70
71
72
73
74
75

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
Myle Ott's avatar
Myle Ott committed
76
    valid_losses = [None]
77
    valid_subsets = args.valid_subset.split(',')
Myle Ott's avatar
Myle Ott committed
78
    while lr > args.min_lr and epoch_itr.epoch < max_epoch and trainer.get_num_updates() < max_update:
79
        # train for one epoch
Myle Ott's avatar
Myle Ott committed
80
        train(args, trainer, task, epoch_itr)
81

Myle Ott's avatar
Myle Ott committed
82
        if not args.disable_validation and epoch_itr.epoch % args.validate_interval == 0:
Myle Ott's avatar
Myle Ott committed
83
            valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets)
Myle Ott's avatar
Myle Ott committed
84
85
        else:
            valid_losses = [None]
86
87

        # only use first validation loss to update the learning rate
Myle Ott's avatar
Myle Ott committed
88
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])
89
90

        # save checkpoint
Myle Ott's avatar
Myle Ott committed
91
        if epoch_itr.epoch % args.save_interval == 0:
Myle Ott's avatar
Myle Ott committed
92
            checkpoint_utils.save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
Naman Goyal's avatar
Naman Goyal committed
93

94
        if ':' in getattr(args, 'data', ''):
Myle Ott's avatar
Myle Ott committed
95
96
            # sharded data: get train iterator for next epoch
            epoch_itr = trainer.get_train_iterator(epoch_itr.epoch)
97
98
99
100
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))


Myle Ott's avatar
Myle Ott committed
101
def train(args, trainer, task, epoch_itr):
102
    """Train the model for one epoch."""
103
    # Update parameters every N batches
Myle Ott's avatar
Myle Ott committed
104
    update_freq = args.update_freq[epoch_itr.epoch - 1] \
Myle Ott's avatar
Myle Ott committed
105
        if epoch_itr.epoch <= len(args.update_freq) else args.update_freq[-1]
Myle Ott's avatar
Myle Ott committed
106
107
108
109
110
111

    # Initialize data iterator
    itr = epoch_itr.next_epoch_itr(
        fix_batches_to_gpus=args.fix_batches_to_gpus,
        shuffle=(epoch_itr.epoch >= args.curriculum),
    )
112
113
114
115
116
    itr = iterators.GroupedIterator(itr, update_freq)
    progress = progress_bar.build_progress_bar(
        args, itr, epoch_itr.epoch, no_progress_bar='simple',
    )

117
    extra_meters = collections.defaultdict(lambda: AverageMeter())
118
    valid_subsets = args.valid_subset.split(',')
119
    max_update = args.max_update or math.inf
120
121
122
    for i, samples in enumerate(progress, start=epoch_itr.iterations_in_epoch):
        log_output = trainer.train_step(samples)
        if log_output is None:
123
124
125
126
127
            continue

        # log mid-epoch stats
        stats = get_training_stats(trainer)
        for k, v in log_output.items():
128
            if k in ['loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size']:
129
                continue  # these are already logged above
130
            if 'loss' in k or k == 'accuracy':
131
132
133
134
                extra_meters[k].update(v, log_output['sample_size'])
            else:
                extra_meters[k].update(v)
            stats[k] = extra_meters[k].avg
Myle Ott's avatar
Myle Ott committed
135
        progress.log(stats, tag='train', step=stats['num_updates'])
136
137
138
139
140

        # ignore the first mini-batch in words-per-second calculation
        if i == 0:
            trainer.get_meter('wps').reset()

141
        num_updates = trainer.get_num_updates()
Myle Ott's avatar
Myle Ott committed
142
143
144
145
146
147
        if (
            not args.disable_validation
            and args.save_interval_updates > 0
            and num_updates % args.save_interval_updates == 0
            and num_updates > 0
        ):
148
            valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets)
149
            checkpoint_utils.save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
150
151

        if num_updates >= max_update:
152
153
154
155
156
157
            break

    # log end-of-epoch stats
    stats = get_training_stats(trainer)
    for k, meter in extra_meters.items():
        stats[k] = meter.avg
Myle Ott's avatar
Myle Ott committed
158
    progress.print(stats, tag='train', step=stats['num_updates'])
159

Myle Ott's avatar
Myle Ott committed
160
    # reset training meters
161
162
163
    for k in [
        'train_loss', 'train_nll_loss', 'wps', 'ups', 'wpb', 'bsz', 'gnorm', 'clip',
    ]:
Myle Ott's avatar
Myle Ott committed
164
165
166
167
        meter = trainer.get_meter(k)
        if meter is not None:
            meter.reset()

168
169
170

def get_training_stats(trainer):
    stats = collections.OrderedDict()
Myle Ott's avatar
Myle Ott committed
171
    stats['loss'] = trainer.get_meter('train_loss')
172
    if trainer.get_meter('train_nll_loss').count > 0:
Myle Ott's avatar
Myle Ott committed
173
174
        nll_loss = trainer.get_meter('train_nll_loss')
        stats['nll_loss'] = nll_loss
175
    else:
Myle Ott's avatar
Myle Ott committed
176
        nll_loss = trainer.get_meter('train_loss')
177
    stats['ppl'] = utils.get_perplexity(nll_loss.avg)
Myle Ott's avatar
Myle Ott committed
178
179
180
181
    stats['wps'] = trainer.get_meter('wps')
    stats['ups'] = trainer.get_meter('ups')
    stats['wpb'] = trainer.get_meter('wpb')
    stats['bsz'] = trainer.get_meter('bsz')
182
183
    stats['num_updates'] = trainer.get_num_updates()
    stats['lr'] = trainer.get_lr()
Myle Ott's avatar
Myle Ott committed
184
185
186
    stats['gnorm'] = trainer.get_meter('gnorm')
    stats['clip'] = trainer.get_meter('clip')
    stats['oom'] = trainer.get_meter('oom')
187
    if trainer.get_meter('loss_scale') is not None:
Myle Ott's avatar
Myle Ott committed
188
        stats['loss_scale'] = trainer.get_meter('loss_scale')
189
    stats['wall'] = round(trainer.get_meter('wall').elapsed_time)
Myle Ott's avatar
Myle Ott committed
190
    stats['train_wall'] = trainer.get_meter('train_wall')
191
192
193
    return stats


Myle Ott's avatar
Myle Ott committed
194
def validate(args, trainer, task, epoch_itr, subsets):
195
196
197
    """Evaluate the model on the validation set(s) and return the losses."""
    valid_losses = []
    for subset in subsets:
Myle Ott's avatar
Myle Ott committed
198
        # Initialize data iterator
199
        itr = task.get_batch_iterator(
Myle Ott's avatar
Myle Ott committed
200
            dataset=task.dataset(subset),
201
            max_tokens=args.max_tokens_valid,
202
            max_sentences=args.max_sentences_valid,
203
204
205
206
            max_positions=utils.resolve_max_positions(
                task.max_positions(),
                trainer.get_model().max_positions(),
            ),
Myle Ott's avatar
Myle Ott committed
207
            ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
208
            required_batch_size_multiple=args.required_batch_size_multiple,
Myle Ott's avatar
Myle Ott committed
209
            seed=args.seed,
210
            num_shards=args.distributed_world_size,
Myle Ott's avatar
Myle Ott committed
211
            shard_id=args.distributed_rank,
Myle Ott's avatar
Myle Ott committed
212
            num_workers=args.num_workers,
Myle Ott's avatar
Myle Ott committed
213
        ).next_epoch_itr(shuffle=False)
214
        progress = progress_bar.build_progress_bar(
Myle Ott's avatar
Myle Ott committed
215
            args, itr, epoch_itr.epoch,
216
217
218
219
220
221
222
223
224
225
            prefix='valid on \'{}\' subset'.format(subset),
            no_progress_bar='simple'
        )

        # reset validation loss meters
        for k in ['valid_loss', 'valid_nll_loss']:
            meter = trainer.get_meter(k)
            if meter is not None:
                meter.reset()
        extra_meters = collections.defaultdict(lambda: AverageMeter())
Myle Ott's avatar
Myle Ott committed
226

227
228
229
230
        for sample in progress:
            log_output = trainer.valid_step(sample)

            for k, v in log_output.items():
231
                if k in ['loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size']:
232
233
                    continue
                extra_meters[k].update(v)
234

235
        # log validation stats
236
        stats = get_valid_stats(trainer, args, extra_meters)
237
238
        for k, meter in extra_meters.items():
            stats[k] = meter.avg
Myle Ott's avatar
Myle Ott committed
239
        progress.print(stats, tag=subset, step=trainer.get_num_updates())
240

241
242
243
244
245
        valid_losses.append(
            stats[args.best_checkpoint_metric].avg
            if args.best_checkpoint_metric == 'loss'
            else stats[args.best_checkpoint_metric]
        )
246
    return valid_losses
247
248


249
def get_valid_stats(trainer, args, extra_meters=None):
250
    stats = collections.OrderedDict()
Myle Ott's avatar
Myle Ott committed
251
    stats['loss'] = trainer.get_meter('valid_loss')
252
    if trainer.get_meter('valid_nll_loss').count > 0:
Myle Ott's avatar
Myle Ott committed
253
254
        nll_loss = trainer.get_meter('valid_nll_loss')
        stats['nll_loss'] = nll_loss
255
    else:
Myle Ott's avatar
Myle Ott committed
256
        nll_loss = stats['loss']
257
    stats['ppl'] = utils.get_perplexity(nll_loss.avg)
Myle Ott's avatar
Nits  
Myle Ott committed
258
    stats['num_updates'] = trainer.get_num_updates()
259
    if hasattr(checkpoint_utils.save_checkpoint, 'best'):
260
        key = 'best_{0}'.format(args.best_checkpoint_metric)
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
        best_function = max if args.maximize_best_checkpoint_metric else min

        current_metric = None
        if args.best_checkpoint_metric == 'loss':
            current_metric = stats['loss'].avg
        elif args.best_checkpoint_metric in extra_meters:
            current_metric = extra_meters[args.best_checkpoint_metric].avg
        elif args.best_checkpoint_metric in stats:
            current_metric = stats[args.best_checkpoint_metric]
        else:
            raise ValueError("best_checkpoint_metric not found in logs")

        stats[key] = best_function(
            checkpoint_utils.save_checkpoint.best,
            current_metric,
        )
277
278
279
    return stats


280
def distributed_main(i, args, start_rank=0):
Myle Ott's avatar
Myle Ott committed
281
282
    args.device_id = i
    if args.distributed_rank is None:  # torch.multiprocessing.spawn
283
284
        args.distributed_rank = start_rank + i
    main(args, init_distributed=True)
Myle Ott's avatar
Myle Ott committed
285
286


Myle Ott's avatar
Myle Ott committed
287
def cli_main():
Myle Ott's avatar
Myle Ott committed
288
289
    parser = options.get_training_parser()
    args = options.parse_args_and_arch(parser)
290

Myle Ott's avatar
Myle Ott committed
291
292
    if args.distributed_init_method is None:
        distributed_utils.infer_init_method(args)
293

Myle Ott's avatar
Myle Ott committed
294
295
    if args.distributed_init_method is not None:
        # distributed training
296
297
298
299
300
301
302
303
304
305
        if torch.cuda.device_count() > 1 and not args.distributed_no_spawn:
            start_rank = args.distributed_rank
            args.distributed_rank = None  # assign automatically
            torch.multiprocessing.spawn(
                fn=distributed_main,
                args=(args, start_rank),
                nprocs=torch.cuda.device_count(),
            )
        else:
            distributed_main(args.device_id, args)
306
    elif args.distributed_world_size > 1:
Myle Ott's avatar
Myle Ott committed
307
        # fallback for single node with multiple GPUs
308
        assert args.distributed_world_size <= torch.cuda.device_count()
309
310
        port = random.randint(10000, 20000)
        args.distributed_init_method = 'tcp://localhost:{port}'.format(port=port)
Myle Ott's avatar
Myle Ott committed
311
        args.distributed_rank = None  # set based on device id
Myle Ott's avatar
Myle Ott committed
312
313
        if max(args.update_freq) > 1 and args.ddp_backend != 'no_c10d':
            print('| NOTE: you may get better performance with: --ddp-backend=no_c10d')
Myle Ott's avatar
Myle Ott committed
314
315
316
317
318
        torch.multiprocessing.spawn(
            fn=distributed_main,
            args=(args, ),
            nprocs=args.distributed_world_size,
        )
319
    else:
Myle Ott's avatar
Myle Ott committed
320
        # single GPU training
321
        main(args)
Myle Ott's avatar
Myle Ott committed
322
323
324
325


if __name__ == '__main__':
    cli_main()