"vscode:/vscode.git/clone" did not exist on "7c9878a460004d3468f8ece8faa0c587abe0c4c9"
test_sampling.py 47.2 KB
Newer Older
1
2
3
4
import dgl
import backend as F
import numpy as np
import unittest
5
from collections import defaultdict
6
import pytest
7

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
8
def check_random_walk(g, metapath, traces, ntypes, prob=None, trace_eids=None):
9
10
11
12
13
14
15
16
17
18
19
20
    traces = F.asnumpy(traces)
    ntypes = F.asnumpy(ntypes)
    for j in range(traces.shape[1] - 1):
        assert ntypes[j] == g.get_ntype_id(g.to_canonical_etype(metapath[j])[0])
        assert ntypes[j + 1] == g.get_ntype_id(g.to_canonical_etype(metapath[j])[2])

    for i in range(traces.shape[0]):
        for j in range(traces.shape[1] - 1):
            assert g.has_edge_between(
                traces[i, j], traces[i, j+1], etype=metapath[j])
            if prob is not None and prob in g.edges[metapath[j]].data:
                p = F.asnumpy(g.edges[metapath[j]].data['p'])
21
                eids = g.edge_ids(traces[i, j], traces[i, j+1], etype=metapath[j])
22
                assert p[eids] != 0
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
23
24
25
            if trace_eids is not None:
                u, v = g.find_edges(trace_eids[i, j], etype=metapath[j])
                assert (u == traces[i, j]) and (v == traces[i, j + 1])
26

27
28
29
30
31
32
33
@pytest.mark.parametrize('use_uva', [True, False])
def test_non_uniform_random_walk(use_uva):
    if use_uva:
        if F.ctx() == F.cpu():
            pytest.skip('UVA biased random walk requires a GPU.')
        if dgl.backend.backend_name != 'pytorch':
            pytest.skip('UVA biased random walk is only supported with PyTorch.')
34
    g2 = dgl.heterograph({
35
            ('user', 'follow', 'user'): ([0, 1, 1, 2, 3], [1, 2, 3, 0, 0])
36
        })
37
    g4 = dgl.heterograph({
38
39
40
            ('user', 'follow', 'user'): ([0, 1, 1, 2, 3], [1, 2, 3, 0, 0]),
            ('user', 'view', 'item'): ([0, 0, 1, 2, 3, 3], [0, 1, 1, 2, 2, 1]),
            ('item', 'viewed-by', 'user'): ([0, 1, 1, 2, 2, 1], [0, 0, 1, 2, 3, 3])
41
        })
42

43
44
45
46
    g2.edata['p'] = F.copy_to(F.tensor([3, 0, 3, 3, 3], dtype=F.float32), F.cpu())
    g2.edata['p2'] = F.copy_to(F.tensor([[3], [0], [3], [3], [3]], dtype=F.float32), F.cpu())
    g4.edges['follow'].data['p'] = F.copy_to(F.tensor([3, 0, 3, 3, 3], dtype=F.float32), F.cpu())
    g4.edges['viewed-by'].data['p'] = F.copy_to(F.tensor([1, 1, 1, 1, 1, 1], dtype=F.float32), F.cpu())
47

48
49
50
51
52
53
54
    if use_uva:
        for g in (g2, g4):
            g.create_formats_()
            g.pin_memory_()
    elif F._default_context_str == 'gpu':
        g2 = g2.to(F.ctx())
        g4 = g4.to(F.ctx())
55

56
    try:
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
        traces, eids, ntypes = dgl.sampling.random_walk(
            g2, F.tensor([0, 1, 2, 3, 0, 1, 2, 3], dtype=g2.idtype),
            length=4, prob='p', return_eids=True)
        check_random_walk(g2, ['follow'] * 4, traces, ntypes, 'p', trace_eids=eids)

        with pytest.raises(dgl.DGLError):
            traces, ntypes = dgl.sampling.random_walk(
                g2, F.tensor([0, 1, 2, 3, 0, 1, 2, 3], dtype=g2.idtype),
                length=4, prob='p2')

        metapath = ['follow', 'view', 'viewed-by'] * 2
        traces, eids, ntypes = dgl.sampling.random_walk(
            g4, F.tensor([0, 1, 2, 3, 0, 1, 2, 3], dtype=g4.idtype),
            metapath=metapath, prob='p', return_eids=True)
        check_random_walk(g4, metapath, traces, ntypes, 'p', trace_eids=eids)
        traces, eids, ntypes = dgl.sampling.random_walk(
            g4, F.tensor([0, 1, 2, 3, 0, 1, 2, 3], dtype=g4.idtype),
            metapath=metapath, prob='p', restart_prob=0., return_eids=True)
        check_random_walk(g4, metapath, traces, ntypes, 'p', trace_eids=eids)
        traces, eids, ntypes = dgl.sampling.random_walk(
            g4, F.tensor([0, 1, 2, 3, 0, 1, 2, 3], dtype=g4.idtype),
            metapath=metapath, prob='p',
            restart_prob=F.zeros((6,), F.float32, F.ctx()), return_eids=True)
        check_random_walk(g4, metapath, traces, ntypes, 'p', trace_eids=eids)
        traces, eids, ntypes = dgl.sampling.random_walk(
            g4, F.tensor([0, 1, 2, 3, 0, 1, 2, 3], dtype=g4.idtype),
            metapath=metapath + ['follow'], prob='p',
            restart_prob=F.tensor([0, 0, 0, 0, 0, 0, 1], F.float32), return_eids=True)
        check_random_walk(g4, metapath, traces[:, :7], ntypes[:7], 'p', trace_eids=eids)
        assert (F.asnumpy(traces[:, 7]) == -1).all()
    finally:
        for g in (g2, g4):
            g.unpin_memory_()

@pytest.mark.parametrize('use_uva', [True, False])
92
def test_uniform_random_walk(use_uva):
93
94
    if use_uva and F.ctx() == F.cpu():
        pytest.skip('UVA random walk requires a GPU.')
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    g1 = dgl.heterograph({
            ('user', 'follow', 'user'): ([0, 1, 2], [1, 2, 0])
        })
    g2 = dgl.heterograph({
            ('user', 'follow', 'user'): ([0, 1, 1, 2, 3], [1, 2, 3, 0, 0])
        })
    g3 = dgl.heterograph({
            ('user', 'follow', 'user'): ([0, 1, 2], [1, 2, 0]),
            ('user', 'view', 'item'): ([0, 1, 2], [0, 1, 2]),
            ('item', 'viewed-by', 'user'): ([0, 1, 2], [0, 1, 2])
        })
    g4 = dgl.heterograph({
            ('user', 'follow', 'user'): ([0, 1, 1, 2, 3], [1, 2, 3, 0, 0]),
            ('user', 'view', 'item'): ([0, 0, 1, 2, 3, 3], [0, 1, 1, 2, 2, 1]),
            ('item', 'viewed-by', 'user'): ([0, 1, 1, 2, 2, 1], [0, 0, 1, 2, 3, 3])
        })

    if use_uva:
        for g in (g1, g2, g3, g4):
            g.create_formats_()
            g.pin_memory_()
    elif F._default_context_str == 'gpu':
        g1 = g1.to(F.ctx())
        g2 = g2.to(F.ctx())
        g3 = g3.to(F.ctx())
        g4 = g4.to(F.ctx())

    try:
        traces, eids, ntypes = dgl.sampling.random_walk(
            g1, F.tensor([0, 1, 2, 0, 1, 2], dtype=g1.idtype), length=4, return_eids=True)
        check_random_walk(g1, ['follow'] * 4, traces, ntypes, trace_eids=eids)
        if F._default_context_str == 'cpu':
            with pytest.raises(dgl.DGLError):
                dgl.sampling.random_walk(g1, F.tensor([0, 1, 2, 10], dtype=g1.idtype), length=4, return_eids=True)
        traces, eids, ntypes = dgl.sampling.random_walk(
            g1, F.tensor([0, 1, 2, 0, 1, 2], dtype=g1.idtype), length=4, restart_prob=0., return_eids=True)
        check_random_walk(g1, ['follow'] * 4, traces, ntypes, trace_eids=eids)
        traces, ntypes = dgl.sampling.random_walk(
            g1, F.tensor([0, 1, 2, 0, 1, 2], dtype=g1.idtype), length=4, restart_prob=F.zeros((4,), F.float32))
        check_random_walk(g1, ['follow'] * 4, traces, ntypes)
        traces, ntypes = dgl.sampling.random_walk(
            g1, F.tensor([0, 1, 2, 0, 1, 2], dtype=g1.idtype), length=5,
            restart_prob=F.tensor([0, 0, 0, 0, 1], dtype=F.float32))
        check_random_walk(
            g1, ['follow'] * 4, F.slice_axis(traces, 1, 0, 5), F.slice_axis(ntypes, 0, 0, 5))
        assert (F.asnumpy(traces)[:, 5] == -1).all()

        traces, eids, ntypes = dgl.sampling.random_walk(
            g2, F.tensor([0, 1, 2, 3, 0, 1, 2, 3], dtype=g2.idtype), length=4, return_eids=True)
        check_random_walk(g2, ['follow'] * 4, traces, ntypes, trace_eids=eids)

        metapath = ['follow', 'view', 'viewed-by'] * 2
        traces, eids, ntypes = dgl.sampling.random_walk(
            g3, F.tensor([0, 1, 2, 0, 1, 2], dtype=g3.idtype), metapath=metapath, return_eids=True)
        check_random_walk(g3, metapath, traces, ntypes, trace_eids=eids)

        metapath = ['follow', 'view', 'viewed-by'] * 2
        traces, eids, ntypes = dgl.sampling.random_walk(
            g4, F.tensor([0, 1, 2, 3, 0, 1, 2, 3], dtype=g4.idtype), metapath=metapath, return_eids=True)
        check_random_walk(g4, metapath, traces, ntypes, trace_eids=eids)

        traces, eids, ntypes = dgl.sampling.random_walk(
            g4, F.tensor([0, 1, 2, 0, 1, 2], dtype=g4.idtype), metapath=metapath, return_eids=True)
        check_random_walk(g4, metapath, traces, ntypes, trace_eids=eids)
    finally:    # make sure to unpin the graphs even if some test fails
        for g in (g1, g2, g3, g4):
            if g.is_pinned():
                g.unpin_memory_()

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU random walk not implemented")
def test_node2vec():
    g1 = dgl.heterograph({
        ('user', 'follow', 'user'): ([0, 1, 2], [1, 2, 0])
        })
    g2 = dgl.heterograph({
        ('user', 'follow', 'user'): ([0, 1, 1, 2, 3], [1, 2, 3, 0, 0])
        })
    g2.edata['p'] = F.tensor([3, 0, 3, 3, 3], dtype=F.float32)

    ntypes = F.zeros((5,), dtype=F.int64)

    traces, eids = dgl.sampling.node2vec_random_walk(g1, [0, 1, 2, 0, 1, 2], 1, 1, 4, return_eids=True)
    check_random_walk(g1, ['follow'] * 4, traces, ntypes, trace_eids=eids)

    traces, eids = dgl.sampling.node2vec_random_walk(
        g2, [0, 1, 2, 3, 0, 1, 2, 3], 1, 1, 4, prob='p', return_eids=True)
    check_random_walk(g2, ['follow'] * 4, traces, ntypes, 'p', trace_eids=eids)

183
184
185
186
187
188
189
190
191
192
193
194
195
196
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU pack traces not implemented")
def test_pack_traces():
    traces, types = (np.array(
        [[ 0,  1, -1, -1, -1, -1, -1],
         [ 0,  1,  1,  3,  0,  0,  0]], dtype='int64'),
        np.array([0, 0, 1, 0, 0, 1, 0], dtype='int64'))
    traces = F.zerocopy_from_numpy(traces)
    types = F.zerocopy_from_numpy(types)
    result = dgl.sampling.pack_traces(traces, types)
    assert F.array_equal(result[0], F.tensor([0, 1, 0, 1, 1, 3, 0, 0, 0], dtype=F.int64))
    assert F.array_equal(result[1], F.tensor([0, 0, 0, 0, 1, 0, 0, 1, 0], dtype=F.int64))
    assert F.array_equal(result[2], F.tensor([2, 7], dtype=F.int64))
    assert F.array_equal(result[3], F.tensor([0, 2], dtype=F.int64))

197
@pytest.mark.parametrize('use_uva', [True, False])
198
def test_pinsage_sampling(use_uva):
199
200
    if use_uva and F.ctx() == F.cpu():
        pytest.skip('UVA sampling requires a GPU.')
201
    def _test_sampler(g, sampler, ntype):
202
        seeds = F.copy_to(F.tensor([0, 2], dtype=g.idtype), F.ctx())
203
        neighbor_g = sampler(seeds)
204
205
206
207
208
209
210
        assert neighbor_g.ntypes == [ntype]
        u, v = neighbor_g.all_edges(form='uv', order='eid')
        uv = list(zip(F.asnumpy(u).tolist(), F.asnumpy(v).tolist()))
        assert (1, 0) in uv or (0, 0) in uv
        assert (2, 2) in uv or (3, 2) in uv

    g = dgl.heterograph({
211
212
        ('item', 'bought-by', 'user'): ([0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 2, 3, 2, 3]),
        ('user', 'bought', 'item'): ([0, 1, 0, 1, 2, 3, 2, 3], [0, 0, 1, 1, 2, 2, 3, 3])})
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    if use_uva:
        g.create_formats_()
        g.pin_memory_()
    elif F._default_context_str == 'gpu':
        g = g.to(F.ctx())
    try:
        sampler = dgl.sampling.PinSAGESampler(g, 'item', 'user', 4, 0.5, 3, 2)
        _test_sampler(g, sampler, 'item')
        sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2, ['bought-by', 'bought'])
        _test_sampler(g, sampler, 'item')
        sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2,
            [('item', 'bought-by', 'user'), ('user', 'bought', 'item')])
        _test_sampler(g, sampler, 'item')
    finally:
        if g.is_pinned():
            g.unpin_memory_()

230
231
    g = dgl.graph(([0, 0, 1, 1, 2, 2, 3, 3],
                   [0, 1, 0, 1, 2, 3, 2, 3]))
232
233
234
235
236
237
238
239
240
241
242
243
    if use_uva:
        g.create_formats_()
        g.pin_memory_()
    elif F._default_context_str == 'gpu':
        g = g.to(F.ctx())
    try:
        sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2)
        _test_sampler(g, sampler, g.ntypes[0])
    finally:
        if g.is_pinned():
            g.unpin_memory_()

244
    g = dgl.heterograph({
245
246
247
        ('A', 'AB', 'B'): ([0, 2], [1, 3]),
        ('B', 'BC', 'C'): ([1, 3], [2, 1]),
        ('C', 'CA', 'A'): ([2, 1], [0, 2])})
248
249
250
251
252
253
254
255
256
257
258
    if use_uva:
        g.create_formats_()
        g.pin_memory_()
    elif F._default_context_str == 'gpu':
        g = g.to(F.ctx())
    try:
        sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2, ['AB', 'BC', 'CA'])
        _test_sampler(g, sampler, 'A')
    finally:
        if g.is_pinned():
            g.unpin_memory_()
259

260
261
262
263
def _gen_neighbor_sampling_test_graph(hypersparse, reverse):
    if hypersparse:
        # should crash if allocated a CSR
        card = 1 << 50
264
        num_nodes_dict = {'user': card, 'game': card, 'coin': card}
265
266
    else:
        card = None
267
268
        num_nodes_dict = None

269
    if reverse:
270
271
272
        g = dgl.heterograph({
            ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2], [1, 2, 3, 0, 2, 3, 0])
        }, {'user': card if card is not None else 4})
273
        g = g.to(F.ctx())
274
        g.edata['prob'] = F.tensor([.5, .5, 0., .5, .5, 0., 1.], dtype=F.float32)
275
276
277
278
279
280
281
        hg = dgl.heterograph({
            ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2],
                                         [1, 2, 3, 0, 2, 3, 0]),
            ('game', 'play', 'user'): ([0, 1, 2, 2], [0, 0, 1, 3]),
            ('user', 'liked-by', 'game'): ([0, 1, 2, 0, 3, 0], [2, 2, 2, 1, 1, 0]),
            ('coin', 'flips', 'user'): ([0, 0, 0, 0], [0, 1, 2, 3])
        }, num_nodes_dict)
282
        hg = hg.to(F.ctx())
283
    else:
284
285
286
        g = dgl.heterograph({
            ('user', 'follow', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2])
        }, {'user': card if card is not None else 4})
287
        g = g.to(F.ctx())
288
        g.edata['prob'] = F.tensor([.5, .5, 0., .5, .5, 0., 1.], dtype=F.float32)
289
290
291
292
293
294
295
        hg = dgl.heterograph({
            ('user', 'follow', 'user'): ([1, 2, 3, 0, 2, 3, 0],
                                         [0, 0, 0, 1, 1, 1, 2]),
            ('user', 'play', 'game'): ([0, 0, 1, 3], [0, 1, 2, 2]),
            ('game', 'liked-by', 'user'): ([2, 2, 2, 1, 1, 0], [0, 1, 2, 0, 3, 0]),
            ('user', 'flips', 'coin'): ([0, 1, 2, 3], [0, 0, 0, 0])
        }, num_nodes_dict)
296
        hg = hg.to(F.ctx())
297
298
299
    hg.edges['follow'].data['prob'] = F.tensor([.5, .5, 0., .5, .5, 0., 1.], dtype=F.float32)
    hg.edges['play'].data['prob'] = F.tensor([.8, .5, .5, .5], dtype=F.float32)
    hg.edges['liked-by'].data['prob'] = F.tensor([.3, .5, .2, .5, .1, .1], dtype=F.float32)
300
301
302
303
304
305
306
307
308

    return g, hg

def _gen_neighbor_topk_test_graph(hypersparse, reverse):
    if hypersparse:
        # should crash if allocated a CSR
        card = 1 << 50
    else:
        card = None
309

310
    if reverse:
311
312
313
        g = dgl.heterograph({
            ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2], [1, 2, 3, 0, 2, 3, 0])
        })
314
        g.edata['weight'] = F.tensor([.5, .3, 0., -5., 22., 0., 1.], dtype=F.float32)
315
316
317
318
319
320
321
        hg = dgl.heterograph({
            ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2],
                                         [1, 2, 3, 0, 2, 3, 0]),
            ('game', 'play', 'user'): ([0, 1, 2, 2], [0, 0, 1, 3]),
            ('user', 'liked-by', 'game'): ([0, 1, 2, 0, 3, 0], [2, 2, 2, 1, 1, 0]),
            ('coin', 'flips', 'user'): ([0, 0, 0, 0], [0, 1, 2, 3])
        })
322
    else:
323
324
325
        g = dgl.heterograph({
            ('user', 'follow', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2])
        })
326
        g.edata['weight'] = F.tensor([.5, .3, 0., -5., 22., 0., 1.], dtype=F.float32)
327
328
329
330
331
332
333
334
335
336
337
        hg = dgl.heterograph({
            ('user', 'follow', 'user'): ([1, 2, 3, 0, 2, 3, 0],
                                         [0, 0, 0, 1, 1, 1, 2]),
            ('user', 'play', 'game'): ([0, 0, 1, 3], [0, 1, 2, 2]),
            ('game', 'liked-by', 'user'): ([2, 2, 2, 1, 1, 0], [0, 1, 2, 0, 3, 0]),
            ('user', 'flips', 'coin'): ([0, 1, 2, 3], [0, 0, 0, 0])
        })
    hg.edges['follow'].data['weight'] = F.tensor([.5, .3, 0., -5., 22., 0., 1.], dtype=F.float32)
    hg.edges['play'].data['weight'] = F.tensor([.8, .5, .4, .5], dtype=F.float32)
    hg.edges['liked-by'].data['weight'] = F.tensor([.3, .5, .2, .5, .1, .1], dtype=F.float32)
    hg.edges['flips'].data['weight'] = F.tensor([10, 2, 13, -1], dtype=F.float32)
338
339
    return g, hg

340
def _test_sample_neighbors(hypersparse, prob):
341
342
343
    g, hg = _gen_neighbor_sampling_test_graph(hypersparse, False)

    def _test1(p, replace):
344
345
346
347
348
349
350
351
        subg = dgl.sampling.sample_neighbors(g, [0, 1], -1, prob=p, replace=replace)
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.in_edges([0, 1])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

352
353
354
355
356
357
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(g, [0, 1], 2, prob=p, replace=replace)
            assert subg.number_of_nodes() == g.number_of_nodes()
            assert subg.number_of_edges() == 4
            u, v = subg.edges()
            assert set(F.asnumpy(F.unique(v))) == {0, 1}
358
            assert F.array_equal(F.astype(g.has_edges_between(u, v), F.int64), F.ones((4,), dtype=F.int64))
359
360
361
362
363
364
365
366
            assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
            edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
            if not replace:
                # check no duplication
                assert len(edge_set) == 4
            if p is not None:
                assert not (3, 0) in edge_set
                assert not (3, 1) in edge_set
367
368
    _test1(prob, True)   # w/ replacement, uniform
    _test1(prob, False)  # w/o replacement, uniform
369
370

    def _test2(p, replace):  # fanout > #neighbors
371
372
373
374
375
376
377
378
        subg = dgl.sampling.sample_neighbors(g, [0, 2], -1, prob=p, replace=replace)
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.in_edges([0, 2])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

379
380
381
382
383
384
385
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(g, [0, 2], 2, prob=p, replace=replace)
            assert subg.number_of_nodes() == g.number_of_nodes()
            num_edges = 4 if replace else 3
            assert subg.number_of_edges() == num_edges
            u, v = subg.edges()
            assert set(F.asnumpy(F.unique(v))) == {0, 2}
386
            assert F.array_equal(F.astype(g.has_edges_between(u, v), F.int64), F.ones((num_edges,), dtype=F.int64))
387
388
389
390
391
392
393
            assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
            edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
            if not replace:
                # check no duplication
                assert len(edge_set) == num_edges
            if p is not None:
                assert not (3, 0) in edge_set
394
395
    _test2(prob, True)   # w/ replacement, uniform
    _test2(prob, False)  # w/o replacement, uniform
396
397

    def _test3(p, replace):
398
399
400
401
402
403
404
405
        subg = dgl.sampling.sample_neighbors(hg, {'user': [0, 1], 'game': 0}, -1, prob=p, replace=replace)
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        assert subg['follow'].number_of_edges() == 6
        assert subg['play'].number_of_edges() == 1
        assert subg['liked-by'].number_of_edges() == 4
        assert subg['flips'].number_of_edges() == 0

406
407
408
409
410
411
412
413
414
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(hg, {'user' : [0,1], 'game' : 0}, 2, prob=p, replace=replace)
            assert len(subg.ntypes) == 3
            assert len(subg.etypes) == 4
            assert subg['follow'].number_of_edges() == 4
            assert subg['play'].number_of_edges() == 2 if replace else 1
            assert subg['liked-by'].number_of_edges() == 4 if replace else 3
            assert subg['flips'].number_of_edges() == 0

415
416
    _test3(prob, True)   # w/ replacement, uniform
    _test3(prob, False)  # w/o replacement, uniform
417
418
419

    # test different fanouts for different relations
    for i in range(10):
420
421
        subg = dgl.sampling.sample_neighbors(
            hg,
422
423
            {'user' : [0,1], 'game' : 0, 'coin': 0},
            {'follow': 1, 'play': 2, 'liked-by': 0, 'flips': -1},
424
            replace=True)
425
426
427
428
429
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        assert subg['follow'].number_of_edges() == 2
        assert subg['play'].number_of_edges() == 2
        assert subg['liked-by'].number_of_edges() == 0
430
        assert subg['flips'].number_of_edges() == 4
431
432
433
434
435

def _test_sample_neighbors_outedge(hypersparse):
    g, hg = _gen_neighbor_sampling_test_graph(hypersparse, True)

    def _test1(p, replace):
436
437
438
439
440
441
442
443
        subg = dgl.sampling.sample_neighbors(g, [0, 1], -1, prob=p, replace=replace, edge_dir='out')
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.out_edges([0, 1])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

444
445
446
447
448
449
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(g, [0, 1], 2, prob=p, replace=replace, edge_dir='out')
            assert subg.number_of_nodes() == g.number_of_nodes()
            assert subg.number_of_edges() == 4
            u, v = subg.edges()
            assert set(F.asnumpy(F.unique(u))) == {0, 1}
450
            assert F.array_equal(F.astype(g.has_edges_between(u, v), F.int64), F.ones((4,), dtype=F.int64))
451
452
453
454
455
456
457
458
459
460
461
462
463
464
            assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
            edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
            if not replace:
                # check no duplication
                assert len(edge_set) == 4
            if p is not None:
                assert not (0, 3) in edge_set
                assert not (1, 3) in edge_set
    _test1(None, True)   # w/ replacement, uniform
    _test1(None, False)  # w/o replacement, uniform
    _test1('prob', True)   # w/ replacement
    _test1('prob', False)  # w/o replacement

    def _test2(p, replace):  # fanout > #neighbors
465
466
467
468
469
470
471
472
        subg = dgl.sampling.sample_neighbors(g, [0, 2], -1, prob=p, replace=replace, edge_dir='out')
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.out_edges([0, 2])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

473
474
475
476
477
478
479
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(g, [0, 2], 2, prob=p, replace=replace, edge_dir='out')
            assert subg.number_of_nodes() == g.number_of_nodes()
            num_edges = 4 if replace else 3
            assert subg.number_of_edges() == num_edges
            u, v = subg.edges()
            assert set(F.asnumpy(F.unique(u))) == {0, 2}
480
            assert F.array_equal(F.astype(g.has_edges_between(u, v), F.int64), F.ones((num_edges,), dtype=F.int64))
481
482
483
484
485
486
487
488
489
490
491
492
493
            assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
            edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
            if not replace:
                # check no duplication
                assert len(edge_set) == num_edges
            if p is not None:
                assert not (0, 3) in edge_set
    _test2(None, True)   # w/ replacement, uniform
    _test2(None, False)  # w/o replacement, uniform
    _test2('prob', True)   # w/ replacement
    _test2('prob', False)  # w/o replacement

    def _test3(p, replace):
494
495
496
497
498
499
500
501
        subg = dgl.sampling.sample_neighbors(hg, {'user': [0, 1], 'game': 0}, -1, prob=p, replace=replace, edge_dir='out')
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        assert subg['follow'].number_of_edges() == 6
        assert subg['play'].number_of_edges() == 1
        assert subg['liked-by'].number_of_edges() == 4
        assert subg['flips'].number_of_edges() == 0

502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(hg, {'user' : [0,1], 'game' : 0}, 2, prob=p, replace=replace, edge_dir='out')
            assert len(subg.ntypes) == 3
            assert len(subg.etypes) == 4
            assert subg['follow'].number_of_edges() == 4
            assert subg['play'].number_of_edges() == 2 if replace else 1
            assert subg['liked-by'].number_of_edges() == 4 if replace else 3
            assert subg['flips'].number_of_edges() == 0

    _test3(None, True)   # w/ replacement, uniform
    _test3(None, False)  # w/o replacement, uniform
    _test3('prob', True)   # w/ replacement
    _test3('prob', False)  # w/o replacement

def _test_sample_neighbors_topk(hypersparse):
    g, hg = _gen_neighbor_topk_test_graph(hypersparse, False)

    def _test1():
520
521
522
523
524
525
526
527
        subg = dgl.sampling.select_topk(g, -1, 'weight', [0, 1])
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.in_edges([0, 1])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

528
        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 1])
529
530
531
532
533
534
535
536
537
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 4
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        assert edge_set == {(2,0),(1,0),(2,1),(3,1)}
    _test1()

    def _test2():  # k > #neighbors
538
539
540
541
542
543
544
545
        subg = dgl.sampling.select_topk(g, -1, 'weight', [0, 2])
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.in_edges([0, 2])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

546
        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 2])
547
548
549
550
551
552
553
554
555
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 3
        u, v = subg.edges()
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert edge_set == {(2,0),(1,0),(0,2)}
    _test2()

    def _test3():
556
        subg = dgl.sampling.select_topk(hg, 2, 'weight', {'user' : [0,1], 'game' : 0})
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        u, v = subg['follow'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
        assert edge_set == {(2,0),(1,0),(2,1),(3,1)}
        u, v = subg['play'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
        assert edge_set == {(0,0)}
        u, v = subg['liked-by'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
        assert edge_set == {(2,0),(2,1),(1,0)}
        assert subg['flips'].number_of_edges() == 0
    _test3()

    # test different k for different relations
575
    subg = dgl.sampling.select_topk(
576
        hg, {'follow': 1, 'play': 2, 'liked-by': 0, 'flips': -1}, 'weight', {'user' : [0,1], 'game' : 0, 'coin': 0})
577
578
579
580
581
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4
    assert subg['follow'].number_of_edges() == 2
    assert subg['play'].number_of_edges() == 1
    assert subg['liked-by'].number_of_edges() == 0
582
    assert subg['flips'].number_of_edges() == 4
583
584
585
586
587

def _test_sample_neighbors_topk_outedge(hypersparse):
    g, hg = _gen_neighbor_topk_test_graph(hypersparse, True)

    def _test1():
588
589
590
591
592
593
594
595
        subg = dgl.sampling.select_topk(g, -1, 'weight', [0, 1], edge_dir='out')
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.out_edges([0, 1])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

596
        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 1], edge_dir='out')
597
598
599
600
601
602
603
604
605
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 4
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        assert edge_set == {(0,2),(0,1),(1,2),(1,3)}
    _test1()

    def _test2():  # k > #neighbors
606
607
608
609
610
611
612
613
        subg = dgl.sampling.select_topk(g, -1, 'weight', [0, 2], edge_dir='out')
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.out_edges([0, 2])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

614
        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 2], edge_dir='out')
615
616
617
618
619
620
621
622
623
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 3
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        assert edge_set == {(0,2),(0,1),(2,0)}
    _test2()

    def _test3():
624
        subg = dgl.sampling.select_topk(hg, 2, 'weight', {'user' : [0,1], 'game' : 0}, edge_dir='out')
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        u, v = subg['follow'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
        assert edge_set == {(0,2),(0,1),(1,2),(1,3)}
        u, v = subg['play'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
        assert edge_set == {(0,0)}
        u, v = subg['liked-by'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
        assert edge_set == {(0,2),(1,2),(0,1)}
        assert subg['flips'].number_of_edges() == 0
    _test3()

642
643
644
645
646
647
def test_sample_neighbors_noprob():
    _test_sample_neighbors(False, None)
    #_test_sample_neighbors(True)

def test_sample_neighbors_prob():
    _test_sample_neighbors(False, 'prob')
648
    #_test_sample_neighbors(True)
649
650
651

def test_sample_neighbors_outedge():
    _test_sample_neighbors_outedge(False)
652
    #_test_sample_neighbors_outedge(True)
653
654
655
656

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_topk():
    _test_sample_neighbors_topk(False)
657
    #_test_sample_neighbors_topk(True)
658
659
660
661

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_topk_outedge():
    _test_sample_neighbors_topk_outedge(False)
662
    #_test_sample_neighbors_topk_outedge(True)
663

664
def test_sample_neighbors_with_0deg():
665
    g = dgl.graph(([], []), num_nodes=5).to(F.ctx())
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
666
667
668
669
670
671
672
673
    sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='in', replace=False)
    assert sg.number_of_edges() == 0
    sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='in', replace=True)
    assert sg.number_of_edges() == 0
    sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='out', replace=False)
    assert sg.number_of_edges() == 0
    sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='out', replace=True)
    assert sg.number_of_edges() == 0
674

675
676
677
678
679
680
681
682
683
684
685
686
def create_test_graph(num_nodes, num_edges_per_node, bipartite=False):
    src = np.concatenate(
        [np.array([i] * num_edges_per_node) for i in range(num_nodes)])
    dst = np.concatenate(
        [np.random.choice(num_nodes, num_edges_per_node, replace=False) for i in range(num_nodes)]
    )
    if bipartite:
        g = dgl.heterograph({("u", "e", "v") : (src, dst)})
    else:
        g = dgl.graph((src, dst))
    return g

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
def create_etype_test_graph(num_nodes, num_edges_per_node, rare_cnt):
    src = np.concatenate(
        [np.random.choice(num_nodes, num_edges_per_node, replace=False) for i in range(num_nodes)]
    )
    dst = np.concatenate(
        [np.array([i] * num_edges_per_node) for i in range(num_nodes)])

    minor_src = np.concatenate(
        [np.random.choice(num_nodes, 2, replace=False) for i in range(num_nodes)]
    )
    minor_dst = np.concatenate(
        [np.array([i] * 2) for i in range(num_nodes)])

    most_zero_src = np.concatenate(
        [np.random.choice(num_nodes, num_edges_per_node, replace=False) for i in range(rare_cnt)]
    )
    most_zero_dst = np.concatenate(
        [np.array([i] * num_edges_per_node) for i in range(rare_cnt)])


    g = dgl.heterograph({("v", "e_major", "u") : (src, dst),
                         ("u", "e_major_rev", "v") : (dst, src),
                         ("v2", "e_minor", "u") : (minor_src, minor_dst),
                         ("v2", "most_zero", "u") : (most_zero_src, most_zero_dst),
                         ("u", "e_minor_rev", "v2") : (minor_dst, minor_src)})

    return g

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_biased_homogeneous():
    g = create_test_graph(100, 30)

    def check_num(nodes, tag):
        nodes, tag = F.asnumpy(nodes), F.asnumpy(tag)
        cnt = [sum(tag[nodes] == i) for i in range(4)]
        # No tag 0
        assert cnt[0] == 0

        # very rare tag 1
        assert cnt[2] > 2 * cnt[1]
        assert cnt[3] > 2 * cnt[1]

    tag = F.tensor(np.random.choice(4, 100))
    bias = F.tensor([0, 0.1, 10, 10], dtype=F.float32)
    # inedge / without replacement
732
    g_sorted = dgl.sort_csc_by_tag(g, tag)
733
734
735
736
737
738
739
740
741
742
743
744
745
    for _ in range(5):
        subg = dgl.sampling.sample_neighbors_biased(g_sorted, g.nodes(), 5, bias, replace=False)
        check_num(subg.edges()[0], tag)
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert len(edge_set) == subg.number_of_edges()

    # inedge / with replacement
    for _ in range(5):
        subg = dgl.sampling.sample_neighbors_biased(g_sorted, g.nodes(), 5, bias, replace=True)
        check_num(subg.edges()[0], tag)

    # outedge / without replacement
746
    g_sorted = dgl.sort_csr_by_tag(g, tag)
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
    for _ in range(5):
        subg = dgl.sampling.sample_neighbors_biased(g_sorted, g.nodes(), 5, bias, edge_dir='out', replace=False)
        check_num(subg.edges()[1], tag)
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert len(edge_set) == subg.number_of_edges()

    # outedge / with replacement
    for _ in range(5):
        subg = dgl.sampling.sample_neighbors_biased(g_sorted, g.nodes(), 5, bias, edge_dir='out', replace=True)
        check_num(subg.edges()[1], tag)

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_biased_bipartite():
    g = create_test_graph(100, 30, True)
    num_dst = g.number_of_dst_nodes()
    bias = F.tensor([0, 0.01, 10, 10], dtype=F.float32)
    def check_num(nodes, tag):
        nodes, tag = F.asnumpy(nodes), F.asnumpy(tag)
        cnt = [sum(tag[nodes] == i) for i in range(4)]
        # No tag 0
        assert cnt[0] == 0

        # very rare tag 1
        assert cnt[2] > 2 * cnt[1]
        assert cnt[3] > 2 * cnt[1]

    # inedge / without replacement
    tag = F.tensor(np.random.choice(4, 100))
776
    g_sorted = dgl.sort_csc_by_tag(g, tag)
777
778
779
780
781
782
783
784
785
786
787
788
789
790
    for _ in range(5):
        subg = dgl.sampling.sample_neighbors_biased(g_sorted, g.dstnodes(), 5, bias, replace=False)
        check_num(subg.edges()[0], tag)
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert len(edge_set) == subg.number_of_edges()

    # inedge / with replacement
    for _ in range(5):
        subg = dgl.sampling.sample_neighbors_biased(g_sorted, g.dstnodes(), 5, bias, replace=True)
        check_num(subg.edges()[0], tag)

    # outedge / without replacement
    tag = F.tensor(np.random.choice(4, num_dst))
791
    g_sorted = dgl.sort_csr_by_tag(g, tag)
792
793
794
795
796
797
798
799
800
801
802
803
    for _ in range(5):
        subg = dgl.sampling.sample_neighbors_biased(g_sorted, g.srcnodes(), 5, bias, edge_dir='out', replace=False)
        check_num(subg.edges()[1], tag)
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert len(edge_set) == subg.number_of_edges()

    # outedge / with replacement
    for _ in range(5):
        subg = dgl.sampling.sample_neighbors_biased(g_sorted, g.srcnodes(), 5, bias, edge_dir='out', replace=True)
        check_num(subg.edges()[1], tag)

804
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
805
806
807
808
@pytest.mark.parametrize('format_', ['coo', 'csr', 'csc'])
@pytest.mark.parametrize('direction', ['in', 'out'])
@pytest.mark.parametrize('replace', [False, True])
def test_sample_neighbors_etype_homogeneous(format_, direction, replace):
809
810
811
812
813
814
    num_nodes = 100
    rare_cnt = 4
    g = create_etype_test_graph(100, 30, rare_cnt)
    h_g = dgl.to_homogeneous(g)
    seed_ntype = g.get_ntype_id("u")
    seeds = F.nonzero_1d(h_g.ndata[dgl.NTYPE] == seed_ntype)
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
    fanouts = F.tensor([6, 5, 4, 3, 2], dtype=F.int64)

    def check_num(h_g, all_src, all_dst, subg, replace, fanouts, direction):
        src, dst = subg.edges()
        num_etypes = F.asnumpy(h_g.edata[dgl.ETYPE]).max()
        etype_array = F.asnumpy(subg.edata[dgl.ETYPE])
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        fanouts = F.asnumpy(fanouts)

        all_etype_array = F.asnumpy(h_g.edata[dgl.ETYPE])
        all_src = F.asnumpy(all_src)
        all_dst = F.asnumpy(all_dst)

        src_per_etype = []
        dst_per_etype = []
        for etype in range(num_etypes):
            src_per_etype.append(src[etype_array == etype])
            dst_per_etype.append(dst[etype_array == etype])

        if replace:
            if direction == 'in':
                in_degree_per_etype = [np.bincount(d) for d in dst_per_etype]
                for in_degree, fanout in zip(in_degree_per_etype, fanouts):
                    assert np.all(in_degree == fanout)
840
            else:
841
842
843
844
845
846
847
848
849
850
851
852
853
854
                out_degree_per_etype = [np.bincount(s) for s in src_per_etype]
                for out_degree, fanout in zip(out_degree_per_etype, fanouts):
                    assert np.all(out_degree == fanout)
        else:
            if direction == 'in':
                for v in set(dst):
                    u = src[dst == v]
                    et = etype_array[dst == v]
                    all_u = all_src[all_dst == v]
                    all_et = all_etype_array[all_dst == v]
                    for etype in set(et):
                        u_etype = set(u[et == etype])
                        all_u_etype = set(all_u[all_et == etype])
                        assert (len(u_etype) == fanouts[etype]) or (u_etype == all_u_etype)
855
            else:
856
857
858
859
860
861
862
863
864
865
866
867
868
869
                for u in set(src):
                    v = dst[src == u]
                    et = etype_array[src == u]
                    all_v = all_dst[all_src == u]
                    all_et = all_etype_array[all_src == u]
                    for etype in set(et):
                        v_etype = set(v[et == etype])
                        all_v_etype = set(all_v[all_et == etype])
                        assert (len(v_etype) == fanouts[etype]) or (v_etype == all_v_etype)

    all_src, all_dst = h_g.edges()
    h_g = h_g.formats(format_)
    if (direction, format_) in [('in', 'csr'), ('out', 'csc')]:
        h_g = h_g.formats(['csc', 'csr', 'coo'])
870
871
    for _ in range(5):
        subg = dgl.sampling.sample_etype_neighbors(
872
873
            h_g, seeds, dgl.ETYPE, fanouts, replace=replace, edge_dir=direction)
        check_num(h_g, all_src, all_dst, subg, replace, fanouts, direction)
874

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
@pytest.mark.parametrize('format_', ['csr', 'csc'])
@pytest.mark.parametrize('direction', ['in', 'out'])
def test_sample_neighbors_etype_sorted_homogeneous(format_, direction):
    rare_cnt = 4
    g = create_etype_test_graph(100, 30, rare_cnt)
    h_g = dgl.to_homogeneous(g)
    seed_ntype = g.get_ntype_id("u")
    seeds = F.nonzero_1d(h_g.ndata[dgl.NTYPE] == seed_ntype)
    fanouts = F.tensor([6, 5, 4, 3, 2], dtype=F.int64)
    h_g = h_g.formats(format_)
    if (direction, format_) in [('in', 'csr'), ('out', 'csc')]:
        h_g = h_g.formats(['csc', 'csr', 'coo'])
    orig_etype = F.asnumpy(h_g.edata[dgl.ETYPE])
    h_g.edata[dgl.ETYPE] = F.tensor(
        np.sort(orig_etype)[::-1].tolist(), dtype=F.int64)

    try:
        dgl.sampling.sample_etype_neighbors(
            h_g, seeds, dgl.ETYPE, fanouts, edge_dir=direction, etype_sorted=True)
        fail = False
    except dgl.DGLError:
        fail = True
    assert fail

901
902
903
904
905
906
907
908
909
910
911
912
913
@pytest.mark.parametrize('dtype', ['int32', 'int64'])
def test_sample_neighbors_exclude_edges_heteroG(dtype):
    d_i_d_u_nodes = F.zerocopy_from_numpy(np.unique(np.random.randint(300, size=100, dtype=dtype)))
    d_i_d_v_nodes = F.zerocopy_from_numpy(np.random.randint(25, size=d_i_d_u_nodes.shape, dtype=dtype))
    d_i_g_u_nodes = F.zerocopy_from_numpy(np.unique(np.random.randint(300, size=100, dtype=dtype)))
    d_i_g_v_nodes = F.zerocopy_from_numpy(np.random.randint(25, size=d_i_g_u_nodes.shape, dtype=dtype))
    d_t_d_u_nodes = F.zerocopy_from_numpy(np.unique(np.random.randint(300, size=100, dtype=dtype)))
    d_t_d_v_nodes = F.zerocopy_from_numpy(np.random.randint(25, size=d_t_d_u_nodes.shape, dtype=dtype))

    g = dgl.heterograph({
        ('drug', 'interacts', 'drug'): (d_i_d_u_nodes, d_i_d_v_nodes),
        ('drug', 'interacts', 'gene'): (d_i_g_u_nodes, d_i_g_v_nodes),
        ('drug', 'treats', 'disease'): (d_t_d_u_nodes, d_t_d_v_nodes)
914
    }).to(F.ctx())
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969

    (U, V, EID) = (0, 1, 2)

    nd_b_idx = np.random.randint(low=1, high=24, dtype=dtype)
    nd_e_idx = np.random.randint(low=25, high=49, dtype=dtype)
    did_b_idx = np.random.randint(low=1, high=24, dtype=dtype)
    did_e_idx = np.random.randint(low=25, high=49, dtype=dtype)
    sampled_amount = np.random.randint(low=1, high=10, dtype=dtype)

    drug_i_drug_edges = g.all_edges(form='all', etype=('drug','interacts','drug'))
    excluded_d_i_d_edges = drug_i_drug_edges[EID][did_b_idx:did_e_idx]
    sampled_drug_node = drug_i_drug_edges[V][nd_b_idx:nd_e_idx]
    did_excluded_nodes_U = drug_i_drug_edges[U][did_b_idx:did_e_idx]
    did_excluded_nodes_V = drug_i_drug_edges[V][did_b_idx:did_e_idx]

    nd_b_idx = np.random.randint(low=1, high=24, dtype=dtype)
    nd_e_idx = np.random.randint(low=25, high=49, dtype=dtype)
    dig_b_idx = np.random.randint(low=1, high=24, dtype=dtype)
    dig_e_idx = np.random.randint(low=25, high=49, dtype=dtype)
    drug_i_gene_edges = g.all_edges(form='all', etype=('drug','interacts','gene'))
    excluded_d_i_g_edges = drug_i_gene_edges[EID][dig_b_idx:dig_e_idx]
    dig_excluded_nodes_U = drug_i_gene_edges[U][dig_b_idx:dig_e_idx]
    dig_excluded_nodes_V = drug_i_gene_edges[V][dig_b_idx:dig_e_idx]
    sampled_gene_node = drug_i_gene_edges[V][nd_b_idx:nd_e_idx]

    nd_b_idx = np.random.randint(low=1, high=24, dtype=dtype)
    nd_e_idx = np.random.randint(low=25, high=49, dtype=dtype)
    dtd_b_idx = np.random.randint(low=1, high=24, dtype=dtype)
    dtd_e_idx = np.random.randint(low=25, high=49, dtype=dtype)
    drug_t_dis_edges = g.all_edges(form='all', etype=('drug','treats','disease'))
    excluded_d_t_d_edges = drug_t_dis_edges[EID][dtd_b_idx:dtd_e_idx]
    dtd_excluded_nodes_U = drug_t_dis_edges[U][dtd_b_idx:dtd_e_idx]
    dtd_excluded_nodes_V = drug_t_dis_edges[V][dtd_b_idx:dtd_e_idx]
    sampled_disease_node = drug_t_dis_edges[V][nd_b_idx:nd_e_idx]
    excluded_edges  = {('drug', 'interacts', 'drug'): excluded_d_i_d_edges,
                       ('drug', 'interacts', 'gene'): excluded_d_i_g_edges,
                       ('drug', 'treats', 'disease'): excluded_d_t_d_edges
                      }

    sg = dgl.sampling.sample_neighbors(g, {'drug': sampled_drug_node,
                                           'gene': sampled_gene_node,
                                           'disease': sampled_disease_node},
                                       sampled_amount, exclude_edges=excluded_edges)

    assert not np.any(F.asnumpy(sg.has_edges_between(did_excluded_nodes_U,did_excluded_nodes_V,
                                                     etype=('drug','interacts','drug'))))
    assert not np.any(F.asnumpy(sg.has_edges_between(dig_excluded_nodes_U,dig_excluded_nodes_V,
                                                     etype=('drug','interacts','gene'))))
    assert not np.any(F.asnumpy(sg.has_edges_between(dtd_excluded_nodes_U,dtd_excluded_nodes_V,
                                                     etype=('drug','treats','disease'))))

@pytest.mark.parametrize('dtype', ['int32', 'int64'])
def test_sample_neighbors_exclude_edges_homoG(dtype):
    u_nodes = F.zerocopy_from_numpy(np.unique(np.random.randint(300,size=100, dtype=dtype)))
    v_nodes = F.zerocopy_from_numpy(np.random.randint(25, size=u_nodes.shape, dtype=dtype))
970
    g = dgl.graph((u_nodes, v_nodes)).to(F.ctx())
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990

    (U, V, EID) = (0, 1, 2)

    nd_b_idx = np.random.randint(low=1,high=24, dtype=dtype)
    nd_e_idx = np.random.randint(low=25,high=49, dtype=dtype)
    b_idx = np.random.randint(low=1,high=24, dtype=dtype)
    e_idx = np.random.randint(low=25,high=49, dtype=dtype)
    sampled_amount = np.random.randint(low=1,high=10, dtype=dtype)

    g_edges = g.all_edges(form='all')
    excluded_edges = g_edges[EID][b_idx:e_idx]
    sampled_node = g_edges[V][nd_b_idx:nd_e_idx]
    excluded_nodes_U = g_edges[U][b_idx:e_idx]
    excluded_nodes_V = g_edges[V][b_idx:e_idx]

    sg = dgl.sampling.sample_neighbors(g, sampled_node,
                                       sampled_amount, exclude_edges=excluded_edges)

    assert not np.any(F.asnumpy(sg.has_edges_between(excluded_nodes_U,excluded_nodes_V)))

991
992
@pytest.mark.parametrize('dtype', ['int32', 'int64'])
def test_global_uniform_negative_sampling(dtype):
993
994
995
996
    g = dgl.graph(([], []), num_nodes=1000).to(F.ctx())
    src, dst = dgl.sampling.global_uniform_negative_sampling(g, 2000, False, True)
    assert len(src) == 2000
    assert len(dst) == 2000
997

998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
    g = dgl.graph((np.random.randint(0, 20, (300,)), np.random.randint(0, 20, (300,)))).to(F.ctx())
    src, dst = dgl.sampling.global_uniform_negative_sampling(g, 20, False, True)
    assert not F.asnumpy(g.has_edges_between(src, dst)).any()

    src, dst = dgl.sampling.global_uniform_negative_sampling(g, 20, False, False)
    assert not F.asnumpy(g.has_edges_between(src, dst)).any()
    src = F.asnumpy(src)
    dst = F.asnumpy(dst)
    s = set(zip(src.tolist(), dst.tolist()))
    assert len(s) == len(src)

    g = dgl.graph(([0], [1])).to(F.ctx())
    src, dst = dgl.sampling.global_uniform_negative_sampling(g, 20, True, False, redundancy=10)
    src = F.asnumpy(src)
    dst = F.asnumpy(dst)
    # should have either no element or (1, 0)
    assert len(src) < 2
    assert len(dst) < 2
    if len(src) == 1:
        assert src[0] == 1
        assert dst[0] == 0

    g = dgl.heterograph({
        ('A', 'AB', 'B'): (np.random.randint(0, 20, (300,)), np.random.randint(0, 40, (300,))),
        ('B', 'BA', 'A'): (np.random.randint(0, 40, (200,)), np.random.randint(0, 20, (200,)))}).to(F.ctx())
    src, dst = dgl.sampling.global_uniform_negative_sampling(g, 20, False, etype='AB')
    assert not F.asnumpy(g.has_edges_between(src, dst, etype='AB')).any()

1026

1027
if __name__ == '__main__':
1028
1029
1030
    from itertools import product
    for args in product(['coo', 'csr', 'csc'], ['in', 'out'], [False, True]):
        test_sample_neighbors_etype_homogeneous(*args)
1031
1032
    test_non_uniform_random_walk()
    test_uniform_random_walk(False)
1033
    test_pack_traces()
1034
    test_pinsage_sampling()
1035
1036
1037
    test_sample_neighbors_outedge()
    test_sample_neighbors_topk()
    test_sample_neighbors_topk_outedge()
1038
    test_sample_neighbors_with_0deg()
1039
1040
    test_sample_neighbors_biased_homogeneous()
    test_sample_neighbors_biased_bipartite()
1041
1042
    test_sample_neighbors_exclude_edges_heteroG('int32')
    test_sample_neighbors_exclude_edges_homoG('int32')
1043
1044
    test_global_uniform_negative_sampling('int32')
    test_global_uniform_negative_sampling('int64')