test_sampling.py 5.08 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import dgl
import backend as F
import numpy as np
import unittest

def check_random_walk(g, metapath, traces, ntypes, prob=None):
    traces = F.asnumpy(traces)
    ntypes = F.asnumpy(ntypes)
    for j in range(traces.shape[1] - 1):
        assert ntypes[j] == g.get_ntype_id(g.to_canonical_etype(metapath[j])[0])
        assert ntypes[j + 1] == g.get_ntype_id(g.to_canonical_etype(metapath[j])[2])

    for i in range(traces.shape[0]):
        for j in range(traces.shape[1] - 1):
            assert g.has_edge_between(
                traces[i, j], traces[i, j+1], etype=metapath[j])
            if prob is not None and prob in g.edges[metapath[j]].data:
                p = F.asnumpy(g.edges[metapath[j]].data['p'])
                eids = g.edge_id(traces[i, j], traces[i, j+1], etype=metapath[j])
                assert p[eids] != 0

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU random walk not implemented")
def test_random_walk():
    g1 = dgl.heterograph({
        ('user', 'follow', 'user'): [(0, 1), (1, 2), (2, 0)]
        })
    g2 = dgl.heterograph({
        ('user', 'follow', 'user'): [(0, 1), (1, 2), (1, 3), (2, 0), (3, 0)]
        })
    g3 = dgl.heterograph({
        ('user', 'follow', 'user'): [(0, 1), (1, 2), (2, 0)],
        ('user', 'view', 'item'): [(0, 0), (1, 1), (2, 2)],
        ('item', 'viewed-by', 'user'): [(0, 0), (1, 1), (2, 2)]})
    g4 = dgl.heterograph({
        ('user', 'follow', 'user'): [(0, 1), (1, 2), (1, 3), (2, 0), (3, 0)],
        ('user', 'view', 'item'): [(0, 0), (0, 1), (1, 1), (2, 2), (3, 2), (3, 1)],
        ('item', 'viewed-by', 'user'): [(0, 0), (1, 0), (1, 1), (2, 2), (2, 3), (1, 3)]})

    g2.edata['p'] = F.tensor([3, 0, 3, 3, 3], dtype=F.float32)
    g4.edges['follow'].data['p'] = F.tensor([3, 0, 3, 3, 3], dtype=F.float32)
    g4.edges['viewed-by'].data['p'] = F.tensor([1, 1, 1, 1, 1, 1], dtype=F.float32)

    traces, ntypes = dgl.sampling.random_walk(g1, [0, 1, 2, 0, 1, 2], length=4)
    check_random_walk(g1, ['follow'] * 4, traces, ntypes)
    traces, ntypes = dgl.sampling.random_walk(g1, [0, 1, 2, 0, 1, 2], length=4, restart_prob=0.)
    check_random_walk(g1, ['follow'] * 4, traces, ntypes)
    traces, ntypes = dgl.sampling.random_walk(
        g1, [0, 1, 2, 0, 1, 2], length=4, restart_prob=F.zeros((4,), F.float32, F.cpu()))
    check_random_walk(g1, ['follow'] * 4, traces, ntypes)
    traces, ntypes = dgl.sampling.random_walk(
        g1, [0, 1, 2, 0, 1, 2], length=5,
        restart_prob=F.tensor([0, 0, 0, 0, 1], dtype=F.float32))
    check_random_walk(
        g1, ['follow'] * 4, F.slice_axis(traces, 1, 0, 5), F.slice_axis(ntypes, 0, 0, 5))
    assert (F.asnumpy(traces)[:, 5] == -1).all()

    traces, ntypes = dgl.sampling.random_walk(
        g2, [0, 1, 2, 3, 0, 1, 2, 3], length=4)
    check_random_walk(g2, ['follow'] * 4, traces, ntypes)

    traces, ntypes = dgl.sampling.random_walk(
        g2, [0, 1, 2, 3, 0, 1, 2, 3], length=4, prob='p')
    check_random_walk(g2, ['follow'] * 4, traces, ntypes, 'p')

    metapath = ['follow', 'view', 'viewed-by'] * 2
    traces, ntypes = dgl.sampling.random_walk(
        g3, [0, 1, 2, 0, 1, 2], metapath=metapath)
    check_random_walk(g3, metapath, traces, ntypes)

    metapath = ['follow', 'view', 'viewed-by'] * 2
    traces, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath)
    check_random_walk(g4, metapath, traces, ntypes)

    metapath = ['follow', 'view', 'viewed-by'] * 2
    traces, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath, prob='p')
    check_random_walk(g4, metapath, traces, ntypes, 'p')
    traces, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath, prob='p', restart_prob=0.)
    check_random_walk(g4, metapath, traces, ntypes, 'p')
    traces, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath, prob='p',
        restart_prob=F.zeros((6,), F.float32, F.cpu()))
    check_random_walk(g4, metapath, traces, ntypes, 'p')
    traces, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath + ['follow'], prob='p',
        restart_prob=F.tensor([0, 0, 0, 0, 0, 0, 1], F.float32))
    check_random_walk(g4, metapath, traces[:, :7], ntypes[:7], 'p')
    assert (F.asnumpy(traces[:, 7]) == -1).all()

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU pack traces not implemented")
def test_pack_traces():
    traces, types = (np.array(
        [[ 0,  1, -1, -1, -1, -1, -1],
         [ 0,  1,  1,  3,  0,  0,  0]], dtype='int64'),
        np.array([0, 0, 1, 0, 0, 1, 0], dtype='int64'))
    traces = F.zerocopy_from_numpy(traces)
    types = F.zerocopy_from_numpy(types)
    result = dgl.sampling.pack_traces(traces, types)
    assert F.array_equal(result[0], F.tensor([0, 1, 0, 1, 1, 3, 0, 0, 0], dtype=F.int64))
    assert F.array_equal(result[1], F.tensor([0, 0, 0, 0, 1, 0, 0, 1, 0], dtype=F.int64))
    assert F.array_equal(result[2], F.tensor([2, 7], dtype=F.int64))
    assert F.array_equal(result[3], F.tensor([0, 2], dtype=F.int64))


if __name__ == '__main__':
    test_random_walk()
    test_pack_traces()