test_sampling.py 42.3 KB
Newer Older
1
2
3
4
import dgl
import backend as F
import numpy as np
import unittest
5
from collections import defaultdict
6
import pytest
7

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
8
def check_random_walk(g, metapath, traces, ntypes, prob=None, trace_eids=None):
9
10
11
12
13
14
15
16
17
18
19
20
    traces = F.asnumpy(traces)
    ntypes = F.asnumpy(ntypes)
    for j in range(traces.shape[1] - 1):
        assert ntypes[j] == g.get_ntype_id(g.to_canonical_etype(metapath[j])[0])
        assert ntypes[j + 1] == g.get_ntype_id(g.to_canonical_etype(metapath[j])[2])

    for i in range(traces.shape[0]):
        for j in range(traces.shape[1] - 1):
            assert g.has_edge_between(
                traces[i, j], traces[i, j+1], etype=metapath[j])
            if prob is not None and prob in g.edges[metapath[j]].data:
                p = F.asnumpy(g.edges[metapath[j]].data['p'])
21
                eids = g.edge_ids(traces[i, j], traces[i, j+1], etype=metapath[j])
22
                assert p[eids] != 0
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
23
24
25
            if trace_eids is not None:
                u, v = g.find_edges(trace_eids[i, j], etype=metapath[j])
                assert (u == traces[i, j]) and (v == traces[i, j + 1])
26
27
28
29

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU random walk not implemented")
def test_random_walk():
    g1 = dgl.heterograph({
30
        ('user', 'follow', 'user'): ([0, 1, 2], [1, 2, 0])
31
32
        })
    g2 = dgl.heterograph({
33
        ('user', 'follow', 'user'): ([0, 1, 1, 2, 3], [1, 2, 3, 0, 0])
34
35
        })
    g3 = dgl.heterograph({
36
37
38
        ('user', 'follow', 'user'): ([0, 1, 2], [1, 2, 0]),
        ('user', 'view', 'item'): ([0, 1, 2], [0, 1, 2]),
        ('item', 'viewed-by', 'user'): ([0, 1, 2], [0, 1, 2])})
39
    g4 = dgl.heterograph({
40
41
42
        ('user', 'follow', 'user'): ([0, 1, 1, 2, 3], [1, 2, 3, 0, 0]),
        ('user', 'view', 'item'): ([0, 0, 1, 2, 3, 3], [0, 1, 1, 2, 2, 1]),
        ('item', 'viewed-by', 'user'): ([0, 1, 1, 2, 2, 1], [0, 0, 1, 2, 3, 3])})
43
44

    g2.edata['p'] = F.tensor([3, 0, 3, 3, 3], dtype=F.float32)
45
    g2.edata['p2'] = F.tensor([[3], [0], [3], [3], [3]], dtype=F.float32)
46
47
48
    g4.edges['follow'].data['p'] = F.tensor([3, 0, 3, 3, 3], dtype=F.float32)
    g4.edges['viewed-by'].data['p'] = F.tensor([1, 1, 1, 1, 1, 1], dtype=F.float32)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
49
50
    traces, eids, ntypes = dgl.sampling.random_walk(g1, [0, 1, 2, 0, 1, 2], length=4, return_eids=True)
    check_random_walk(g1, ['follow'] * 4, traces, ntypes, trace_eids=eids)
51
52
53
54
55
56
    try:
        dgl.sampling.random_walk(g1, [0, 1, 2, 10], length=4, return_eids=True)
        fail = False        # shouldn't abort
    except:
        fail = True
    assert fail
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
57
58
    traces, eids, ntypes = dgl.sampling.random_walk(g1, [0, 1, 2, 0, 1, 2], length=4, restart_prob=0., return_eids=True)
    check_random_walk(g1, ['follow'] * 4, traces, ntypes, trace_eids=eids)
59
60
61
62
63
64
65
66
67
68
    traces, ntypes = dgl.sampling.random_walk(
        g1, [0, 1, 2, 0, 1, 2], length=4, restart_prob=F.zeros((4,), F.float32, F.cpu()))
    check_random_walk(g1, ['follow'] * 4, traces, ntypes)
    traces, ntypes = dgl.sampling.random_walk(
        g1, [0, 1, 2, 0, 1, 2], length=5,
        restart_prob=F.tensor([0, 0, 0, 0, 1], dtype=F.float32))
    check_random_walk(
        g1, ['follow'] * 4, F.slice_axis(traces, 1, 0, 5), F.slice_axis(ntypes, 0, 0, 5))
    assert (F.asnumpy(traces)[:, 5] == -1).all()

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
69
70
71
    traces, eids, ntypes = dgl.sampling.random_walk(
        g2, [0, 1, 2, 3, 0, 1, 2, 3], length=4, return_eids=True)
    check_random_walk(g2, ['follow'] * 4, traces, ntypes, trace_eids=eids)
72

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
73
74
75
    traces, eids, ntypes = dgl.sampling.random_walk(
        g2, [0, 1, 2, 3, 0, 1, 2, 3], length=4, prob='p', return_eids=True)
    check_random_walk(g2, ['follow'] * 4, traces, ntypes, 'p', trace_eids=eids)
76

77
78
79
80
81
82
83
84
    try:
        traces, ntypes = dgl.sampling.random_walk(
            g2, [0, 1, 2, 3, 0, 1, 2, 3], length=4, prob='p2')
        fail = False
    except dgl.DGLError:
        fail = True
    assert fail

85
    metapath = ['follow', 'view', 'viewed-by'] * 2
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
86
87
88
    traces, eids, ntypes = dgl.sampling.random_walk(
        g3, [0, 1, 2, 0, 1, 2], metapath=metapath, return_eids=True)
    check_random_walk(g3, metapath, traces, ntypes, trace_eids=eids)
89
90

    metapath = ['follow', 'view', 'viewed-by'] * 2
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
91
92
93
94
95
96
97
    traces, eids, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath, return_eids=True)
    check_random_walk(g4, metapath, traces, ntypes, trace_eids=eids)

    traces, eids, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 0, 1, 2], metapath=metapath, return_eids=True)
    check_random_walk(g4, metapath, traces, ntypes, trace_eids=eids)
98
99

    metapath = ['follow', 'view', 'viewed-by'] * 2
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
100
101
102
103
104
105
106
    traces, eids, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath, prob='p', return_eids=True)
    check_random_walk(g4, metapath, traces, ntypes, 'p', trace_eids=eids)
    traces, eids, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath, prob='p', restart_prob=0., return_eids=True)
    check_random_walk(g4, metapath, traces, ntypes, 'p', trace_eids=eids)
    traces, eids, ntypes = dgl.sampling.random_walk(
107
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath, prob='p',
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
108
109
110
        restart_prob=F.zeros((6,), F.float32, F.cpu()), return_eids=True)
    check_random_walk(g4, metapath, traces, ntypes, 'p', trace_eids=eids)
    traces, eids, ntypes = dgl.sampling.random_walk(
111
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath + ['follow'], prob='p',
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
112
113
        restart_prob=F.tensor([0, 0, 0, 0, 0, 0, 1], F.float32), return_eids=True)
    check_random_walk(g4, metapath, traces[:, :7], ntypes[:7], 'p', trace_eids=eids)
114
115
    assert (F.asnumpy(traces[:, 7]) == -1).all()

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU random walk not implemented")
def test_node2vec():
    g1 = dgl.heterograph({
        ('user', 'follow', 'user'): ([0, 1, 2], [1, 2, 0])
        })
    g2 = dgl.heterograph({
        ('user', 'follow', 'user'): ([0, 1, 1, 2, 3], [1, 2, 3, 0, 0])
        })
    g2.edata['p'] = F.tensor([3, 0, 3, 3, 3], dtype=F.float32)

    ntypes = F.zeros((5,), dtype=F.int64)

    traces, eids = dgl.sampling.node2vec_random_walk(g1, [0, 1, 2, 0, 1, 2], 1, 1, 4, return_eids=True)
    check_random_walk(g1, ['follow'] * 4, traces, ntypes, trace_eids=eids)

    traces, eids = dgl.sampling.node2vec_random_walk(
        g2, [0, 1, 2, 3, 0, 1, 2, 3], 1, 1, 4, prob='p', return_eids=True)
    check_random_walk(g2, ['follow'] * 4, traces, ntypes, 'p', trace_eids=eids)

135
136
137
138
139
140
141
142
143
144
145
146
147
148
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU pack traces not implemented")
def test_pack_traces():
    traces, types = (np.array(
        [[ 0,  1, -1, -1, -1, -1, -1],
         [ 0,  1,  1,  3,  0,  0,  0]], dtype='int64'),
        np.array([0, 0, 1, 0, 0, 1, 0], dtype='int64'))
    traces = F.zerocopy_from_numpy(traces)
    types = F.zerocopy_from_numpy(types)
    result = dgl.sampling.pack_traces(traces, types)
    assert F.array_equal(result[0], F.tensor([0, 1, 0, 1, 1, 3, 0, 0, 0], dtype=F.int64))
    assert F.array_equal(result[1], F.tensor([0, 0, 0, 0, 1, 0, 0, 1, 0], dtype=F.int64))
    assert F.array_equal(result[2], F.tensor([2, 7], dtype=F.int64))
    assert F.array_equal(result[3], F.tensor([0, 2], dtype=F.int64))

149
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
150
151
152
153
154
155
156
157
158
159
def test_pinsage_sampling():
    def _test_sampler(g, sampler, ntype):
        neighbor_g = sampler(F.tensor([0, 2], dtype=F.int64))
        assert neighbor_g.ntypes == [ntype]
        u, v = neighbor_g.all_edges(form='uv', order='eid')
        uv = list(zip(F.asnumpy(u).tolist(), F.asnumpy(v).tolist()))
        assert (1, 0) in uv or (0, 0) in uv
        assert (2, 2) in uv or (3, 2) in uv

    g = dgl.heterograph({
160
161
        ('item', 'bought-by', 'user'): ([0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 2, 3, 2, 3]),
        ('user', 'bought', 'item'): ([0, 1, 0, 1, 2, 3, 2, 3], [0, 0, 1, 1, 2, 2, 3, 3])})
162
163
164
165
    sampler = dgl.sampling.PinSAGESampler(g, 'item', 'user', 4, 0.5, 3, 2)
    _test_sampler(g, sampler, 'item')
    sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2, ['bought-by', 'bought'])
    _test_sampler(g, sampler, 'item')
166
    sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2,
167
168
        [('item', 'bought-by', 'user'), ('user', 'bought', 'item')])
    _test_sampler(g, sampler, 'item')
169
170
    g = dgl.graph(([0, 0, 1, 1, 2, 2, 3, 3],
                   [0, 1, 0, 1, 2, 3, 2, 3]))
171
172
173
    sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2)
    _test_sampler(g, sampler, g.ntypes[0])
    g = dgl.heterograph({
174
175
176
        ('A', 'AB', 'B'): ([0, 2], [1, 3]),
        ('B', 'BC', 'C'): ([1, 3], [2, 1]),
        ('C', 'CA', 'A'): ([2, 1], [0, 2])})
177
178
179
    sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2, ['AB', 'BC', 'CA'])
    _test_sampler(g, sampler, 'A')

180
181
182
183
def _gen_neighbor_sampling_test_graph(hypersparse, reverse):
    if hypersparse:
        # should crash if allocated a CSR
        card = 1 << 50
184
        num_nodes_dict = {'user': card, 'game': card, 'coin': card}
185
186
    else:
        card = None
187
188
        num_nodes_dict = None

189
    if reverse:
190
191
192
        g = dgl.heterograph({
            ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2], [1, 2, 3, 0, 2, 3, 0])
        }, {'user': card if card is not None else 4})
193
        g = g.to(F.ctx())
194
        g.edata['prob'] = F.tensor([.5, .5, 0., .5, .5, 0., 1.], dtype=F.float32)
195
196
197
198
199
200
201
        hg = dgl.heterograph({
            ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2],
                                         [1, 2, 3, 0, 2, 3, 0]),
            ('game', 'play', 'user'): ([0, 1, 2, 2], [0, 0, 1, 3]),
            ('user', 'liked-by', 'game'): ([0, 1, 2, 0, 3, 0], [2, 2, 2, 1, 1, 0]),
            ('coin', 'flips', 'user'): ([0, 0, 0, 0], [0, 1, 2, 3])
        }, num_nodes_dict)
202
        hg = hg.to(F.ctx())
203
    else:
204
205
206
        g = dgl.heterograph({
            ('user', 'follow', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2])
        }, {'user': card if card is not None else 4})
207
        g = g.to(F.ctx())
208
        g.edata['prob'] = F.tensor([.5, .5, 0., .5, .5, 0., 1.], dtype=F.float32)
209
210
211
212
213
214
215
        hg = dgl.heterograph({
            ('user', 'follow', 'user'): ([1, 2, 3, 0, 2, 3, 0],
                                         [0, 0, 0, 1, 1, 1, 2]),
            ('user', 'play', 'game'): ([0, 0, 1, 3], [0, 1, 2, 2]),
            ('game', 'liked-by', 'user'): ([2, 2, 2, 1, 1, 0], [0, 1, 2, 0, 3, 0]),
            ('user', 'flips', 'coin'): ([0, 1, 2, 3], [0, 0, 0, 0])
        }, num_nodes_dict)
216
        hg = hg.to(F.ctx())
217
218
219
    hg.edges['follow'].data['prob'] = F.tensor([.5, .5, 0., .5, .5, 0., 1.], dtype=F.float32)
    hg.edges['play'].data['prob'] = F.tensor([.8, .5, .5, .5], dtype=F.float32)
    hg.edges['liked-by'].data['prob'] = F.tensor([.3, .5, .2, .5, .1, .1], dtype=F.float32)
220
221
222
223
224
225
226
227
228

    return g, hg

def _gen_neighbor_topk_test_graph(hypersparse, reverse):
    if hypersparse:
        # should crash if allocated a CSR
        card = 1 << 50
    else:
        card = None
229

230
    if reverse:
231
232
233
        g = dgl.heterograph({
            ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2], [1, 2, 3, 0, 2, 3, 0])
        })
234
        g.edata['weight'] = F.tensor([.5, .3, 0., -5., 22., 0., 1.], dtype=F.float32)
235
236
237
238
239
240
241
        hg = dgl.heterograph({
            ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2],
                                         [1, 2, 3, 0, 2, 3, 0]),
            ('game', 'play', 'user'): ([0, 1, 2, 2], [0, 0, 1, 3]),
            ('user', 'liked-by', 'game'): ([0, 1, 2, 0, 3, 0], [2, 2, 2, 1, 1, 0]),
            ('coin', 'flips', 'user'): ([0, 0, 0, 0], [0, 1, 2, 3])
        })
242
    else:
243
244
245
        g = dgl.heterograph({
            ('user', 'follow', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2])
        })
246
        g.edata['weight'] = F.tensor([.5, .3, 0., -5., 22., 0., 1.], dtype=F.float32)
247
248
249
250
251
252
253
254
255
256
257
        hg = dgl.heterograph({
            ('user', 'follow', 'user'): ([1, 2, 3, 0, 2, 3, 0],
                                         [0, 0, 0, 1, 1, 1, 2]),
            ('user', 'play', 'game'): ([0, 0, 1, 3], [0, 1, 2, 2]),
            ('game', 'liked-by', 'user'): ([2, 2, 2, 1, 1, 0], [0, 1, 2, 0, 3, 0]),
            ('user', 'flips', 'coin'): ([0, 1, 2, 3], [0, 0, 0, 0])
        })
    hg.edges['follow'].data['weight'] = F.tensor([.5, .3, 0., -5., 22., 0., 1.], dtype=F.float32)
    hg.edges['play'].data['weight'] = F.tensor([.8, .5, .4, .5], dtype=F.float32)
    hg.edges['liked-by'].data['weight'] = F.tensor([.3, .5, .2, .5, .1, .1], dtype=F.float32)
    hg.edges['flips'].data['weight'] = F.tensor([10, 2, 13, -1], dtype=F.float32)
258
259
    return g, hg

260
def _test_sample_neighbors(hypersparse, prob):
261
262
263
    g, hg = _gen_neighbor_sampling_test_graph(hypersparse, False)

    def _test1(p, replace):
264
265
266
267
268
269
270
271
        subg = dgl.sampling.sample_neighbors(g, [0, 1], -1, prob=p, replace=replace)
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.in_edges([0, 1])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

272
273
274
275
276
277
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(g, [0, 1], 2, prob=p, replace=replace)
            assert subg.number_of_nodes() == g.number_of_nodes()
            assert subg.number_of_edges() == 4
            u, v = subg.edges()
            assert set(F.asnumpy(F.unique(v))) == {0, 1}
278
            assert F.array_equal(F.astype(g.has_edges_between(u, v), F.int64), F.ones((4,), dtype=F.int64))
279
280
281
282
283
284
285
286
            assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
            edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
            if not replace:
                # check no duplication
                assert len(edge_set) == 4
            if p is not None:
                assert not (3, 0) in edge_set
                assert not (3, 1) in edge_set
287
288
    _test1(prob, True)   # w/ replacement, uniform
    _test1(prob, False)  # w/o replacement, uniform
289
290

    def _test2(p, replace):  # fanout > #neighbors
291
292
293
294
295
296
297
298
        subg = dgl.sampling.sample_neighbors(g, [0, 2], -1, prob=p, replace=replace)
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.in_edges([0, 2])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

299
300
301
302
303
304
305
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(g, [0, 2], 2, prob=p, replace=replace)
            assert subg.number_of_nodes() == g.number_of_nodes()
            num_edges = 4 if replace else 3
            assert subg.number_of_edges() == num_edges
            u, v = subg.edges()
            assert set(F.asnumpy(F.unique(v))) == {0, 2}
306
            assert F.array_equal(F.astype(g.has_edges_between(u, v), F.int64), F.ones((num_edges,), dtype=F.int64))
307
308
309
310
311
312
313
            assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
            edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
            if not replace:
                # check no duplication
                assert len(edge_set) == num_edges
            if p is not None:
                assert not (3, 0) in edge_set
314
315
    _test2(prob, True)   # w/ replacement, uniform
    _test2(prob, False)  # w/o replacement, uniform
316
317

    def _test3(p, replace):
318
319
320
321
322
323
324
325
        subg = dgl.sampling.sample_neighbors(hg, {'user': [0, 1], 'game': 0}, -1, prob=p, replace=replace)
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        assert subg['follow'].number_of_edges() == 6
        assert subg['play'].number_of_edges() == 1
        assert subg['liked-by'].number_of_edges() == 4
        assert subg['flips'].number_of_edges() == 0

326
327
328
329
330
331
332
333
334
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(hg, {'user' : [0,1], 'game' : 0}, 2, prob=p, replace=replace)
            assert len(subg.ntypes) == 3
            assert len(subg.etypes) == 4
            assert subg['follow'].number_of_edges() == 4
            assert subg['play'].number_of_edges() == 2 if replace else 1
            assert subg['liked-by'].number_of_edges() == 4 if replace else 3
            assert subg['flips'].number_of_edges() == 0

335
336
    _test3(prob, True)   # w/ replacement, uniform
    _test3(prob, False)  # w/o replacement, uniform
337
338
339

    # test different fanouts for different relations
    for i in range(10):
340
341
        subg = dgl.sampling.sample_neighbors(
            hg,
342
343
            {'user' : [0,1], 'game' : 0, 'coin': 0},
            {'follow': 1, 'play': 2, 'liked-by': 0, 'flips': -1},
344
            replace=True)
345
346
347
348
349
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        assert subg['follow'].number_of_edges() == 2
        assert subg['play'].number_of_edges() == 2
        assert subg['liked-by'].number_of_edges() == 0
350
        assert subg['flips'].number_of_edges() == 4
351
352
353
354
355

def _test_sample_neighbors_outedge(hypersparse):
    g, hg = _gen_neighbor_sampling_test_graph(hypersparse, True)

    def _test1(p, replace):
356
357
358
359
360
361
362
363
        subg = dgl.sampling.sample_neighbors(g, [0, 1], -1, prob=p, replace=replace, edge_dir='out')
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.out_edges([0, 1])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

364
365
366
367
368
369
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(g, [0, 1], 2, prob=p, replace=replace, edge_dir='out')
            assert subg.number_of_nodes() == g.number_of_nodes()
            assert subg.number_of_edges() == 4
            u, v = subg.edges()
            assert set(F.asnumpy(F.unique(u))) == {0, 1}
370
            assert F.array_equal(F.astype(g.has_edges_between(u, v), F.int64), F.ones((4,), dtype=F.int64))
371
372
373
374
375
376
377
378
379
380
381
382
383
384
            assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
            edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
            if not replace:
                # check no duplication
                assert len(edge_set) == 4
            if p is not None:
                assert not (0, 3) in edge_set
                assert not (1, 3) in edge_set
    _test1(None, True)   # w/ replacement, uniform
    _test1(None, False)  # w/o replacement, uniform
    _test1('prob', True)   # w/ replacement
    _test1('prob', False)  # w/o replacement

    def _test2(p, replace):  # fanout > #neighbors
385
386
387
388
389
390
391
392
        subg = dgl.sampling.sample_neighbors(g, [0, 2], -1, prob=p, replace=replace, edge_dir='out')
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.out_edges([0, 2])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

393
394
395
396
397
398
399
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(g, [0, 2], 2, prob=p, replace=replace, edge_dir='out')
            assert subg.number_of_nodes() == g.number_of_nodes()
            num_edges = 4 if replace else 3
            assert subg.number_of_edges() == num_edges
            u, v = subg.edges()
            assert set(F.asnumpy(F.unique(u))) == {0, 2}
400
            assert F.array_equal(F.astype(g.has_edges_between(u, v), F.int64), F.ones((num_edges,), dtype=F.int64))
401
402
403
404
405
406
407
408
409
410
411
412
413
            assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
            edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
            if not replace:
                # check no duplication
                assert len(edge_set) == num_edges
            if p is not None:
                assert not (0, 3) in edge_set
    _test2(None, True)   # w/ replacement, uniform
    _test2(None, False)  # w/o replacement, uniform
    _test2('prob', True)   # w/ replacement
    _test2('prob', False)  # w/o replacement

    def _test3(p, replace):
414
415
416
417
418
419
420
421
        subg = dgl.sampling.sample_neighbors(hg, {'user': [0, 1], 'game': 0}, -1, prob=p, replace=replace, edge_dir='out')
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        assert subg['follow'].number_of_edges() == 6
        assert subg['play'].number_of_edges() == 1
        assert subg['liked-by'].number_of_edges() == 4
        assert subg['flips'].number_of_edges() == 0

422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(hg, {'user' : [0,1], 'game' : 0}, 2, prob=p, replace=replace, edge_dir='out')
            assert len(subg.ntypes) == 3
            assert len(subg.etypes) == 4
            assert subg['follow'].number_of_edges() == 4
            assert subg['play'].number_of_edges() == 2 if replace else 1
            assert subg['liked-by'].number_of_edges() == 4 if replace else 3
            assert subg['flips'].number_of_edges() == 0

    _test3(None, True)   # w/ replacement, uniform
    _test3(None, False)  # w/o replacement, uniform
    _test3('prob', True)   # w/ replacement
    _test3('prob', False)  # w/o replacement

def _test_sample_neighbors_topk(hypersparse):
    g, hg = _gen_neighbor_topk_test_graph(hypersparse, False)

    def _test1():
440
441
442
443
444
445
446
447
        subg = dgl.sampling.select_topk(g, -1, 'weight', [0, 1])
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.in_edges([0, 1])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

448
        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 1])
449
450
451
452
453
454
455
456
457
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 4
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        assert edge_set == {(2,0),(1,0),(2,1),(3,1)}
    _test1()

    def _test2():  # k > #neighbors
458
459
460
461
462
463
464
465
        subg = dgl.sampling.select_topk(g, -1, 'weight', [0, 2])
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.in_edges([0, 2])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

466
        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 2])
467
468
469
470
471
472
473
474
475
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 3
        u, v = subg.edges()
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert edge_set == {(2,0),(1,0),(0,2)}
    _test2()

    def _test3():
476
        subg = dgl.sampling.select_topk(hg, 2, 'weight', {'user' : [0,1], 'game' : 0})
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        u, v = subg['follow'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
        assert edge_set == {(2,0),(1,0),(2,1),(3,1)}
        u, v = subg['play'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
        assert edge_set == {(0,0)}
        u, v = subg['liked-by'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
        assert edge_set == {(2,0),(2,1),(1,0)}
        assert subg['flips'].number_of_edges() == 0
    _test3()

    # test different k for different relations
495
    subg = dgl.sampling.select_topk(
496
        hg, {'follow': 1, 'play': 2, 'liked-by': 0, 'flips': -1}, 'weight', {'user' : [0,1], 'game' : 0, 'coin': 0})
497
498
499
500
501
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4
    assert subg['follow'].number_of_edges() == 2
    assert subg['play'].number_of_edges() == 1
    assert subg['liked-by'].number_of_edges() == 0
502
    assert subg['flips'].number_of_edges() == 4
503
504
505
506
507

def _test_sample_neighbors_topk_outedge(hypersparse):
    g, hg = _gen_neighbor_topk_test_graph(hypersparse, True)

    def _test1():
508
509
510
511
512
513
514
515
        subg = dgl.sampling.select_topk(g, -1, 'weight', [0, 1], edge_dir='out')
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.out_edges([0, 1])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

516
        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 1], edge_dir='out')
517
518
519
520
521
522
523
524
525
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 4
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        assert edge_set == {(0,2),(0,1),(1,2),(1,3)}
    _test1()

    def _test2():  # k > #neighbors
526
527
528
529
530
531
532
533
        subg = dgl.sampling.select_topk(g, -1, 'weight', [0, 2], edge_dir='out')
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.out_edges([0, 2])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

534
        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 2], edge_dir='out')
535
536
537
538
539
540
541
542
543
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 3
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        assert edge_set == {(0,2),(0,1),(2,0)}
    _test2()

    def _test3():
544
        subg = dgl.sampling.select_topk(hg, 2, 'weight', {'user' : [0,1], 'game' : 0}, edge_dir='out')
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        u, v = subg['follow'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
        assert edge_set == {(0,2),(0,1),(1,2),(1,3)}
        u, v = subg['play'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
        assert edge_set == {(0,0)}
        u, v = subg['liked-by'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
        assert edge_set == {(0,2),(1,2),(0,1)}
        assert subg['flips'].number_of_edges() == 0
    _test3()

562
563
564
565
566
567
568
def test_sample_neighbors_noprob():
    _test_sample_neighbors(False, None)
    #_test_sample_neighbors(True)

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors with probability is not implemented")
def test_sample_neighbors_prob():
    _test_sample_neighbors(False, 'prob')
569
    #_test_sample_neighbors(True)
570
571
572
573

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_outedge():
    _test_sample_neighbors_outedge(False)
574
    #_test_sample_neighbors_outedge(True)
575
576
577
578

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_topk():
    _test_sample_neighbors_topk(False)
579
    #_test_sample_neighbors_topk(True)
580
581
582
583

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_topk_outedge():
    _test_sample_neighbors_topk_outedge(False)
584
    #_test_sample_neighbors_topk_outedge(True)
585

586
587
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_with_0deg():
588
    g = dgl.graph(([], []), num_nodes=5)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
589
590
591
592
593
594
595
596
    sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='in', replace=False)
    assert sg.number_of_edges() == 0
    sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='in', replace=True)
    assert sg.number_of_edges() == 0
    sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='out', replace=False)
    assert sg.number_of_edges() == 0
    sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='out', replace=True)
    assert sg.number_of_edges() == 0
597

598
599
600
601
602
603
604
605
606
607
608
609
def create_test_graph(num_nodes, num_edges_per_node, bipartite=False):
    src = np.concatenate(
        [np.array([i] * num_edges_per_node) for i in range(num_nodes)])
    dst = np.concatenate(
        [np.random.choice(num_nodes, num_edges_per_node, replace=False) for i in range(num_nodes)]
    )
    if bipartite:
        g = dgl.heterograph({("u", "e", "v") : (src, dst)})
    else:
        g = dgl.graph((src, dst))
    return g

610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
def create_etype_test_graph(num_nodes, num_edges_per_node, rare_cnt):
    src = np.concatenate(
        [np.random.choice(num_nodes, num_edges_per_node, replace=False) for i in range(num_nodes)]
    )
    dst = np.concatenate(
        [np.array([i] * num_edges_per_node) for i in range(num_nodes)])

    minor_src = np.concatenate(
        [np.random.choice(num_nodes, 2, replace=False) for i in range(num_nodes)]
    )
    minor_dst = np.concatenate(
        [np.array([i] * 2) for i in range(num_nodes)])

    most_zero_src = np.concatenate(
        [np.random.choice(num_nodes, num_edges_per_node, replace=False) for i in range(rare_cnt)]
    )
    most_zero_dst = np.concatenate(
        [np.array([i] * num_edges_per_node) for i in range(rare_cnt)])


    g = dgl.heterograph({("v", "e_major", "u") : (src, dst),
                         ("u", "e_major_rev", "v") : (dst, src),
                         ("v2", "e_minor", "u") : (minor_src, minor_dst),
                         ("v2", "most_zero", "u") : (most_zero_src, most_zero_dst),
                         ("u", "e_minor_rev", "v2") : (minor_dst, minor_src)})

    return g

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_biased_homogeneous():
    g = create_test_graph(100, 30)

    def check_num(nodes, tag):
        nodes, tag = F.asnumpy(nodes), F.asnumpy(tag)
        cnt = [sum(tag[nodes] == i) for i in range(4)]
        # No tag 0
        assert cnt[0] == 0

        # very rare tag 1
        assert cnt[2] > 2 * cnt[1]
        assert cnt[3] > 2 * cnt[1]

    tag = F.tensor(np.random.choice(4, 100))
    bias = F.tensor([0, 0.1, 10, 10], dtype=F.float32)
    # inedge / without replacement
655
    g_sorted = dgl.sort_csc_by_tag(g, tag)
656
657
658
659
660
661
662
663
664
665
666
667
668
    for _ in range(5):
        subg = dgl.sampling.sample_neighbors_biased(g_sorted, g.nodes(), 5, bias, replace=False)
        check_num(subg.edges()[0], tag)
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert len(edge_set) == subg.number_of_edges()

    # inedge / with replacement
    for _ in range(5):
        subg = dgl.sampling.sample_neighbors_biased(g_sorted, g.nodes(), 5, bias, replace=True)
        check_num(subg.edges()[0], tag)

    # outedge / without replacement
669
    g_sorted = dgl.sort_csr_by_tag(g, tag)
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
    for _ in range(5):
        subg = dgl.sampling.sample_neighbors_biased(g_sorted, g.nodes(), 5, bias, edge_dir='out', replace=False)
        check_num(subg.edges()[1], tag)
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert len(edge_set) == subg.number_of_edges()

    # outedge / with replacement
    for _ in range(5):
        subg = dgl.sampling.sample_neighbors_biased(g_sorted, g.nodes(), 5, bias, edge_dir='out', replace=True)
        check_num(subg.edges()[1], tag)

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_biased_bipartite():
    g = create_test_graph(100, 30, True)
    num_dst = g.number_of_dst_nodes()
    bias = F.tensor([0, 0.01, 10, 10], dtype=F.float32)
    def check_num(nodes, tag):
        nodes, tag = F.asnumpy(nodes), F.asnumpy(tag)
        cnt = [sum(tag[nodes] == i) for i in range(4)]
        # No tag 0
        assert cnt[0] == 0

        # very rare tag 1
        assert cnt[2] > 2 * cnt[1]
        assert cnt[3] > 2 * cnt[1]

    # inedge / without replacement
    tag = F.tensor(np.random.choice(4, 100))
699
    g_sorted = dgl.sort_csc_by_tag(g, tag)
700
701
702
703
704
705
706
707
708
709
710
711
712
713
    for _ in range(5):
        subg = dgl.sampling.sample_neighbors_biased(g_sorted, g.dstnodes(), 5, bias, replace=False)
        check_num(subg.edges()[0], tag)
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert len(edge_set) == subg.number_of_edges()

    # inedge / with replacement
    for _ in range(5):
        subg = dgl.sampling.sample_neighbors_biased(g_sorted, g.dstnodes(), 5, bias, replace=True)
        check_num(subg.edges()[0], tag)

    # outedge / without replacement
    tag = F.tensor(np.random.choice(4, num_dst))
714
    g_sorted = dgl.sort_csr_by_tag(g, tag)
715
716
717
718
719
720
721
722
723
724
725
726
    for _ in range(5):
        subg = dgl.sampling.sample_neighbors_biased(g_sorted, g.srcnodes(), 5, bias, edge_dir='out', replace=False)
        check_num(subg.edges()[1], tag)
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert len(edge_set) == subg.number_of_edges()

    # outedge / with replacement
    for _ in range(5):
        subg = dgl.sampling.sample_neighbors_biased(g_sorted, g.srcnodes(), 5, bias, edge_dir='out', replace=True)
        check_num(subg.edges()[1], tag)

727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_etype_homogeneous():
    num_nodes = 100
    rare_cnt = 4
    g = create_etype_test_graph(100, 30, rare_cnt)
    h_g = dgl.to_homogeneous(g)
    seed_ntype = g.get_ntype_id("u")
    seeds = F.nonzero_1d(h_g.ndata[dgl.NTYPE] == seed_ntype)

    def check_num(nodes, replace):
        nodes = F.asnumpy(nodes)
        cnt = [sum(nodes == i) for i in range(num_nodes)]

        for i in range(20):
            if i < rare_cnt:
                if replace is False:
                    assert cnt[i] == 22
                else:
                    assert cnt[i] == 30
            else:
                if replace is False:
                    assert cnt[i] == 12
                else:
                    assert cnt[i] == 20

    # graph with coo format
    coo_g = h_g.formats('coo')
    for _ in range(5):
        subg = dgl.sampling.sample_etype_neighbors(coo_g, seeds, dgl.ETYPE, 10, replace=False)
        check_num(subg.edges()[1], False)

    for _ in range(5):
        subg = dgl.sampling.sample_etype_neighbors(coo_g, seeds, dgl.ETYPE, 10, replace=True)
        check_num(subg.edges()[1], True)

    # graph with csr format
    csr_g = h_g.formats('csr')
    csr_g = csr_g.formats(['csr','csc','coo'])
    for _ in range(5):
        subg = dgl.sampling.sample_etype_neighbors(csr_g, seeds, dgl.ETYPE, 10, replace=False)
        check_num(subg.edges()[1], False)

    for _ in range(5):
        subg = dgl.sampling.sample_etype_neighbors(csr_g, seeds, dgl.ETYPE, 10, replace=True)
        check_num(subg.edges()[1], True)

    # graph with csc format
    csc_g = h_g.formats('csc')
    for _ in range(5):
        subg = dgl.sampling.sample_etype_neighbors(csc_g, seeds, dgl.ETYPE, 10, replace=False)
        check_num(subg.edges()[1], False)

    for _ in range(5):
        subg = dgl.sampling.sample_etype_neighbors(csc_g, seeds, dgl.ETYPE, 10, replace=True)
        check_num(subg.edges()[1], True)

    def check_num2(nodes, replace):
        nodes = F.asnumpy(nodes)
        cnt = [sum(nodes == i) for i in range(num_nodes)]

        for i in range(20):
            if replace is False:
                assert cnt[i] == 7
            else:
                assert cnt[i] == 10

    # edge dir out
    # graph with coo format
    coo_g = h_g.formats('coo')
    for _ in range(5):
        subg = dgl.sampling.sample_etype_neighbors(
            coo_g, seeds, dgl.ETYPE, 5, edge_dir='out', replace=False)
        check_num2(subg.edges()[0], False)
    for _ in range(5):
        subg = dgl.sampling.sample_etype_neighbors(
            coo_g, seeds, dgl.ETYPE, 5, edge_dir='out', replace=True)
        check_num2(subg.edges()[0], True)
    # graph with csr format
    csr_g = h_g.formats('csr')
    for _ in range(5):
        subg = dgl.sampling.sample_etype_neighbors(
            csr_g, seeds, dgl.ETYPE, 5, edge_dir='out', replace=False)
        check_num2(subg.edges()[0], False)

    for _ in range(5):
        subg = dgl.sampling.sample_etype_neighbors(
            csr_g, seeds, dgl.ETYPE, 5, edge_dir='out', replace=True)
        check_num2(subg.edges()[0], True)

    # graph with csc format
    csc_g = h_g.formats('csc')
    csc_g = csc_g.formats(['csc','csr','coo'])
    for _ in range(5):
        subg = dgl.sampling.sample_etype_neighbors(
            csc_g, seeds, dgl.ETYPE, 5, edge_dir='out', replace=False)
        check_num2(subg.edges()[0], False)

    for _ in range(5):
        subg = dgl.sampling.sample_etype_neighbors(
            csc_g, seeds, dgl.ETYPE, 5, edge_dir='out', replace=True)
        check_num2(subg.edges()[0], True)

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
@pytest.mark.parametrize('dtype', ['int32', 'int64'])
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_exclude_edges_heteroG(dtype):
    d_i_d_u_nodes = F.zerocopy_from_numpy(np.unique(np.random.randint(300, size=100, dtype=dtype)))
    d_i_d_v_nodes = F.zerocopy_from_numpy(np.random.randint(25, size=d_i_d_u_nodes.shape, dtype=dtype))
    d_i_g_u_nodes = F.zerocopy_from_numpy(np.unique(np.random.randint(300, size=100, dtype=dtype)))
    d_i_g_v_nodes = F.zerocopy_from_numpy(np.random.randint(25, size=d_i_g_u_nodes.shape, dtype=dtype))
    d_t_d_u_nodes = F.zerocopy_from_numpy(np.unique(np.random.randint(300, size=100, dtype=dtype)))
    d_t_d_v_nodes = F.zerocopy_from_numpy(np.random.randint(25, size=d_t_d_u_nodes.shape, dtype=dtype))

    g = dgl.heterograph({
        ('drug', 'interacts', 'drug'): (d_i_d_u_nodes, d_i_d_v_nodes),
        ('drug', 'interacts', 'gene'): (d_i_g_u_nodes, d_i_g_v_nodes),
        ('drug', 'treats', 'disease'): (d_t_d_u_nodes, d_t_d_v_nodes)
    })

    (U, V, EID) = (0, 1, 2)

    nd_b_idx = np.random.randint(low=1, high=24, dtype=dtype)
    nd_e_idx = np.random.randint(low=25, high=49, dtype=dtype)
    did_b_idx = np.random.randint(low=1, high=24, dtype=dtype)
    did_e_idx = np.random.randint(low=25, high=49, dtype=dtype)
    sampled_amount = np.random.randint(low=1, high=10, dtype=dtype)

    drug_i_drug_edges = g.all_edges(form='all', etype=('drug','interacts','drug'))
    excluded_d_i_d_edges = drug_i_drug_edges[EID][did_b_idx:did_e_idx]
    sampled_drug_node = drug_i_drug_edges[V][nd_b_idx:nd_e_idx]
    did_excluded_nodes_U = drug_i_drug_edges[U][did_b_idx:did_e_idx]
    did_excluded_nodes_V = drug_i_drug_edges[V][did_b_idx:did_e_idx]

    nd_b_idx = np.random.randint(low=1, high=24, dtype=dtype)
    nd_e_idx = np.random.randint(low=25, high=49, dtype=dtype)
    dig_b_idx = np.random.randint(low=1, high=24, dtype=dtype)
    dig_e_idx = np.random.randint(low=25, high=49, dtype=dtype)
    drug_i_gene_edges = g.all_edges(form='all', etype=('drug','interacts','gene'))
    excluded_d_i_g_edges = drug_i_gene_edges[EID][dig_b_idx:dig_e_idx]
    dig_excluded_nodes_U = drug_i_gene_edges[U][dig_b_idx:dig_e_idx]
    dig_excluded_nodes_V = drug_i_gene_edges[V][dig_b_idx:dig_e_idx]
    sampled_gene_node = drug_i_gene_edges[V][nd_b_idx:nd_e_idx]

    nd_b_idx = np.random.randint(low=1, high=24, dtype=dtype)
    nd_e_idx = np.random.randint(low=25, high=49, dtype=dtype)
    dtd_b_idx = np.random.randint(low=1, high=24, dtype=dtype)
    dtd_e_idx = np.random.randint(low=25, high=49, dtype=dtype)
    drug_t_dis_edges = g.all_edges(form='all', etype=('drug','treats','disease'))
    excluded_d_t_d_edges = drug_t_dis_edges[EID][dtd_b_idx:dtd_e_idx]
    dtd_excluded_nodes_U = drug_t_dis_edges[U][dtd_b_idx:dtd_e_idx]
    dtd_excluded_nodes_V = drug_t_dis_edges[V][dtd_b_idx:dtd_e_idx]
    sampled_disease_node = drug_t_dis_edges[V][nd_b_idx:nd_e_idx]
    excluded_edges  = {('drug', 'interacts', 'drug'): excluded_d_i_d_edges,
                       ('drug', 'interacts', 'gene'): excluded_d_i_g_edges,
                       ('drug', 'treats', 'disease'): excluded_d_t_d_edges
                      }

    sg = dgl.sampling.sample_neighbors(g, {'drug': sampled_drug_node,
                                           'gene': sampled_gene_node,
                                           'disease': sampled_disease_node},
                                       sampled_amount, exclude_edges=excluded_edges)

    assert not np.any(F.asnumpy(sg.has_edges_between(did_excluded_nodes_U,did_excluded_nodes_V,
                                                     etype=('drug','interacts','drug'))))
    assert not np.any(F.asnumpy(sg.has_edges_between(dig_excluded_nodes_U,dig_excluded_nodes_V,
                                                     etype=('drug','interacts','gene'))))
    assert not np.any(F.asnumpy(sg.has_edges_between(dtd_excluded_nodes_U,dtd_excluded_nodes_V,
                                                     etype=('drug','treats','disease'))))

@pytest.mark.parametrize('dtype', ['int32', 'int64'])
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_exclude_edges_homoG(dtype):
    u_nodes = F.zerocopy_from_numpy(np.unique(np.random.randint(300,size=100, dtype=dtype)))
    v_nodes = F.zerocopy_from_numpy(np.random.randint(25, size=u_nodes.shape, dtype=dtype))
    g = dgl.graph((u_nodes, v_nodes))

    (U, V, EID) = (0, 1, 2)

    nd_b_idx = np.random.randint(low=1,high=24, dtype=dtype)
    nd_e_idx = np.random.randint(low=25,high=49, dtype=dtype)
    b_idx = np.random.randint(low=1,high=24, dtype=dtype)
    e_idx = np.random.randint(low=25,high=49, dtype=dtype)
    sampled_amount = np.random.randint(low=1,high=10, dtype=dtype)

    g_edges = g.all_edges(form='all')
    excluded_edges = g_edges[EID][b_idx:e_idx]
    sampled_node = g_edges[V][nd_b_idx:nd_e_idx]
    excluded_nodes_U = g_edges[U][b_idx:e_idx]
    excluded_nodes_V = g_edges[V][b_idx:e_idx]

    sg = dgl.sampling.sample_neighbors(g, sampled_node,
                                       sampled_amount, exclude_edges=excluded_edges)

    assert not np.any(F.asnumpy(sg.has_edges_between(excluded_nodes_U,excluded_nodes_V)))

921

922
if __name__ == '__main__':
923
    test_sample_neighbors_etype_homogeneous()
924
925
    test_random_walk()
    test_pack_traces()
926
    test_pinsage_sampling()
927
928
929
    test_sample_neighbors_outedge()
    test_sample_neighbors_topk()
    test_sample_neighbors_topk_outedge()
930
    test_sample_neighbors_with_0deg()
931
932
    test_sample_neighbors_biased_homogeneous()
    test_sample_neighbors_biased_bipartite()
933
934
    test_sample_neighbors_exclude_edges_heteroG('int32')
    test_sample_neighbors_exclude_edges_homoG('int32')