test_sampling.py 26.2 KB
Newer Older
1
2
3
4
import dgl
import backend as F
import numpy as np
import unittest
5
from collections import defaultdict
6
7
8
9
10
11
12
13
14
15
16
17
18
19

def check_random_walk(g, metapath, traces, ntypes, prob=None):
    traces = F.asnumpy(traces)
    ntypes = F.asnumpy(ntypes)
    for j in range(traces.shape[1] - 1):
        assert ntypes[j] == g.get_ntype_id(g.to_canonical_etype(metapath[j])[0])
        assert ntypes[j + 1] == g.get_ntype_id(g.to_canonical_etype(metapath[j])[2])

    for i in range(traces.shape[0]):
        for j in range(traces.shape[1] - 1):
            assert g.has_edge_between(
                traces[i, j], traces[i, j+1], etype=metapath[j])
            if prob is not None and prob in g.edges[metapath[j]].data:
                p = F.asnumpy(g.edges[metapath[j]].data['p'])
20
                eids = g.edge_ids(traces[i, j], traces[i, j+1], etype=metapath[j])
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
                assert p[eids] != 0

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU random walk not implemented")
def test_random_walk():
    g1 = dgl.heterograph({
        ('user', 'follow', 'user'): [(0, 1), (1, 2), (2, 0)]
        })
    g2 = dgl.heterograph({
        ('user', 'follow', 'user'): [(0, 1), (1, 2), (1, 3), (2, 0), (3, 0)]
        })
    g3 = dgl.heterograph({
        ('user', 'follow', 'user'): [(0, 1), (1, 2), (2, 0)],
        ('user', 'view', 'item'): [(0, 0), (1, 1), (2, 2)],
        ('item', 'viewed-by', 'user'): [(0, 0), (1, 1), (2, 2)]})
    g4 = dgl.heterograph({
        ('user', 'follow', 'user'): [(0, 1), (1, 2), (1, 3), (2, 0), (3, 0)],
        ('user', 'view', 'item'): [(0, 0), (0, 1), (1, 1), (2, 2), (3, 2), (3, 1)],
        ('item', 'viewed-by', 'user'): [(0, 0), (1, 0), (1, 1), (2, 2), (2, 3), (1, 3)]})

    g2.edata['p'] = F.tensor([3, 0, 3, 3, 3], dtype=F.float32)
41
    g2.edata['p2'] = F.tensor([[3], [0], [3], [3], [3]], dtype=F.float32)
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    g4.edges['follow'].data['p'] = F.tensor([3, 0, 3, 3, 3], dtype=F.float32)
    g4.edges['viewed-by'].data['p'] = F.tensor([1, 1, 1, 1, 1, 1], dtype=F.float32)

    traces, ntypes = dgl.sampling.random_walk(g1, [0, 1, 2, 0, 1, 2], length=4)
    check_random_walk(g1, ['follow'] * 4, traces, ntypes)
    traces, ntypes = dgl.sampling.random_walk(g1, [0, 1, 2, 0, 1, 2], length=4, restart_prob=0.)
    check_random_walk(g1, ['follow'] * 4, traces, ntypes)
    traces, ntypes = dgl.sampling.random_walk(
        g1, [0, 1, 2, 0, 1, 2], length=4, restart_prob=F.zeros((4,), F.float32, F.cpu()))
    check_random_walk(g1, ['follow'] * 4, traces, ntypes)
    traces, ntypes = dgl.sampling.random_walk(
        g1, [0, 1, 2, 0, 1, 2], length=5,
        restart_prob=F.tensor([0, 0, 0, 0, 1], dtype=F.float32))
    check_random_walk(
        g1, ['follow'] * 4, F.slice_axis(traces, 1, 0, 5), F.slice_axis(ntypes, 0, 0, 5))
    assert (F.asnumpy(traces)[:, 5] == -1).all()

    traces, ntypes = dgl.sampling.random_walk(
        g2, [0, 1, 2, 3, 0, 1, 2, 3], length=4)
    check_random_walk(g2, ['follow'] * 4, traces, ntypes)

    traces, ntypes = dgl.sampling.random_walk(
        g2, [0, 1, 2, 3, 0, 1, 2, 3], length=4, prob='p')
    check_random_walk(g2, ['follow'] * 4, traces, ntypes, 'p')

67
68
69
70
71
72
73
74
    try:
        traces, ntypes = dgl.sampling.random_walk(
            g2, [0, 1, 2, 3, 0, 1, 2, 3], length=4, prob='p2')
        fail = False
    except dgl.DGLError:
        fail = True
    assert fail

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    metapath = ['follow', 'view', 'viewed-by'] * 2
    traces, ntypes = dgl.sampling.random_walk(
        g3, [0, 1, 2, 0, 1, 2], metapath=metapath)
    check_random_walk(g3, metapath, traces, ntypes)

    metapath = ['follow', 'view', 'viewed-by'] * 2
    traces, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath)
    check_random_walk(g4, metapath, traces, ntypes)

    metapath = ['follow', 'view', 'viewed-by'] * 2
    traces, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath, prob='p')
    check_random_walk(g4, metapath, traces, ntypes, 'p')
    traces, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath, prob='p', restart_prob=0.)
    check_random_walk(g4, metapath, traces, ntypes, 'p')
    traces, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath, prob='p',
        restart_prob=F.zeros((6,), F.float32, F.cpu()))
    check_random_walk(g4, metapath, traces, ntypes, 'p')
    traces, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath + ['follow'], prob='p',
        restart_prob=F.tensor([0, 0, 0, 0, 0, 0, 1], F.float32))
    check_random_walk(g4, metapath, traces[:, :7], ntypes[:7], 'p')
    assert (F.asnumpy(traces[:, 7]) == -1).all()

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU pack traces not implemented")
def test_pack_traces():
    traces, types = (np.array(
        [[ 0,  1, -1, -1, -1, -1, -1],
         [ 0,  1,  1,  3,  0,  0,  0]], dtype='int64'),
        np.array([0, 0, 1, 0, 0, 1, 0], dtype='int64'))
    traces = F.zerocopy_from_numpy(traces)
    types = F.zerocopy_from_numpy(types)
    result = dgl.sampling.pack_traces(traces, types)
    assert F.array_equal(result[0], F.tensor([0, 1, 0, 1, 1, 3, 0, 0, 0], dtype=F.int64))
    assert F.array_equal(result[1], F.tensor([0, 0, 0, 0, 1, 0, 0, 1, 0], dtype=F.int64))
    assert F.array_equal(result[2], F.tensor([2, 7], dtype=F.int64))
    assert F.array_equal(result[3], F.tensor([0, 2], dtype=F.int64))

116
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
def test_pinsage_sampling():
    def _test_sampler(g, sampler, ntype):
        neighbor_g = sampler(F.tensor([0, 2], dtype=F.int64))
        assert neighbor_g.ntypes == [ntype]
        u, v = neighbor_g.all_edges(form='uv', order='eid')
        uv = list(zip(F.asnumpy(u).tolist(), F.asnumpy(v).tolist()))
        assert (1, 0) in uv or (0, 0) in uv
        assert (2, 2) in uv or (3, 2) in uv

    g = dgl.heterograph({
        ('item', 'bought-by', 'user'): [(0, 0), (0, 1), (1, 0), (1, 1), (2, 2), (2, 3), (3, 2), (3, 3)],
        ('user', 'bought', 'item'): [(0, 0), (1, 0), (0, 1), (1, 1), (2, 2), (3, 2), (2, 3), (3, 3)]})
    sampler = dgl.sampling.PinSAGESampler(g, 'item', 'user', 4, 0.5, 3, 2)
    _test_sampler(g, sampler, 'item')
    sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2, ['bought-by', 'bought'])
    _test_sampler(g, sampler, 'item')
    sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2, 
        [('item', 'bought-by', 'user'), ('user', 'bought', 'item')])
    _test_sampler(g, sampler, 'item')
    g = dgl.graph([(0, 0), (0, 1), (1, 0), (1, 1), (2, 2), (2, 3), (3, 2), (3, 3)])
    sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2)
    _test_sampler(g, sampler, g.ntypes[0])
    g = dgl.heterograph({
        ('A', 'AB', 'B'): [(0, 1), (2, 3)],
        ('B', 'BC', 'C'): [(1, 2), (3, 1)],
        ('C', 'CA', 'A'): [(2, 0), (1, 2)]})
    sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2, ['AB', 'BC', 'CA'])
    _test_sampler(g, sampler, 'A')

146
147
148
149
150
151
152
153
154
155
156
def _gen_neighbor_sampling_test_graph(hypersparse, reverse):
    if hypersparse:
        # should crash if allocated a CSR
        card = 1 << 50
        card2 = (1 << 50, 1 << 50)
    else:
        card = None
        card2 = None
    
    if reverse:
        g = dgl.graph([(0,1),(0,2),(0,3),(1,0),(1,2),(1,3),(2,0)],
157
                'user', 'follow', num_nodes=card)
158
        g.edata['prob'] = F.tensor([.5, .5, 0., .5, .5, 0., 1.], dtype=F.float32)
159
        g1 = dgl.bipartite([(0,0),(1,0),(2,1),(2,3)], 'game', 'play', 'user', num_nodes=card2)
160
        g1.edata['prob'] = F.tensor([.8, .5, .5, .5], dtype=F.float32)
161
        g2 = dgl.bipartite([(0,2),(1,2),(2,2),(0,1),(3,1),(0,0)], 'user', 'liked-by', 'game', num_nodes=card2)
162
        g2.edata['prob'] = F.tensor([.3, .5, .2, .5, .1, .1], dtype=F.float32)
163
        g3 = dgl.bipartite([(0,0),(0,1),(0,2),(0,3)], 'coin', 'flips', 'user', num_nodes=card2)
164
165
166
167

        hg = dgl.hetero_from_relations([g, g1, g2, g3])
    else:
        g = dgl.graph([(1,0),(2,0),(3,0),(0,1),(2,1),(3,1),(0,2)],
168
                'user', 'follow', num_nodes=card)
169
        g.edata['prob'] = F.tensor([.5, .5, 0., .5, .5, 0., 1.], dtype=F.float32)
170
        g1 = dgl.bipartite([(0,0),(0,1),(1,2),(3,2)], 'user', 'play', 'game', num_nodes=card2)
171
        g1.edata['prob'] = F.tensor([.8, .5, .5, .5], dtype=F.float32)
172
        g2 = dgl.bipartite([(2,0),(2,1),(2,2),(1,0),(1,3),(0,0)], 'game', 'liked-by', 'user', num_nodes=card2)
173
        g2.edata['prob'] = F.tensor([.3, .5, .2, .5, .1, .1], dtype=F.float32)
174
        g3 = dgl.bipartite([(0,0),(1,0),(2,0),(3,0)], 'user', 'flips', 'coin', num_nodes=card2)
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

        hg = dgl.hetero_from_relations([g, g1, g2, g3])
    return g, hg

def _gen_neighbor_topk_test_graph(hypersparse, reverse):
    if hypersparse:
        # should crash if allocated a CSR
        card = 1 << 50
        card2 = (1 << 50, 1 << 50)
    else:
        card = None
        card2 = None
 
    if reverse:
        g = dgl.graph([(0,1),(0,2),(0,3),(1,0),(1,2),(1,3),(2,0)],
                'user', 'follow')
        g.edata['weight'] = F.tensor([.5, .3, 0., -5., 22., 0., 1.], dtype=F.float32)
        g1 = dgl.bipartite([(0,0),(1,0),(2,1),(2,3)], 'game', 'play', 'user')
        g1.edata['weight'] = F.tensor([.8, .5, .4, .5], dtype=F.float32)
        g2 = dgl.bipartite([(0,2),(1,2),(2,2),(0,1),(3,1),(0,0)], 'user', 'liked-by', 'game')
        g2.edata['weight'] = F.tensor([.3, .5, .2, .5, .1, .1], dtype=F.float32)
        g3 = dgl.bipartite([(0,0),(0,1),(0,2),(0,3)], 'coin', 'flips', 'user')
        g3.edata['weight'] = F.tensor([10, 2, 13, -1], dtype=F.float32)

        hg = dgl.hetero_from_relations([g, g1, g2, g3])
    else:
        g = dgl.graph([(1,0),(2,0),(3,0),(0,1),(2,1),(3,1),(0,2)],
                'user', 'follow')
        g.edata['weight'] = F.tensor([.5, .3, 0., -5., 22., 0., 1.], dtype=F.float32)
        g1 = dgl.bipartite([(0,0),(0,1),(1,2),(3,2)], 'user', 'play', 'game')
        g1.edata['weight'] = F.tensor([.8, .5, .4, .5], dtype=F.float32)
        g2 = dgl.bipartite([(2,0),(2,1),(2,2),(1,0),(1,3),(0,0)], 'game', 'liked-by', 'user')
        g2.edata['weight'] = F.tensor([.3, .5, .2, .5, .1, .1], dtype=F.float32)
        g3 = dgl.bipartite([(0,0),(1,0),(2,0),(3,0)], 'user', 'flips', 'coin')
        g3.edata['weight'] = F.tensor([10, 2, 13, -1], dtype=F.float32)

        hg = dgl.hetero_from_relations([g, g1, g2, g3])
    return g, hg

def _test_sample_neighbors(hypersparse):
    g, hg = _gen_neighbor_sampling_test_graph(hypersparse, False)

    def _test1(p, replace):
218
219
220
221
222
223
224
225
        subg = dgl.sampling.sample_neighbors(g, [0, 1], -1, prob=p, replace=replace)
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.in_edges([0, 1])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

226
227
228
229
230
231
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(g, [0, 1], 2, prob=p, replace=replace)
            assert subg.number_of_nodes() == g.number_of_nodes()
            assert subg.number_of_edges() == 4
            u, v = subg.edges()
            assert set(F.asnumpy(F.unique(v))) == {0, 1}
232
            assert F.array_equal(F.astype(g.has_edges_between(u, v), F.int64), F.ones((4,), dtype=F.int64))
233
234
235
236
237
238
239
240
241
242
243
244
245
246
            assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
            edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
            if not replace:
                # check no duplication
                assert len(edge_set) == 4
            if p is not None:
                assert not (3, 0) in edge_set
                assert not (3, 1) in edge_set
    _test1(None, True)   # w/ replacement, uniform
    _test1(None, False)  # w/o replacement, uniform
    _test1('prob', True)   # w/ replacement
    _test1('prob', False)  # w/o replacement

    def _test2(p, replace):  # fanout > #neighbors
247
248
249
250
251
252
253
254
        subg = dgl.sampling.sample_neighbors(g, [0, 2], -1, prob=p, replace=replace)
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.in_edges([0, 2])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

255
256
257
258
259
260
261
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(g, [0, 2], 2, prob=p, replace=replace)
            assert subg.number_of_nodes() == g.number_of_nodes()
            num_edges = 4 if replace else 3
            assert subg.number_of_edges() == num_edges
            u, v = subg.edges()
            assert set(F.asnumpy(F.unique(v))) == {0, 2}
262
            assert F.array_equal(F.astype(g.has_edges_between(u, v), F.int64), F.ones((num_edges,), dtype=F.int64))
263
264
265
266
267
268
269
270
271
272
273
274
275
            assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
            edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
            if not replace:
                # check no duplication
                assert len(edge_set) == num_edges
            if p is not None:
                assert not (3, 0) in edge_set
    _test2(None, True)   # w/ replacement, uniform
    _test2(None, False)  # w/o replacement, uniform
    _test2('prob', True)   # w/ replacement
    _test2('prob', False)  # w/o replacement

    def _test3(p, replace):
276
277
278
279
280
281
282
283
        subg = dgl.sampling.sample_neighbors(hg, {'user': [0, 1], 'game': 0}, -1, prob=p, replace=replace)
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        assert subg['follow'].number_of_edges() == 6
        assert subg['play'].number_of_edges() == 1
        assert subg['liked-by'].number_of_edges() == 4
        assert subg['flips'].number_of_edges() == 0

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(hg, {'user' : [0,1], 'game' : 0}, 2, prob=p, replace=replace)
            assert len(subg.ntypes) == 3
            assert len(subg.etypes) == 4
            assert subg['follow'].number_of_edges() == 4
            assert subg['play'].number_of_edges() == 2 if replace else 1
            assert subg['liked-by'].number_of_edges() == 4 if replace else 3
            assert subg['flips'].number_of_edges() == 0

    _test3(None, True)   # w/ replacement, uniform
    _test3(None, False)  # w/o replacement, uniform
    _test3('prob', True)   # w/ replacement
    _test3('prob', False)  # w/o replacement

    # test different fanouts for different relations
    for i in range(10):
300
301
        subg = dgl.sampling.sample_neighbors(
            hg,
302
303
            {'user' : [0,1], 'game' : 0, 'coin': 0},
            {'follow': 1, 'play': 2, 'liked-by': 0, 'flips': -1},
304
            replace=True)
305
306
307
308
309
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        assert subg['follow'].number_of_edges() == 2
        assert subg['play'].number_of_edges() == 2
        assert subg['liked-by'].number_of_edges() == 0
310
        assert subg['flips'].number_of_edges() == 4
311
312
313
314
315

def _test_sample_neighbors_outedge(hypersparse):
    g, hg = _gen_neighbor_sampling_test_graph(hypersparse, True)

    def _test1(p, replace):
316
317
318
319
320
321
322
323
        subg = dgl.sampling.sample_neighbors(g, [0, 1], -1, prob=p, replace=replace, edge_dir='out')
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.out_edges([0, 1])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

324
325
326
327
328
329
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(g, [0, 1], 2, prob=p, replace=replace, edge_dir='out')
            assert subg.number_of_nodes() == g.number_of_nodes()
            assert subg.number_of_edges() == 4
            u, v = subg.edges()
            assert set(F.asnumpy(F.unique(u))) == {0, 1}
330
            assert F.array_equal(F.astype(g.has_edges_between(u, v), F.int64), F.ones((4,), dtype=F.int64))
331
332
333
334
335
336
337
338
339
340
341
342
343
344
            assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
            edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
            if not replace:
                # check no duplication
                assert len(edge_set) == 4
            if p is not None:
                assert not (0, 3) in edge_set
                assert not (1, 3) in edge_set
    _test1(None, True)   # w/ replacement, uniform
    _test1(None, False)  # w/o replacement, uniform
    _test1('prob', True)   # w/ replacement
    _test1('prob', False)  # w/o replacement

    def _test2(p, replace):  # fanout > #neighbors
345
346
347
348
349
350
351
352
        subg = dgl.sampling.sample_neighbors(g, [0, 2], -1, prob=p, replace=replace, edge_dir='out')
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.out_edges([0, 2])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

353
354
355
356
357
358
359
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(g, [0, 2], 2, prob=p, replace=replace, edge_dir='out')
            assert subg.number_of_nodes() == g.number_of_nodes()
            num_edges = 4 if replace else 3
            assert subg.number_of_edges() == num_edges
            u, v = subg.edges()
            assert set(F.asnumpy(F.unique(u))) == {0, 2}
360
            assert F.array_equal(F.astype(g.has_edges_between(u, v), F.int64), F.ones((num_edges,), dtype=F.int64))
361
362
363
364
365
366
367
368
369
370
371
372
373
            assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
            edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
            if not replace:
                # check no duplication
                assert len(edge_set) == num_edges
            if p is not None:
                assert not (0, 3) in edge_set
    _test2(None, True)   # w/ replacement, uniform
    _test2(None, False)  # w/o replacement, uniform
    _test2('prob', True)   # w/ replacement
    _test2('prob', False)  # w/o replacement

    def _test3(p, replace):
374
375
376
377
378
379
380
381
        subg = dgl.sampling.sample_neighbors(hg, {'user': [0, 1], 'game': 0}, -1, prob=p, replace=replace, edge_dir='out')
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        assert subg['follow'].number_of_edges() == 6
        assert subg['play'].number_of_edges() == 1
        assert subg['liked-by'].number_of_edges() == 4
        assert subg['flips'].number_of_edges() == 0

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(hg, {'user' : [0,1], 'game' : 0}, 2, prob=p, replace=replace, edge_dir='out')
            assert len(subg.ntypes) == 3
            assert len(subg.etypes) == 4
            assert subg['follow'].number_of_edges() == 4
            assert subg['play'].number_of_edges() == 2 if replace else 1
            assert subg['liked-by'].number_of_edges() == 4 if replace else 3
            assert subg['flips'].number_of_edges() == 0

    _test3(None, True)   # w/ replacement, uniform
    _test3(None, False)  # w/o replacement, uniform
    _test3('prob', True)   # w/ replacement
    _test3('prob', False)  # w/o replacement

def _test_sample_neighbors_topk(hypersparse):
    g, hg = _gen_neighbor_topk_test_graph(hypersparse, False)

    def _test1():
400
401
402
403
404
405
406
407
        subg = dgl.sampling.select_topk(g, -1, 'weight', [0, 1])
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.in_edges([0, 1])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

408
        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 1])
409
410
411
412
413
414
415
416
417
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 4
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        assert edge_set == {(2,0),(1,0),(2,1),(3,1)}
    _test1()

    def _test2():  # k > #neighbors
418
419
420
421
422
423
424
425
        subg = dgl.sampling.select_topk(g, -1, 'weight', [0, 2])
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.in_edges([0, 2])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

426
        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 2])
427
428
429
430
431
432
433
434
435
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 3
        u, v = subg.edges()
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert edge_set == {(2,0),(1,0),(0,2)}
    _test2()

    def _test3():
436
        subg = dgl.sampling.select_topk(hg, 2, 'weight', {'user' : [0,1], 'game' : 0})
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        u, v = subg['follow'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
        assert edge_set == {(2,0),(1,0),(2,1),(3,1)}
        u, v = subg['play'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
        assert edge_set == {(0,0)}
        u, v = subg['liked-by'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
        assert edge_set == {(2,0),(2,1),(1,0)}
        assert subg['flips'].number_of_edges() == 0
    _test3()

    # test different k for different relations
455
    subg = dgl.sampling.select_topk(
456
        hg, {'follow': 1, 'play': 2, 'liked-by': 0, 'flips': -1}, 'weight', {'user' : [0,1], 'game' : 0, 'coin': 0})
457
458
459
460
461
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4
    assert subg['follow'].number_of_edges() == 2
    assert subg['play'].number_of_edges() == 1
    assert subg['liked-by'].number_of_edges() == 0
462
    assert subg['flips'].number_of_edges() == 4
463
464
465
466
467

def _test_sample_neighbors_topk_outedge(hypersparse):
    g, hg = _gen_neighbor_topk_test_graph(hypersparse, True)

    def _test1():
468
469
470
471
472
473
474
475
        subg = dgl.sampling.select_topk(g, -1, 'weight', [0, 1], edge_dir='out')
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.out_edges([0, 1])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

476
        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 1], edge_dir='out')
477
478
479
480
481
482
483
484
485
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 4
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        assert edge_set == {(0,2),(0,1),(1,2),(1,3)}
    _test1()

    def _test2():  # k > #neighbors
486
487
488
489
490
491
492
493
        subg = dgl.sampling.select_topk(g, -1, 'weight', [0, 2], edge_dir='out')
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.out_edges([0, 2])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

494
        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 2], edge_dir='out')
495
496
497
498
499
500
501
502
503
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 3
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        assert edge_set == {(0,2),(0,1),(2,0)}
    _test2()

    def _test3():
504
        subg = dgl.sampling.select_topk(hg, 2, 'weight', {'user' : [0,1], 'game' : 0}, edge_dir='out')
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        u, v = subg['follow'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
        assert edge_set == {(0,2),(0,1),(1,2),(1,3)}
        u, v = subg['play'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
        assert edge_set == {(0,0)}
        u, v = subg['liked-by'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
        assert edge_set == {(0,2),(1,2),(0,1)}
        assert subg['flips'].number_of_edges() == 0
    _test3()

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors():
    _test_sample_neighbors(False)
    _test_sample_neighbors(True)

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_outedge():
    _test_sample_neighbors_outedge(False)
    _test_sample_neighbors_outedge(True)

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_topk():
    _test_sample_neighbors_topk(False)
    _test_sample_neighbors_topk(True)

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_topk_outedge():
    _test_sample_neighbors_topk_outedge(False)
    _test_sample_neighbors_topk_outedge(True)
541

542
543
544
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_with_0deg():
    g = dgl.graph([], num_nodes=5)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
545
546
547
548
549
550
551
552
    sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='in', replace=False)
    assert sg.number_of_edges() == 0
    sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='in', replace=True)
    assert sg.number_of_edges() == 0
    sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='out', replace=False)
    assert sg.number_of_edges() == 0
    sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='out', replace=True)
    assert sg.number_of_edges() == 0
553

554
555
556
if __name__ == '__main__':
    test_random_walk()
    test_pack_traces()
557
    test_pinsage_sampling()
558
559
560
561
    test_sample_neighbors()
    test_sample_neighbors_outedge()
    test_sample_neighbors_topk()
    test_sample_neighbors_topk_outedge()
562
    test_sample_neighbors_with_0deg()