test_sampling.py 28 KB
Newer Older
1
2
3
4
import dgl
import backend as F
import numpy as np
import unittest
5
from collections import defaultdict
6

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
7
def check_random_walk(g, metapath, traces, ntypes, prob=None, trace_eids=None):
8
9
10
11
12
13
14
15
16
17
18
19
    traces = F.asnumpy(traces)
    ntypes = F.asnumpy(ntypes)
    for j in range(traces.shape[1] - 1):
        assert ntypes[j] == g.get_ntype_id(g.to_canonical_etype(metapath[j])[0])
        assert ntypes[j + 1] == g.get_ntype_id(g.to_canonical_etype(metapath[j])[2])

    for i in range(traces.shape[0]):
        for j in range(traces.shape[1] - 1):
            assert g.has_edge_between(
                traces[i, j], traces[i, j+1], etype=metapath[j])
            if prob is not None and prob in g.edges[metapath[j]].data:
                p = F.asnumpy(g.edges[metapath[j]].data['p'])
20
                eids = g.edge_ids(traces[i, j], traces[i, j+1], etype=metapath[j])
21
                assert p[eids] != 0
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
22
23
24
            if trace_eids is not None:
                u, v = g.find_edges(trace_eids[i, j], etype=metapath[j])
                assert (u == traces[i, j]) and (v == traces[i, j + 1])
25
26
27
28

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU random walk not implemented")
def test_random_walk():
    g1 = dgl.heterograph({
29
        ('user', 'follow', 'user'): ([0, 1, 2], [1, 2, 0])
30
31
        })
    g2 = dgl.heterograph({
32
        ('user', 'follow', 'user'): ([0, 1, 1, 2, 3], [1, 2, 3, 0, 0])
33
34
        })
    g3 = dgl.heterograph({
35
36
37
        ('user', 'follow', 'user'): ([0, 1, 2], [1, 2, 0]),
        ('user', 'view', 'item'): ([0, 1, 2], [0, 1, 2]),
        ('item', 'viewed-by', 'user'): ([0, 1, 2], [0, 1, 2])})
38
    g4 = dgl.heterograph({
39
40
41
        ('user', 'follow', 'user'): ([0, 1, 1, 2, 3], [1, 2, 3, 0, 0]),
        ('user', 'view', 'item'): ([0, 0, 1, 2, 3, 3], [0, 1, 1, 2, 2, 1]),
        ('item', 'viewed-by', 'user'): ([0, 1, 1, 2, 2, 1], [0, 0, 1, 2, 3, 3])})
42
43

    g2.edata['p'] = F.tensor([3, 0, 3, 3, 3], dtype=F.float32)
44
    g2.edata['p2'] = F.tensor([[3], [0], [3], [3], [3]], dtype=F.float32)
45
46
47
    g4.edges['follow'].data['p'] = F.tensor([3, 0, 3, 3, 3], dtype=F.float32)
    g4.edges['viewed-by'].data['p'] = F.tensor([1, 1, 1, 1, 1, 1], dtype=F.float32)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
48
49
50
51
    traces, eids, ntypes = dgl.sampling.random_walk(g1, [0, 1, 2, 0, 1, 2], length=4, return_eids=True)
    check_random_walk(g1, ['follow'] * 4, traces, ntypes, trace_eids=eids)
    traces, eids, ntypes = dgl.sampling.random_walk(g1, [0, 1, 2, 0, 1, 2], length=4, restart_prob=0., return_eids=True)
    check_random_walk(g1, ['follow'] * 4, traces, ntypes, trace_eids=eids)
52
53
54
55
56
57
58
59
60
61
    traces, ntypes = dgl.sampling.random_walk(
        g1, [0, 1, 2, 0, 1, 2], length=4, restart_prob=F.zeros((4,), F.float32, F.cpu()))
    check_random_walk(g1, ['follow'] * 4, traces, ntypes)
    traces, ntypes = dgl.sampling.random_walk(
        g1, [0, 1, 2, 0, 1, 2], length=5,
        restart_prob=F.tensor([0, 0, 0, 0, 1], dtype=F.float32))
    check_random_walk(
        g1, ['follow'] * 4, F.slice_axis(traces, 1, 0, 5), F.slice_axis(ntypes, 0, 0, 5))
    assert (F.asnumpy(traces)[:, 5] == -1).all()

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
62
63
64
    traces, eids, ntypes = dgl.sampling.random_walk(
        g2, [0, 1, 2, 3, 0, 1, 2, 3], length=4, return_eids=True)
    check_random_walk(g2, ['follow'] * 4, traces, ntypes, trace_eids=eids)
65

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
66
67
68
    traces, eids, ntypes = dgl.sampling.random_walk(
        g2, [0, 1, 2, 3, 0, 1, 2, 3], length=4, prob='p', return_eids=True)
    check_random_walk(g2, ['follow'] * 4, traces, ntypes, 'p', trace_eids=eids)
69

70
71
72
73
74
75
76
77
    try:
        traces, ntypes = dgl.sampling.random_walk(
            g2, [0, 1, 2, 3, 0, 1, 2, 3], length=4, prob='p2')
        fail = False
    except dgl.DGLError:
        fail = True
    assert fail

78
    metapath = ['follow', 'view', 'viewed-by'] * 2
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
79
80
81
    traces, eids, ntypes = dgl.sampling.random_walk(
        g3, [0, 1, 2, 0, 1, 2], metapath=metapath, return_eids=True)
    check_random_walk(g3, metapath, traces, ntypes, trace_eids=eids)
82
83

    metapath = ['follow', 'view', 'viewed-by'] * 2
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
84
85
86
87
88
89
90
    traces, eids, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath, return_eids=True)
    check_random_walk(g4, metapath, traces, ntypes, trace_eids=eids)

    traces, eids, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 0, 1, 2], metapath=metapath, return_eids=True)
    check_random_walk(g4, metapath, traces, ntypes, trace_eids=eids)
91
92

    metapath = ['follow', 'view', 'viewed-by'] * 2
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
93
94
95
96
97
98
99
    traces, eids, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath, prob='p', return_eids=True)
    check_random_walk(g4, metapath, traces, ntypes, 'p', trace_eids=eids)
    traces, eids, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath, prob='p', restart_prob=0., return_eids=True)
    check_random_walk(g4, metapath, traces, ntypes, 'p', trace_eids=eids)
    traces, eids, ntypes = dgl.sampling.random_walk(
100
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath, prob='p',
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
101
102
103
        restart_prob=F.zeros((6,), F.float32, F.cpu()), return_eids=True)
    check_random_walk(g4, metapath, traces, ntypes, 'p', trace_eids=eids)
    traces, eids, ntypes = dgl.sampling.random_walk(
104
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath + ['follow'], prob='p',
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
105
106
        restart_prob=F.tensor([0, 0, 0, 0, 0, 0, 1], F.float32), return_eids=True)
    check_random_walk(g4, metapath, traces[:, :7], ntypes[:7], 'p', trace_eids=eids)
107
108
    assert (F.asnumpy(traces[:, 7]) == -1).all()

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU random walk not implemented")
def test_node2vec():
    g1 = dgl.heterograph({
        ('user', 'follow', 'user'): ([0, 1, 2], [1, 2, 0])
        })
    g2 = dgl.heterograph({
        ('user', 'follow', 'user'): ([0, 1, 1, 2, 3], [1, 2, 3, 0, 0])
        })
    g2.edata['p'] = F.tensor([3, 0, 3, 3, 3], dtype=F.float32)

    ntypes = F.zeros((5,), dtype=F.int64)

    traces, eids = dgl.sampling.node2vec_random_walk(g1, [0, 1, 2, 0, 1, 2], 1, 1, 4, return_eids=True)
    check_random_walk(g1, ['follow'] * 4, traces, ntypes, trace_eids=eids)

    traces, eids = dgl.sampling.node2vec_random_walk(
        g2, [0, 1, 2, 3, 0, 1, 2, 3], 1, 1, 4, prob='p', return_eids=True)
    check_random_walk(g2, ['follow'] * 4, traces, ntypes, 'p', trace_eids=eids)

128
129
130
131
132
133
134
135
136
137
138
139
140
141
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU pack traces not implemented")
def test_pack_traces():
    traces, types = (np.array(
        [[ 0,  1, -1, -1, -1, -1, -1],
         [ 0,  1,  1,  3,  0,  0,  0]], dtype='int64'),
        np.array([0, 0, 1, 0, 0, 1, 0], dtype='int64'))
    traces = F.zerocopy_from_numpy(traces)
    types = F.zerocopy_from_numpy(types)
    result = dgl.sampling.pack_traces(traces, types)
    assert F.array_equal(result[0], F.tensor([0, 1, 0, 1, 1, 3, 0, 0, 0], dtype=F.int64))
    assert F.array_equal(result[1], F.tensor([0, 0, 0, 0, 1, 0, 0, 1, 0], dtype=F.int64))
    assert F.array_equal(result[2], F.tensor([2, 7], dtype=F.int64))
    assert F.array_equal(result[3], F.tensor([0, 2], dtype=F.int64))

142
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
143
144
145
146
147
148
149
150
151
152
def test_pinsage_sampling():
    def _test_sampler(g, sampler, ntype):
        neighbor_g = sampler(F.tensor([0, 2], dtype=F.int64))
        assert neighbor_g.ntypes == [ntype]
        u, v = neighbor_g.all_edges(form='uv', order='eid')
        uv = list(zip(F.asnumpy(u).tolist(), F.asnumpy(v).tolist()))
        assert (1, 0) in uv or (0, 0) in uv
        assert (2, 2) in uv or (3, 2) in uv

    g = dgl.heterograph({
153
154
        ('item', 'bought-by', 'user'): ([0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 2, 3, 2, 3]),
        ('user', 'bought', 'item'): ([0, 1, 0, 1, 2, 3, 2, 3], [0, 0, 1, 1, 2, 2, 3, 3])})
155
156
157
158
159
160
161
    sampler = dgl.sampling.PinSAGESampler(g, 'item', 'user', 4, 0.5, 3, 2)
    _test_sampler(g, sampler, 'item')
    sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2, ['bought-by', 'bought'])
    _test_sampler(g, sampler, 'item')
    sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2, 
        [('item', 'bought-by', 'user'), ('user', 'bought', 'item')])
    _test_sampler(g, sampler, 'item')
162
163
    g = dgl.graph(([0, 0, 1, 1, 2, 2, 3, 3],
                   [0, 1, 0, 1, 2, 3, 2, 3]))
164
165
166
    sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2)
    _test_sampler(g, sampler, g.ntypes[0])
    g = dgl.heterograph({
167
168
169
        ('A', 'AB', 'B'): ([0, 2], [1, 3]),
        ('B', 'BC', 'C'): ([1, 3], [2, 1]),
        ('C', 'CA', 'A'): ([2, 1], [0, 2])})
170
171
172
    sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2, ['AB', 'BC', 'CA'])
    _test_sampler(g, sampler, 'A')

173
174
175
176
def _gen_neighbor_sampling_test_graph(hypersparse, reverse):
    if hypersparse:
        # should crash if allocated a CSR
        card = 1 << 50
177
        num_nodes_dict = {'user': card, 'game': card, 'coin': card}
178
179
    else:
        card = None
180
181
        num_nodes_dict = None

182
    if reverse:
183
184
185
        g = dgl.heterograph({
            ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2], [1, 2, 3, 0, 2, 3, 0])
        }, {'user': card if card is not None else 4})
186
        g = g.to(F.ctx())
187
        g.edata['prob'] = F.tensor([.5, .5, 0., .5, .5, 0., 1.], dtype=F.float32)
188
189
190
191
192
193
194
        hg = dgl.heterograph({
            ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2],
                                         [1, 2, 3, 0, 2, 3, 0]),
            ('game', 'play', 'user'): ([0, 1, 2, 2], [0, 0, 1, 3]),
            ('user', 'liked-by', 'game'): ([0, 1, 2, 0, 3, 0], [2, 2, 2, 1, 1, 0]),
            ('coin', 'flips', 'user'): ([0, 0, 0, 0], [0, 1, 2, 3])
        }, num_nodes_dict)
195
        hg = hg.to(F.ctx())
196
    else:
197
198
199
        g = dgl.heterograph({
            ('user', 'follow', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2])
        }, {'user': card if card is not None else 4})
200
        g = g.to(F.ctx())
201
        g.edata['prob'] = F.tensor([.5, .5, 0., .5, .5, 0., 1.], dtype=F.float32)
202
203
204
205
206
207
208
        hg = dgl.heterograph({
            ('user', 'follow', 'user'): ([1, 2, 3, 0, 2, 3, 0],
                                         [0, 0, 0, 1, 1, 1, 2]),
            ('user', 'play', 'game'): ([0, 0, 1, 3], [0, 1, 2, 2]),
            ('game', 'liked-by', 'user'): ([2, 2, 2, 1, 1, 0], [0, 1, 2, 0, 3, 0]),
            ('user', 'flips', 'coin'): ([0, 1, 2, 3], [0, 0, 0, 0])
        }, num_nodes_dict)
209
        hg = hg.to(F.ctx())
210
211
212
    hg.edges['follow'].data['prob'] = F.tensor([.5, .5, 0., .5, .5, 0., 1.], dtype=F.float32)
    hg.edges['play'].data['prob'] = F.tensor([.8, .5, .5, .5], dtype=F.float32)
    hg.edges['liked-by'].data['prob'] = F.tensor([.3, .5, .2, .5, .1, .1], dtype=F.float32)
213
214
215
216
217
218
219
220
221

    return g, hg

def _gen_neighbor_topk_test_graph(hypersparse, reverse):
    if hypersparse:
        # should crash if allocated a CSR
        card = 1 << 50
    else:
        card = None
222

223
    if reverse:
224
225
226
        g = dgl.heterograph({
            ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2], [1, 2, 3, 0, 2, 3, 0])
        })
227
        g.edata['weight'] = F.tensor([.5, .3, 0., -5., 22., 0., 1.], dtype=F.float32)
228
229
230
231
232
233
234
        hg = dgl.heterograph({
            ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2],
                                         [1, 2, 3, 0, 2, 3, 0]),
            ('game', 'play', 'user'): ([0, 1, 2, 2], [0, 0, 1, 3]),
            ('user', 'liked-by', 'game'): ([0, 1, 2, 0, 3, 0], [2, 2, 2, 1, 1, 0]),
            ('coin', 'flips', 'user'): ([0, 0, 0, 0], [0, 1, 2, 3])
        })
235
    else:
236
237
238
        g = dgl.heterograph({
            ('user', 'follow', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2])
        })
239
        g.edata['weight'] = F.tensor([.5, .3, 0., -5., 22., 0., 1.], dtype=F.float32)
240
241
242
243
244
245
246
247
248
249
250
        hg = dgl.heterograph({
            ('user', 'follow', 'user'): ([1, 2, 3, 0, 2, 3, 0],
                                         [0, 0, 0, 1, 1, 1, 2]),
            ('user', 'play', 'game'): ([0, 0, 1, 3], [0, 1, 2, 2]),
            ('game', 'liked-by', 'user'): ([2, 2, 2, 1, 1, 0], [0, 1, 2, 0, 3, 0]),
            ('user', 'flips', 'coin'): ([0, 1, 2, 3], [0, 0, 0, 0])
        })
    hg.edges['follow'].data['weight'] = F.tensor([.5, .3, 0., -5., 22., 0., 1.], dtype=F.float32)
    hg.edges['play'].data['weight'] = F.tensor([.8, .5, .4, .5], dtype=F.float32)
    hg.edges['liked-by'].data['weight'] = F.tensor([.3, .5, .2, .5, .1, .1], dtype=F.float32)
    hg.edges['flips'].data['weight'] = F.tensor([10, 2, 13, -1], dtype=F.float32)
251
252
    return g, hg

253
def _test_sample_neighbors(hypersparse, prob):
254
255
256
    g, hg = _gen_neighbor_sampling_test_graph(hypersparse, False)

    def _test1(p, replace):
257
258
259
260
261
262
263
264
        subg = dgl.sampling.sample_neighbors(g, [0, 1], -1, prob=p, replace=replace)
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.in_edges([0, 1])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

265
266
267
268
269
270
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(g, [0, 1], 2, prob=p, replace=replace)
            assert subg.number_of_nodes() == g.number_of_nodes()
            assert subg.number_of_edges() == 4
            u, v = subg.edges()
            assert set(F.asnumpy(F.unique(v))) == {0, 1}
271
            assert F.array_equal(F.astype(g.has_edges_between(u, v), F.int64), F.ones((4,), dtype=F.int64))
272
273
274
275
276
277
278
279
            assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
            edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
            if not replace:
                # check no duplication
                assert len(edge_set) == 4
            if p is not None:
                assert not (3, 0) in edge_set
                assert not (3, 1) in edge_set
280
281
    _test1(prob, True)   # w/ replacement, uniform
    _test1(prob, False)  # w/o replacement, uniform
282
283

    def _test2(p, replace):  # fanout > #neighbors
284
285
286
287
288
289
290
291
        subg = dgl.sampling.sample_neighbors(g, [0, 2], -1, prob=p, replace=replace)
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.in_edges([0, 2])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

292
293
294
295
296
297
298
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(g, [0, 2], 2, prob=p, replace=replace)
            assert subg.number_of_nodes() == g.number_of_nodes()
            num_edges = 4 if replace else 3
            assert subg.number_of_edges() == num_edges
            u, v = subg.edges()
            assert set(F.asnumpy(F.unique(v))) == {0, 2}
299
            assert F.array_equal(F.astype(g.has_edges_between(u, v), F.int64), F.ones((num_edges,), dtype=F.int64))
300
301
302
303
304
305
306
            assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
            edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
            if not replace:
                # check no duplication
                assert len(edge_set) == num_edges
            if p is not None:
                assert not (3, 0) in edge_set
307
308
    _test2(prob, True)   # w/ replacement, uniform
    _test2(prob, False)  # w/o replacement, uniform
309
310

    def _test3(p, replace):
311
312
313
314
315
316
317
318
        subg = dgl.sampling.sample_neighbors(hg, {'user': [0, 1], 'game': 0}, -1, prob=p, replace=replace)
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        assert subg['follow'].number_of_edges() == 6
        assert subg['play'].number_of_edges() == 1
        assert subg['liked-by'].number_of_edges() == 4
        assert subg['flips'].number_of_edges() == 0

319
320
321
322
323
324
325
326
327
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(hg, {'user' : [0,1], 'game' : 0}, 2, prob=p, replace=replace)
            assert len(subg.ntypes) == 3
            assert len(subg.etypes) == 4
            assert subg['follow'].number_of_edges() == 4
            assert subg['play'].number_of_edges() == 2 if replace else 1
            assert subg['liked-by'].number_of_edges() == 4 if replace else 3
            assert subg['flips'].number_of_edges() == 0

328
329
    _test3(prob, True)   # w/ replacement, uniform
    _test3(prob, False)  # w/o replacement, uniform
330
331
332

    # test different fanouts for different relations
    for i in range(10):
333
334
        subg = dgl.sampling.sample_neighbors(
            hg,
335
336
            {'user' : [0,1], 'game' : 0, 'coin': 0},
            {'follow': 1, 'play': 2, 'liked-by': 0, 'flips': -1},
337
            replace=True)
338
339
340
341
342
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        assert subg['follow'].number_of_edges() == 2
        assert subg['play'].number_of_edges() == 2
        assert subg['liked-by'].number_of_edges() == 0
343
        assert subg['flips'].number_of_edges() == 4
344
345
346
347
348

def _test_sample_neighbors_outedge(hypersparse):
    g, hg = _gen_neighbor_sampling_test_graph(hypersparse, True)

    def _test1(p, replace):
349
350
351
352
353
354
355
356
        subg = dgl.sampling.sample_neighbors(g, [0, 1], -1, prob=p, replace=replace, edge_dir='out')
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.out_edges([0, 1])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

357
358
359
360
361
362
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(g, [0, 1], 2, prob=p, replace=replace, edge_dir='out')
            assert subg.number_of_nodes() == g.number_of_nodes()
            assert subg.number_of_edges() == 4
            u, v = subg.edges()
            assert set(F.asnumpy(F.unique(u))) == {0, 1}
363
            assert F.array_equal(F.astype(g.has_edges_between(u, v), F.int64), F.ones((4,), dtype=F.int64))
364
365
366
367
368
369
370
371
372
373
374
375
376
377
            assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
            edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
            if not replace:
                # check no duplication
                assert len(edge_set) == 4
            if p is not None:
                assert not (0, 3) in edge_set
                assert not (1, 3) in edge_set
    _test1(None, True)   # w/ replacement, uniform
    _test1(None, False)  # w/o replacement, uniform
    _test1('prob', True)   # w/ replacement
    _test1('prob', False)  # w/o replacement

    def _test2(p, replace):  # fanout > #neighbors
378
379
380
381
382
383
384
385
        subg = dgl.sampling.sample_neighbors(g, [0, 2], -1, prob=p, replace=replace, edge_dir='out')
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.out_edges([0, 2])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

386
387
388
389
390
391
392
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(g, [0, 2], 2, prob=p, replace=replace, edge_dir='out')
            assert subg.number_of_nodes() == g.number_of_nodes()
            num_edges = 4 if replace else 3
            assert subg.number_of_edges() == num_edges
            u, v = subg.edges()
            assert set(F.asnumpy(F.unique(u))) == {0, 2}
393
            assert F.array_equal(F.astype(g.has_edges_between(u, v), F.int64), F.ones((num_edges,), dtype=F.int64))
394
395
396
397
398
399
400
401
402
403
404
405
406
            assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
            edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
            if not replace:
                # check no duplication
                assert len(edge_set) == num_edges
            if p is not None:
                assert not (0, 3) in edge_set
    _test2(None, True)   # w/ replacement, uniform
    _test2(None, False)  # w/o replacement, uniform
    _test2('prob', True)   # w/ replacement
    _test2('prob', False)  # w/o replacement

    def _test3(p, replace):
407
408
409
410
411
412
413
414
        subg = dgl.sampling.sample_neighbors(hg, {'user': [0, 1], 'game': 0}, -1, prob=p, replace=replace, edge_dir='out')
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        assert subg['follow'].number_of_edges() == 6
        assert subg['play'].number_of_edges() == 1
        assert subg['liked-by'].number_of_edges() == 4
        assert subg['flips'].number_of_edges() == 0

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(hg, {'user' : [0,1], 'game' : 0}, 2, prob=p, replace=replace, edge_dir='out')
            assert len(subg.ntypes) == 3
            assert len(subg.etypes) == 4
            assert subg['follow'].number_of_edges() == 4
            assert subg['play'].number_of_edges() == 2 if replace else 1
            assert subg['liked-by'].number_of_edges() == 4 if replace else 3
            assert subg['flips'].number_of_edges() == 0

    _test3(None, True)   # w/ replacement, uniform
    _test3(None, False)  # w/o replacement, uniform
    _test3('prob', True)   # w/ replacement
    _test3('prob', False)  # w/o replacement

def _test_sample_neighbors_topk(hypersparse):
    g, hg = _gen_neighbor_topk_test_graph(hypersparse, False)

    def _test1():
433
434
435
436
437
438
439
440
        subg = dgl.sampling.select_topk(g, -1, 'weight', [0, 1])
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.in_edges([0, 1])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

441
        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 1])
442
443
444
445
446
447
448
449
450
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 4
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        assert edge_set == {(2,0),(1,0),(2,1),(3,1)}
    _test1()

    def _test2():  # k > #neighbors
451
452
453
454
455
456
457
458
        subg = dgl.sampling.select_topk(g, -1, 'weight', [0, 2])
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.in_edges([0, 2])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

459
        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 2])
460
461
462
463
464
465
466
467
468
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 3
        u, v = subg.edges()
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert edge_set == {(2,0),(1,0),(0,2)}
    _test2()

    def _test3():
469
        subg = dgl.sampling.select_topk(hg, 2, 'weight', {'user' : [0,1], 'game' : 0})
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        u, v = subg['follow'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
        assert edge_set == {(2,0),(1,0),(2,1),(3,1)}
        u, v = subg['play'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
        assert edge_set == {(0,0)}
        u, v = subg['liked-by'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
        assert edge_set == {(2,0),(2,1),(1,0)}
        assert subg['flips'].number_of_edges() == 0
    _test3()

    # test different k for different relations
488
    subg = dgl.sampling.select_topk(
489
        hg, {'follow': 1, 'play': 2, 'liked-by': 0, 'flips': -1}, 'weight', {'user' : [0,1], 'game' : 0, 'coin': 0})
490
491
492
493
494
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4
    assert subg['follow'].number_of_edges() == 2
    assert subg['play'].number_of_edges() == 1
    assert subg['liked-by'].number_of_edges() == 0
495
    assert subg['flips'].number_of_edges() == 4
496
497
498
499
500

def _test_sample_neighbors_topk_outedge(hypersparse):
    g, hg = _gen_neighbor_topk_test_graph(hypersparse, True)

    def _test1():
501
502
503
504
505
506
507
508
        subg = dgl.sampling.select_topk(g, -1, 'weight', [0, 1], edge_dir='out')
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.out_edges([0, 1])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

509
        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 1], edge_dir='out')
510
511
512
513
514
515
516
517
518
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 4
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        assert edge_set == {(0,2),(0,1),(1,2),(1,3)}
    _test1()

    def _test2():  # k > #neighbors
519
520
521
522
523
524
525
526
        subg = dgl.sampling.select_topk(g, -1, 'weight', [0, 2], edge_dir='out')
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.out_edges([0, 2])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

527
        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 2], edge_dir='out')
528
529
530
531
532
533
534
535
536
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 3
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        assert edge_set == {(0,2),(0,1),(2,0)}
    _test2()

    def _test3():
537
        subg = dgl.sampling.select_topk(hg, 2, 'weight', {'user' : [0,1], 'game' : 0}, edge_dir='out')
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        u, v = subg['follow'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
        assert edge_set == {(0,2),(0,1),(1,2),(1,3)}
        u, v = subg['play'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
        assert edge_set == {(0,0)}
        u, v = subg['liked-by'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
        assert edge_set == {(0,2),(1,2),(0,1)}
        assert subg['flips'].number_of_edges() == 0
    _test3()

555
556
557
558
559
560
561
def test_sample_neighbors_noprob():
    _test_sample_neighbors(False, None)
    #_test_sample_neighbors(True)

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors with probability is not implemented")
def test_sample_neighbors_prob():
    _test_sample_neighbors(False, 'prob')
562
    #_test_sample_neighbors(True)
563
564
565
566

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_outedge():
    _test_sample_neighbors_outedge(False)
567
    #_test_sample_neighbors_outedge(True)
568
569
570
571

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_topk():
    _test_sample_neighbors_topk(False)
572
    #_test_sample_neighbors_topk(True)
573
574
575
576

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_topk_outedge():
    _test_sample_neighbors_topk_outedge(False)
577
    #_test_sample_neighbors_topk_outedge(True)
578

579
580
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_with_0deg():
581
    g = dgl.graph(([], []), num_nodes=5)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
582
583
584
585
586
587
588
589
    sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='in', replace=False)
    assert sg.number_of_edges() == 0
    sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='in', replace=True)
    assert sg.number_of_edges() == 0
    sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='out', replace=False)
    assert sg.number_of_edges() == 0
    sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='out', replace=True)
    assert sg.number_of_edges() == 0
590

591
592
593
if __name__ == '__main__':
    test_random_walk()
    test_pack_traces()
594
    test_pinsage_sampling()
595
596
597
598
    test_sample_neighbors()
    test_sample_neighbors_outedge()
    test_sample_neighbors_topk()
    test_sample_neighbors_topk_outedge()
599
    test_sample_neighbors_with_0deg()