test_item_sampler.py 41.1 KB
Newer Older
1
import os
2
import re
3
import unittest
4
from sys import platform
5

6
7
import backend as F

8
9
10
import dgl
import pytest
import torch
11
12
import torch.distributed as dist
import torch.multiprocessing as mp
13
14
15
from dgl import graphbolt as gb


16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def test_ItemSampler_minibatcher():
    # Default minibatcher is used if not specified.
    # Warning message is raised if names are not specified.
    item_set = gb.ItemSet(torch.arange(0, 10))
    item_sampler = gb.ItemSampler(item_set, batch_size=4)
    with pytest.warns(
        UserWarning,
        match=re.escape(
            "Failed to map item list to `MiniBatch` as the names of items are "
            "not provided. Please provide a customized `MiniBatcher`. The "
            "item list is returned as is."
        ),
    ):
        minibatch = next(iter(item_sampler))
        assert not isinstance(minibatch, gb.MiniBatch)

    # Default minibatcher is used if not specified.
    # Warning message is raised if unrecognized names are specified.
    item_set = gb.ItemSet(torch.arange(0, 10), names="unknown_name")
    item_sampler = gb.ItemSampler(item_set, batch_size=4)
    with pytest.warns(
        UserWarning,
        match=re.escape(
            "Unknown item name 'unknown_name' is detected and added into "
            "`MiniBatch`. You probably need to provide a customized "
            "`MiniBatcher`."
        ),
    ):
        minibatch = next(iter(item_sampler))
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.unknown_name is not None

    # Default minibatcher is used if not specified.
    # `MiniBatch` is returned if expected names are specified.
    item_set = gb.ItemSet(torch.arange(0, 10), names="seed_nodes")
    item_sampler = gb.ItemSampler(item_set, batch_size=4)
    minibatch = next(iter(item_sampler))
    assert isinstance(minibatch, gb.MiniBatch)
54
55
    assert minibatch.seeds is not None
    assert len(minibatch.seeds) == 4
56
57
58

    # Customized minibatcher is used if specified.
    def minibatcher(batch, names):
59
        return gb.MiniBatch(seeds=batch)
60
61
62
63
64
65

    item_sampler = gb.ItemSampler(
        item_set, batch_size=4, minibatcher=minibatcher
    )
    minibatch = next(iter(item_sampler))
    assert isinstance(minibatch, gb.MiniBatch)
66
67
    assert minibatch.seeds is not None
    assert len(minibatch.seeds) == 4
68
69


70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_Iterable_Only(batch_size, shuffle, drop_last):
    num_ids = 103

    class InvalidLength:
        def __iter__(self):
            return iter(torch.arange(0, num_ids))

    seed_nodes = gb.ItemSet(InvalidLength())
    item_set = gb.ItemSet(seed_nodes, names="seed_nodes")
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
88
        assert minibatch.seeds is not None
89
90
91
        assert minibatch.labels is None
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
92
            assert len(minibatch.seeds) == batch_size
93
94
        else:
            if not drop_last:
95
                assert len(minibatch.seeds) == num_ids % batch_size
96
97
            else:
                assert False
98
        minibatch_ids.append(minibatch.seeds)
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_integer(batch_size, shuffle, drop_last):
    # Node IDs.
    num_ids = 103
    item_set = gb.ItemSet(num_ids, names="seed_nodes")
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
116
        assert minibatch.seeds is not None
117
118
119
        assert minibatch.labels is None
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
120
            assert len(minibatch.seeds) == batch_size
121
122
        else:
            if not drop_last:
123
                assert len(minibatch.seeds) == num_ids % batch_size
124
125
            else:
                assert False
126
        minibatch_ids.append(minibatch.seeds)
127
128
129
130
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


131
132
133
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
134
def test_ItemSet_seed_nodes(batch_size, shuffle, drop_last):
135
    # Node IDs.
136
    num_ids = 103
137
138
    seed_nodes = torch.arange(0, num_ids)
    item_set = gb.ItemSet(seed_nodes, names="seed_nodes")
139
    item_sampler = gb.ItemSampler(
140
141
142
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
143
    for i, minibatch in enumerate(item_sampler):
144
        assert isinstance(minibatch, gb.MiniBatch)
145
        assert minibatch.seeds is not None
146
        assert minibatch.labels is None
147
148
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
149
            assert len(minibatch.seeds) == batch_size
150
151
        else:
            if not drop_last:
152
                assert len(minibatch.seeds) == num_ids % batch_size
153
154
            else:
                assert False
155
        minibatch_ids.append(minibatch.seeds)
156
157
158
159
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_seed_nodes_labels(batch_size, shuffle, drop_last):
    # Node IDs.
    num_ids = 103
    seed_nodes = torch.arange(0, num_ids)
    labels = torch.arange(0, num_ids)
    item_set = gb.ItemSet((seed_nodes, labels), names=("seed_nodes", "labels"))
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    minibatch_labels = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
176
        assert minibatch.seeds is not None
177
        assert minibatch.labels is not None
178
        assert len(minibatch.seeds) == len(minibatch.labels)
179
180
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
181
            assert len(minibatch.seeds) == batch_size
182
183
        else:
            if not drop_last:
184
                assert len(minibatch.seeds) == num_ids % batch_size
185
186
            else:
                assert False
187
        minibatch_ids.append(minibatch.seeds)
188
189
190
191
192
193
194
195
196
        minibatch_labels.append(minibatch.labels)
    minibatch_ids = torch.cat(minibatch_ids)
    minibatch_labels = torch.cat(minibatch_labels)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle
    assert (
        torch.all(minibatch_labels[:-1] <= minibatch_labels[1:]) is not shuffle
    )


197
198
199
200
201
202
203
204
205
206
207
208
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_graphs(batch_size, shuffle, drop_last):
    # Graphs.
    num_graphs = 103
    num_nodes = 10
    num_edges = 20
    graphs = [
        dgl.rand_graph(num_nodes * (i + 1), num_edges * (i + 1))
        for i in range(num_graphs)
    ]
209
210
211
212
    item_set = gb.ItemSet(graphs, names="graphs")
    # DGLGraph is not supported in gb.MiniBatch yet. Let's use a customized
    # minibatcher to return the original graphs.
    customized_minibatcher = lambda batch, names: batch
213
    item_sampler = gb.ItemSampler(
214
215
216
217
218
        item_set,
        batch_size=batch_size,
        shuffle=shuffle,
        drop_last=drop_last,
        minibatcher=customized_minibatcher,
219
220
221
    )
    minibatch_num_nodes = []
    minibatch_num_edges = []
222
    for i, minibatch in enumerate(item_sampler):
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
        is_last = (i + 1) * batch_size >= num_graphs
        if not is_last or num_graphs % batch_size == 0:
            assert minibatch.batch_size == batch_size
        else:
            if not drop_last:
                assert minibatch.batch_size == num_graphs % batch_size
            else:
                assert False
        minibatch_num_nodes.append(minibatch.batch_num_nodes())
        minibatch_num_edges.append(minibatch.batch_num_edges())
    minibatch_num_nodes = torch.cat(minibatch_num_nodes)
    minibatch_num_edges = torch.cat(minibatch_num_edges)
    assert (
        torch.all(minibatch_num_nodes[:-1] <= minibatch_num_nodes[1:])
        is not shuffle
    )
    assert (
        torch.all(minibatch_num_edges[:-1] <= minibatch_num_edges[1:])
        is not shuffle
    )


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_node_pairs(batch_size, shuffle, drop_last):
    # Node pairs.
    num_ids = 103
251
252
    node_pairs = torch.arange(0, 2 * num_ids).reshape(-1, 2)
    item_set = gb.ItemSet(node_pairs, names="node_pairs")
253
    item_sampler = gb.ItemSampler(
254
255
256
257
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
258
    for i, minibatch in enumerate(item_sampler):
259
260
        assert minibatch.seeds is not None
        assert isinstance(minibatch.seeds, torch.Tensor)
261
        assert minibatch.labels is None
262
        src, dst = minibatch.seeds.T
263
264
265
266
267
268
269
270
271
272
273
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        # Verify src and dst IDs match.
274
        assert torch.equal(src + 1, dst)
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
        # Archive batch.
        src_ids.append(src)
        dst_ids.append(dst)
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_node_pairs_labels(batch_size, shuffle, drop_last):
    # Node pairs and labels
    num_ids = 103
290
291
292
    node_pairs = torch.arange(0, 2 * num_ids).reshape(-1, 2)
    labels = node_pairs[:, 0]
    item_set = gb.ItemSet((node_pairs, labels), names=("node_pairs", "labels"))
293
    item_sampler = gb.ItemSampler(
294
295
296
297
298
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
    labels = []
299
    for i, minibatch in enumerate(item_sampler):
300
301
        assert minibatch.seeds is not None
        assert isinstance(minibatch.seeds, torch.Tensor)
302
        assert minibatch.labels is not None
303
        src, dst = minibatch.seeds.T
304
        label = minibatch.labels
305
306
        assert len(src) == len(dst)
        assert len(src) == len(label)
307
308
309
310
311
312
313
314
315
316
317
318
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        assert len(label) == expected_batch_size
        # Verify src/dst IDs and labels match.
319
        assert torch.equal(src + 1, dst)
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
        assert torch.equal(src, label)
        # Archive batch.
        src_ids.append(src)
        dst_ids.append(dst)
        labels.append(label)
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    labels = torch.cat(labels)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
    assert torch.all(labels[:-1] <= labels[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
336
337
def test_ItemSet_node_pairs_negative_dsts(batch_size, shuffle, drop_last):
    # Node pairs and negative destinations.
338
339
    num_ids = 103
    num_negs = 2
340
341
342
343
344
345
346
    node_pairs = torch.arange(0, 2 * num_ids).reshape(-1, 2)
    neg_dsts = torch.arange(
        2 * num_ids, 2 * num_ids + num_ids * num_negs
    ).reshape(-1, num_negs)
    item_set = gb.ItemSet(
        (node_pairs, neg_dsts), names=("node_pairs", "negative_dsts")
    )
347
    item_sampler = gb.ItemSampler(
348
349
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
350
351
    src_ids = []
    dst_ids = []
352
    negs_ids = []
353
    for i, minibatch in enumerate(item_sampler):
354
355
356
357
358
359
360
        assert minibatch.seeds is not None
        assert isinstance(minibatch.seeds, torch.Tensor)
        assert minibatch.labels is not None
        assert minibatch.indexes is not None
        src, dst = minibatch.seeds.T
        negs_src = src[~minibatch.labels.to(bool)]
        negs_dst = dst[~minibatch.labels.to(bool)]
361
362
363
364
365
366
367
368
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
369
370
371
372
373
374
375
376
377
378
379
        assert len(src) == expected_batch_size * 3
        assert len(dst) == expected_batch_size * 3
        assert negs_src.dim() == 1
        assert negs_dst.dim() == 1
        assert len(negs_src) == expected_batch_size * 2
        assert len(negs_dst) == expected_batch_size * 2
        expected_indexes = torch.arange(expected_batch_size)
        expected_indexes = torch.cat(
            (expected_indexes, expected_indexes.repeat_interleave(2))
        )
        assert torch.equal(minibatch.indexes, expected_indexes)
380
        # Verify node pairs and negative destinations.
381
382
383
384
        assert torch.equal(
            src[minibatch.labels.to(bool)] + 1, dst[minibatch.labels.to(bool)]
        )
        assert torch.equal((negs_dst - 2 * num_ids) // 2 * 2, negs_src)
385
        # Archive batch.
386
387
        src_ids.append(src)
        dst_ids.append(dst)
388
        negs_ids.append(negs_dst)
389
390
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
391
    negs_ids = torch.cat(negs_ids)
392
393
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
394
    assert torch.all(negs_ids[:-1] <= negs_ids[1:]) is not shuffle
395
396


397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_seeds(batch_size, shuffle, drop_last):
    # Node pairs.
    num_ids = 103
    seeds = torch.arange(0, 3 * num_ids).reshape(-1, 3)
    item_set = gb.ItemSet(seeds, names="seeds")
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    seeds_ids = []
    for i, minibatch in enumerate(item_sampler):
        assert minibatch.seeds is not None
        assert isinstance(minibatch.seeds, torch.Tensor)
        assert minibatch.labels is None
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert minibatch.seeds.shape == (expected_batch_size, 3)
        # Verify seeds match.
        assert torch.equal(minibatch.seeds[:, 0] + 1, minibatch.seeds[:, 1])
        assert torch.equal(minibatch.seeds[:, 1] + 1, minibatch.seeds[:, 2])
        # Archive batch.
        seeds_ids.append(minibatch.seeds)
    seeds_ids = torch.cat(seeds_ids)
    assert torch.all(seeds_ids[:-1, 0] <= seeds_ids[1:, 0]) is not shuffle
    assert torch.all(seeds_ids[:-1, 1] <= seeds_ids[1:, 1]) is not shuffle
    assert torch.all(seeds_ids[:-1, 2] <= seeds_ids[1:, 2]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_seeds_labels(batch_size, shuffle, drop_last):
    # Node pairs and labels
    num_ids = 103
    seeds = torch.arange(0, 3 * num_ids).reshape(-1, 3)
    labels = seeds[:, 0]
    item_set = gb.ItemSet((seeds, labels), names=("seeds", "labels"))
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    seeds_ids = []
    labels = []
    for i, minibatch in enumerate(item_sampler):
        assert minibatch.seeds is not None
        assert isinstance(minibatch.seeds, torch.Tensor)
        assert minibatch.labels is not None
        label = minibatch.labels
        assert len(minibatch.seeds) == len(label)
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert minibatch.seeds.shape == (expected_batch_size, 3)
        assert len(label) == expected_batch_size
        # Verify seeds and labels match.
        assert torch.equal(minibatch.seeds[:, 0] + 1, minibatch.seeds[:, 1])
        assert torch.equal(minibatch.seeds[:, 1] + 1, minibatch.seeds[:, 2])
        # Archive batch.
        seeds_ids.append(minibatch.seeds)
        labels.append(label)
    seeds_ids = torch.cat(seeds_ids)
    labels = torch.cat(labels)
    assert torch.all(seeds_ids[:-1, 0] <= seeds_ids[1:, 0]) is not shuffle
    assert torch.all(seeds_ids[:-1, 1] <= seeds_ids[1:, 1]) is not shuffle
    assert torch.all(seeds_ids[:-1, 2] <= seeds_ids[1:, 2]) is not shuffle
    assert torch.all(labels[:-1] <= labels[1:]) is not shuffle


477
478
479
def test_append_with_other_datapipes():
    num_ids = 100
    batch_size = 4
480
    item_set = gb.ItemSet(torch.arange(0, num_ids), names="seed_nodes")
481
    data_pipe = gb.ItemSampler(item_set, batch_size)
482
483
484
485
    # torchdata.datapipes.iter.Enumerator
    data_pipe = data_pipe.enumerate()
    for i, (idx, data) in enumerate(data_pipe):
        assert i == idx
486
        assert len(data.seeds) == batch_size
487
488


489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSetDict_iterable_only(batch_size, shuffle, drop_last):
    class IterableOnly:
        def __init__(self, start, stop):
            self._start = start
            self._stop = stop

        def __iter__(self):
            return iter(torch.arange(self._start, self._stop))

    num_ids = 205
    ids = {
        "user": gb.ItemSet(IterableOnly(0, 99), names="seed_nodes"),
        "item": gb.ItemSet(IterableOnly(99, num_ids), names="seed_nodes"),
    }
    chained_ids = []
    for key, value in ids.items():
        chained_ids += [(key, v) for v in value]
    item_set = gb.ItemSetDict(ids)
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    for i, minibatch in enumerate(item_sampler):
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert isinstance(minibatch, gb.MiniBatch)
524
        assert minibatch.seeds is not None
525
        ids = []
526
        for _, v in minibatch.seeds.items():
527
528
529
530
531
532
533
534
            ids.append(v)
        ids = torch.cat(ids)
        assert len(ids) == expected_batch_size
        minibatch_ids.append(ids)
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


535
536
537
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
def test_ItemSetDict_seed_nodes(batch_size, shuffle, drop_last):
    # Node IDs.
    num_ids = 205
    ids = {
        "user": gb.ItemSet(torch.arange(0, 99), names="seed_nodes"),
        "item": gb.ItemSet(torch.arange(99, num_ids), names="seed_nodes"),
    }
    chained_ids = []
    for key, value in ids.items():
        chained_ids += [(key, v) for v in value]
    item_set = gb.ItemSetDict(ids)
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    for i, minibatch in enumerate(item_sampler):
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert isinstance(minibatch, gb.MiniBatch)
563
        assert minibatch.seeds is not None
564
        ids = []
565
        for _, v in minibatch.seeds.items():
566
567
568
569
570
571
572
573
574
575
576
577
            ids.append(v)
        ids = torch.cat(ids)
        assert len(ids) == expected_batch_size
        minibatch_ids.append(ids)
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSetDict_seed_nodes_labels(batch_size, shuffle, drop_last):
578
579
580
    # Node IDs.
    num_ids = 205
    ids = {
581
582
583
584
585
586
587
588
        "user": gb.ItemSet(
            (torch.arange(0, 99), torch.arange(0, 99)),
            names=("seed_nodes", "labels"),
        ),
        "item": gb.ItemSet(
            (torch.arange(99, num_ids), torch.arange(99, num_ids)),
            names=("seed_nodes", "labels"),
        ),
589
590
591
592
    }
    chained_ids = []
    for key, value in ids.items():
        chained_ids += [(key, v) for v in value]
593
    item_set = gb.ItemSetDict(ids)
594
    item_sampler = gb.ItemSampler(
595
596
597
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
598
599
600
    minibatch_labels = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
601
        assert minibatch.seeds is not None
602
        assert minibatch.labels is not None
603
604
605
606
607
608
609
610
611
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        ids = []
612
        for _, v in minibatch.seeds.items():
613
614
615
616
            ids.append(v)
        ids = torch.cat(ids)
        assert len(ids) == expected_batch_size
        minibatch_ids.append(ids)
617
618
619
620
621
622
        labels = []
        for _, v in minibatch.labels.items():
            labels.append(v)
        labels = torch.cat(labels)
        assert len(labels) == expected_batch_size
        minibatch_labels.append(labels)
623
    minibatch_ids = torch.cat(minibatch_ids)
624
    minibatch_labels = torch.cat(minibatch_labels)
625
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle
626
627
628
    assert (
        torch.all(minibatch_labels[:-1] <= minibatch_labels[1:]) is not shuffle
    )
629
630
631
632
633


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
634
def test_ItemSetDict_node_pairs(batch_size, shuffle, drop_last):
635
636
    # Node pairs.
    num_ids = 103
637
638
639
    total_pairs = 2 * num_ids
    node_pairs_like = torch.arange(0, num_ids * 2).reshape(-1, 2)
    node_pairs_follow = torch.arange(num_ids * 2, num_ids * 4).reshape(-1, 2)
640
    node_pairs_dict = {
641
642
        "user:like:item": gb.ItemSet(node_pairs_like, names="node_pairs"),
        "user:follow:user": gb.ItemSet(node_pairs_follow, names="node_pairs"),
643
    }
644
    item_set = gb.ItemSetDict(node_pairs_dict)
645
    item_sampler = gb.ItemSampler(
646
647
648
649
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
650
651
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
652
        assert minibatch.seeds is not None
653
654
655
        assert minibatch.labels is None
        is_last = (i + 1) * batch_size >= total_pairs
        if not is_last or total_pairs % batch_size == 0:
656
657
658
            expected_batch_size = batch_size
        else:
            if not drop_last:
659
                expected_batch_size = total_pairs % batch_size
660
661
662
663
            else:
                assert False
        src = []
        dst = []
664
665
666
667
        for _, (seeds) in minibatch.seeds.items():
            assert isinstance(seeds, torch.Tensor)
            src.append(seeds[:, 0])
            dst.append(seeds[:, 1])
668
669
670
671
672
673
        src = torch.cat(src)
        dst = torch.cat(dst)
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        src_ids.append(src)
        dst_ids.append(dst)
674
        assert torch.equal(src + 1, dst)
675
676
677
678
679
680
681
682
683
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
684
def test_ItemSetDict_node_pairs_labels(batch_size, shuffle, drop_last):
685
686
687
    # Node pairs and labels
    num_ids = 103
    total_ids = 2 * num_ids
688
689
    node_pairs_like = torch.arange(0, num_ids * 2).reshape(-1, 2)
    node_pairs_follow = torch.arange(num_ids * 2, num_ids * 4).reshape(-1, 2)
690
691
    labels = torch.arange(0, num_ids)
    node_pairs_dict = {
692
        "user:like:item": gb.ItemSet(
693
694
            (node_pairs_like, node_pairs_like[:, 0]),
            names=("node_pairs", "labels"),
695
        ),
696
        "user:follow:user": gb.ItemSet(
697
698
            (node_pairs_follow, node_pairs_follow[:, 0]),
            names=("node_pairs", "labels"),
699
700
        ),
    }
701
    item_set = gb.ItemSetDict(node_pairs_dict)
702
    item_sampler = gb.ItemSampler(
703
704
705
706
707
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
    labels = []
708
709
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
710
        assert minibatch.seeds is not None
711
        assert minibatch.labels is not None
712
        assert minibatch.negative_dsts is None
713
714
715
716
717
718
719
720
721
722
723
        is_last = (i + 1) * batch_size >= total_ids
        if not is_last or total_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = total_ids % batch_size
            else:
                assert False
        src = []
        dst = []
        label = []
724
725
726
727
        for _, seeds in minibatch.seeds.items():
            assert isinstance(seeds, torch.Tensor)
            src.append(seeds[:, 0])
            dst.append(seeds[:, 1])
728
        for _, v_label in minibatch.labels.items():
729
730
731
732
733
734
735
736
737
738
            label.append(v_label)
        src = torch.cat(src)
        dst = torch.cat(dst)
        label = torch.cat(label)
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        assert len(label) == expected_batch_size
        src_ids.append(src)
        dst_ids.append(dst)
        labels.append(label)
739
        assert torch.equal(src + 1, dst)
740
741
742
743
744
745
746
747
748
749
750
751
        assert torch.equal(src, label)
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    labels = torch.cat(labels)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
    assert torch.all(labels[:-1] <= labels[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
752
def test_ItemSetDict_node_pairs_negative_dsts(batch_size, shuffle, drop_last):
753
754
755
756
    # Head, tail and negative tails.
    num_ids = 103
    total_ids = 2 * num_ids
    num_negs = 2
757
758
759
760
761
762
763
764
    node_paris_like = torch.arange(0, num_ids * 2).reshape(-1, 2)
    node_pairs_follow = torch.arange(num_ids * 2, num_ids * 4).reshape(-1, 2)
    neg_dsts_like = torch.arange(
        num_ids * 4, num_ids * 4 + num_ids * num_negs
    ).reshape(-1, num_negs)
    neg_dsts_follow = torch.arange(
        num_ids * 4 + num_ids * num_negs, num_ids * 4 + num_ids * num_negs * 2
    ).reshape(-1, num_negs)
765
    data_dict = {
766
767
768
769
770
771
772
773
        "user:like:item": gb.ItemSet(
            (node_paris_like, neg_dsts_like),
            names=("node_pairs", "negative_dsts"),
        ),
        "user:follow:user": gb.ItemSet(
            (node_pairs_follow, neg_dsts_follow),
            names=("node_pairs", "negative_dsts"),
        ),
774
    }
775
    item_set = gb.ItemSetDict(data_dict)
776
    item_sampler = gb.ItemSampler(
777
778
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
779
780
    src_ids = []
    dst_ids = []
781
    negs_ids = []
782
783
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
784
785
786
        assert minibatch.seeds is not None
        assert minibatch.labels is not None
        assert minibatch.negative_dsts is None
787
788
789
790
791
792
793
794
        is_last = (i + 1) * batch_size >= total_ids
        if not is_last or total_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = total_ids % batch_size
            else:
                assert False
795
796
        src = []
        dst = []
797
798
799
800
801
802
803
804
805
806
        negs_src = []
        negs_dst = []
        for etype, seeds in minibatch.seeds.items():
            assert isinstance(seeds, torch.Tensor)
            src_etype = seeds[:, 0]
            dst_etype = seeds[:, 1]
            src.append(src_etype[minibatch.labels[etype].to(bool)])
            dst.append(dst_etype[minibatch.labels[etype].to(bool)])
            negs_src.append(src_etype[~minibatch.labels[etype].to(bool)])
            negs_dst.append(dst_etype[~minibatch.labels[etype].to(bool)])
807
808
        src = torch.cat(src)
        dst = torch.cat(dst)
809
810
        negs_src = torch.cat(negs_src)
        negs_dst = torch.cat(negs_dst)
811
812
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
813
814
        assert len(negs_src) == expected_batch_size * 2
        assert len(negs_dst) == expected_batch_size * 2
815
816
        src_ids.append(src)
        dst_ids.append(dst)
817
818
819
        negs_ids.append(negs_dst)
        assert negs_src.dim() == 1
        assert negs_dst.dim() == 1
820
        assert torch.equal(src + 1, dst)
821
        assert torch.equal(negs_src, (negs_dst - num_ids * 4) // 2 * 2)
822
823
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
824
    negs_ids = torch.cat(negs_ids)
825
826
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
827
    assert torch.all(negs_ids <= negs_ids) is not shuffle
828
829


830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSetDict_seeds(batch_size, shuffle, drop_last):
    # Node pairs.
    num_ids = 103
    total_pairs = 2 * num_ids
    seeds_like = torch.arange(0, num_ids * 3).reshape(-1, 3)
    seeds_follow = torch.arange(num_ids * 3, num_ids * 6).reshape(-1, 3)
    seeds_dict = {
        "user:like:item": gb.ItemSet(seeds_like, names="seeds"),
        "user:follow:user": gb.ItemSet(seeds_follow, names="seeds"),
    }
    item_set = gb.ItemSetDict(seeds_dict)
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    seeds_ids = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seeds is not None
        assert minibatch.labels is None
852
        assert minibatch.indexes is None
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
        is_last = (i + 1) * batch_size >= total_pairs
        if not is_last or total_pairs % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = total_pairs % batch_size
            else:
                assert False
        seeds_lst = []
        for _, (seeds) in minibatch.seeds.items():
            assert isinstance(seeds, torch.Tensor)
            seeds_lst.append(seeds)
        seeds_lst = torch.cat(seeds_lst)
        assert seeds_lst.shape == (expected_batch_size, 3)
        seeds_ids.append(seeds_lst)
        assert torch.equal(seeds_lst[:, 0] + 1, seeds_lst[:, 1])
        assert torch.equal(seeds_lst[:, 1] + 1, seeds_lst[:, 2])
    seeds_ids = torch.cat(seeds_ids)
    assert torch.all(seeds_ids[:-1, 0] <= seeds_ids[1:, 0]) is not shuffle
    assert torch.all(seeds_ids[:-1, 1] <= seeds_ids[1:, 1]) is not shuffle
    assert torch.all(seeds_ids[:-1, 2] <= seeds_ids[1:, 2]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSetDict_seeds_labels(batch_size, shuffle, drop_last):
    # Node pairs and labels
    num_ids = 103
    total_ids = 2 * num_ids
    seeds_like = torch.arange(0, num_ids * 3).reshape(-1, 3)
    seeds_follow = torch.arange(num_ids * 3, num_ids * 6).reshape(-1, 3)
    seeds_dict = {
        "user:like:item": gb.ItemSet(
            (seeds_like, seeds_like[:, 0]),
            names=("seeds", "labels"),
        ),
        "user:follow:user": gb.ItemSet(
            (seeds_follow, seeds_follow[:, 0]),
            names=("seeds", "labels"),
        ),
    }
    item_set = gb.ItemSetDict(seeds_dict)
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    seeds_ids = []
    labels = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seeds is not None
        assert minibatch.labels is not None
905
        assert minibatch.indexes is None
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
        is_last = (i + 1) * batch_size >= total_ids
        if not is_last or total_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = total_ids % batch_size
            else:
                assert False
        seeds_lst = []
        label = []
        for _, seeds in minibatch.seeds.items():
            assert isinstance(seeds, torch.Tensor)
            seeds_lst.append(seeds)
        for _, v_label in minibatch.labels.items():
            label.append(v_label)
        seeds_lst = torch.cat(seeds_lst)
        label = torch.cat(label)
        assert seeds_lst.shape == (expected_batch_size, 3)
        assert len(label) == expected_batch_size
        seeds_ids.append(seeds_lst)
        labels.append(label)
        assert torch.equal(seeds_lst[:, 0] + 1, seeds_lst[:, 1])
        assert torch.equal(seeds_lst[:, 1] + 1, seeds_lst[:, 2])
        assert torch.equal(seeds_lst[:, 0], label)
    seeds_ids = torch.cat(seeds_ids)
    labels = torch.cat(labels)
    assert torch.all(seeds_ids[:-1, 0] <= seeds_ids[1:, 0]) is not shuffle
    assert torch.all(seeds_ids[:-1, 1] <= seeds_ids[1:, 1]) is not shuffle
    assert torch.all(seeds_ids[:-1, 2] <= seeds_ids[1:, 2]) is not shuffle
    assert torch.all(labels[:-1] <= labels[1:]) is not shuffle


938
939
940
941
942
def distributed_item_sampler_subprocess(
    proc_id,
    nprocs,
    item_set,
    num_ids,
943
    num_workers,
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
    batch_size,
    drop_last,
    drop_uneven_inputs,
):
    # On Windows, the init method can only be file.
    init_method = (
        f"file:///{os.path.join(os.getcwd(), 'dis_tempfile')}"
        if platform == "win32"
        else "tcp://127.0.0.1:12345"
    )
    dist.init_process_group(
        backend="gloo",  # Use Gloo backend for CPU multiprocessing
        init_method=init_method,
        world_size=nprocs,
        rank=proc_id,
    )

    # Create a DistributedItemSampler.
    item_sampler = gb.DistributedItemSampler(
        item_set,
        batch_size=batch_size,
965
        shuffle=True,
966
967
968
969
970
971
972
973
        drop_last=drop_last,
        drop_uneven_inputs=drop_uneven_inputs,
    )
    feature_fetcher = gb.FeatureFetcher(
        item_sampler,
        gb.BasicFeatureStore({}),
        [],
    )
974
    data_loader = gb.DataLoader(feature_fetcher, num_workers=num_workers)
975
976
977
978
979
980

    # Count the numbers of items and batches.
    num_items = 0
    sampled_count = torch.zeros(num_ids, dtype=torch.int32)
    for i in data_loader:
        # Count how many times each item is sampled.
981
        sampled_count[i.seeds] += 1
982
        if drop_last:
983
984
            assert i.seeds.size(0) == batch_size
        num_items += i.seeds.size(0)
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
    num_batches = len(list(item_sampler))

    if drop_uneven_inputs:
        num_batches_tensor = torch.tensor(num_batches)
        dist.broadcast(num_batches_tensor, 0)
        # Test if the number of batches are the same for all processes.
        assert num_batches_tensor == num_batches

    # Add up results from all processes.
    dist.reduce(sampled_count, 0)

    try:
        # Make sure no item is sampled more than once.
        assert sampled_count.max() <= 1
    finally:
        dist.destroy_process_group()


1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
@pytest.mark.parametrize(
    "params",
    [
        ((24, 4, 0, 4, False, False), [(8, 8), (8, 8), (4, 4), (4, 4)]),
        ((30, 4, 0, 4, False, False), [(8, 8), (8, 8), (8, 8), (6, 6)]),
        ((30, 4, 0, 4, True, False), [(8, 8), (8, 8), (8, 8), (6, 4)]),
        ((30, 4, 0, 4, False, True), [(8, 8), (8, 8), (8, 8), (6, 6)]),
        ((30, 4, 0, 4, True, True), [(8, 4), (8, 4), (8, 4), (6, 4)]),
        (
            (53, 4, 2, 4, False, False),
            [(8, 8), (8, 8), (8, 8), (5, 5), (8, 8), (4, 4), (8, 8), (4, 4)],
        ),
        (
            (53, 4, 2, 4, True, False),
            [(8, 8), (8, 8), (9, 8), (4, 4), (8, 8), (4, 4), (8, 8), (4, 4)],
        ),
        (
            (53, 4, 2, 4, False, True),
            [(10, 8), (6, 4), (9, 8), (4, 4), (8, 8), (4, 4), (8, 8), (4, 4)],
        ),
        (
            (53, 4, 2, 4, True, True),
            [(10, 8), (6, 4), (9, 8), (4, 4), (8, 8), (4, 4), (8, 8), (4, 4)],
        ),
        (
            (63, 4, 2, 4, False, False),
            [(8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (7, 7)],
        ),
        (
            (63, 4, 2, 4, True, False),
            [(8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (10, 8), (5, 4)],
        ),
        (
            (63, 4, 2, 4, False, True),
            [(8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (7, 7)],
        ),
        (
            (63, 4, 2, 4, True, True),
            [
                (10, 8),
                (6, 4),
                (10, 8),
                (6, 4),
                (10, 8),
                (6, 4),
                (10, 8),
                (5, 4),
            ],
        ),
        (
            (65, 4, 2, 4, False, False),
            [(9, 9), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8)],
        ),
        (
            (65, 4, 2, 4, True, True),
            [(9, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8)],
        ),
    ],
)
def test_RangeCalculation(params):
    (
        (
            total,
            num_replicas,
            num_workers,
            batch_size,
            drop_last,
            drop_uneven_inputs,
        ),
        key,
    ) = params
    answer = []
    sum = 0
    for rank in range(num_replicas):
        for worker_id in range(max(num_workers, 1)):
1078
            result = gb.internal.calculate_range(
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
                True,
                total,
                num_replicas,
                rank,
                num_workers,
                worker_id,
                batch_size,
                drop_last,
                drop_uneven_inputs,
            )
            assert sum == result[0]
            sum += result[1]
            answer.append((result[1], result[2]))
    assert key == answer


1095
@unittest.skipIf(F._default_context_str != "cpu", reason="GPU not required.")
1096
@pytest.mark.parametrize("num_ids", [24, 30, 32, 34, 36])
1097
@pytest.mark.parametrize("num_workers", [0, 2])
1098
1099
1100
@pytest.mark.parametrize("drop_last", [False, True])
@pytest.mark.parametrize("drop_uneven_inputs", [False, True])
def test_DistributedItemSampler(
1101
    num_ids, num_workers, drop_last, drop_uneven_inputs
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
):
    nprocs = 4
    batch_size = 4
    item_set = gb.ItemSet(torch.arange(0, num_ids), names="seed_nodes")

    # On Windows, if the process group initialization file already exists,
    # the program may hang. So we need to delete it if it exists.
    if platform == "win32":
        try:
            os.remove(os.path.join(os.getcwd(), "dis_tempfile"))
        except FileNotFoundError:
            pass

    mp.spawn(
        distributed_item_sampler_subprocess,
        args=(
            nprocs,
            item_set,
            num_ids,
1121
            num_workers,
1122
1123
1124
1125
1126
1127
1128
            batch_size,
            drop_last,
            drop_uneven_inputs,
        ),
        nprocs=nprocs,
        join=True,
    )