"vscode:/vscode.git/clone" did not exist on "220ee323602be04708c4fe02311be0a72f03e95b"
test_item_sampler.py 22.8 KB
Newer Older
1
2
import re

3
4
5
6
7
8
9
import dgl
import pytest
import torch
from dgl import graphbolt as gb
from torch.testing import assert_close


10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
def test_ItemSampler_minibatcher():
    # Default minibatcher is used if not specified.
    # Warning message is raised if names are not specified.
    item_set = gb.ItemSet(torch.arange(0, 10))
    item_sampler = gb.ItemSampler(item_set, batch_size=4)
    with pytest.warns(
        UserWarning,
        match=re.escape(
            "Failed to map item list to `MiniBatch` as the names of items are "
            "not provided. Please provide a customized `MiniBatcher`. The "
            "item list is returned as is."
        ),
    ):
        minibatch = next(iter(item_sampler))
        assert not isinstance(minibatch, gb.MiniBatch)

    # Default minibatcher is used if not specified.
    # Warning message is raised if unrecognized names are specified.
    item_set = gb.ItemSet(torch.arange(0, 10), names="unknown_name")
    item_sampler = gb.ItemSampler(item_set, batch_size=4)
    with pytest.warns(
        UserWarning,
        match=re.escape(
            "Unknown item name 'unknown_name' is detected and added into "
            "`MiniBatch`. You probably need to provide a customized "
            "`MiniBatcher`."
        ),
    ):
        minibatch = next(iter(item_sampler))
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.unknown_name is not None

    # Default minibatcher is used if not specified.
    # `MiniBatch` is returned if expected names are specified.
    item_set = gb.ItemSet(torch.arange(0, 10), names="seed_nodes")
    item_sampler = gb.ItemSampler(item_set, batch_size=4)
    minibatch = next(iter(item_sampler))
    assert isinstance(minibatch, gb.MiniBatch)
    assert minibatch.seed_nodes is not None
    assert len(minibatch.seed_nodes) == 4

    # Customized minibatcher is used if specified.
    def minibatcher(batch, names):
        return gb.MiniBatch(seed_nodes=batch)

    item_sampler = gb.ItemSampler(
        item_set, batch_size=4, minibatcher=minibatcher
    )
    minibatch = next(iter(item_sampler))
    assert isinstance(minibatch, gb.MiniBatch)
    assert minibatch.seed_nodes is not None
    assert len(minibatch.seed_nodes) == 4


64
65
66
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
67
def test_ItemSet_seed_nodes(batch_size, shuffle, drop_last):
68
    # Node IDs.
69
    num_ids = 103
70
71
    seed_nodes = torch.arange(0, num_ids)
    item_set = gb.ItemSet(seed_nodes, names="seed_nodes")
72
    item_sampler = gb.ItemSampler(
73
74
75
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
76
    for i, minibatch in enumerate(item_sampler):
77
78
79
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seed_nodes is not None
        assert minibatch.labels is None
80
81
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
82
            assert len(minibatch.seed_nodes) == batch_size
83
84
        else:
            if not drop_last:
85
                assert len(minibatch.seed_nodes) == num_ids % batch_size
86
87
            else:
                assert False
88
        minibatch_ids.append(minibatch.seed_nodes)
89
90
91
92
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_seed_nodes_labels(batch_size, shuffle, drop_last):
    # Node IDs.
    num_ids = 103
    seed_nodes = torch.arange(0, num_ids)
    labels = torch.arange(0, num_ids)
    item_set = gb.ItemSet((seed_nodes, labels), names=("seed_nodes", "labels"))
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    minibatch_labels = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seed_nodes is not None
        assert minibatch.labels is not None
        assert len(minibatch.seed_nodes) == len(minibatch.labels)
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            assert len(minibatch.seed_nodes) == batch_size
        else:
            if not drop_last:
                assert len(minibatch.seed_nodes) == num_ids % batch_size
            else:
                assert False
        minibatch_ids.append(minibatch.seed_nodes)
        minibatch_labels.append(minibatch.labels)
    minibatch_ids = torch.cat(minibatch_ids)
    minibatch_labels = torch.cat(minibatch_labels)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle
    assert (
        torch.all(minibatch_labels[:-1] <= minibatch_labels[1:]) is not shuffle
    )


130
131
132
133
134
135
136
137
138
139
140
141
142
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_graphs(batch_size, shuffle, drop_last):
    # Graphs.
    num_graphs = 103
    num_nodes = 10
    num_edges = 20
    graphs = [
        dgl.rand_graph(num_nodes * (i + 1), num_edges * (i + 1))
        for i in range(num_graphs)
    ]
    item_set = gb.ItemSet(graphs)
143
    item_sampler = gb.ItemSampler(
144
145
146
147
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_num_nodes = []
    minibatch_num_edges = []
148
    for i, minibatch in enumerate(item_sampler):
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        is_last = (i + 1) * batch_size >= num_graphs
        if not is_last or num_graphs % batch_size == 0:
            assert minibatch.batch_size == batch_size
        else:
            if not drop_last:
                assert minibatch.batch_size == num_graphs % batch_size
            else:
                assert False
        minibatch_num_nodes.append(minibatch.batch_num_nodes())
        minibatch_num_edges.append(minibatch.batch_num_edges())
    minibatch_num_nodes = torch.cat(minibatch_num_nodes)
    minibatch_num_edges = torch.cat(minibatch_num_edges)
    assert (
        torch.all(minibatch_num_nodes[:-1] <= minibatch_num_nodes[1:])
        is not shuffle
    )
    assert (
        torch.all(minibatch_num_edges[:-1] <= minibatch_num_edges[1:])
        is not shuffle
    )


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_node_pairs(batch_size, shuffle, drop_last):
    # Node pairs.
    num_ids = 103
177
178
    node_pairs = torch.arange(0, 2 * num_ids).reshape(-1, 2)
    item_set = gb.ItemSet(node_pairs, names="node_pairs")
179
    item_sampler = gb.ItemSampler(
180
181
182
183
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
184
185
    for i, minibatch in enumerate(item_sampler):
        assert minibatch.node_pairs is not None
186
        assert isinstance(minibatch.node_pairs, tuple)
187
        assert minibatch.labels is None
188
        src, dst = minibatch.node_pairs
189
190
191
192
193
194
195
196
197
198
199
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        # Verify src and dst IDs match.
200
        assert torch.equal(src + 1, dst)
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
        # Archive batch.
        src_ids.append(src)
        dst_ids.append(dst)
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_node_pairs_labels(batch_size, shuffle, drop_last):
    # Node pairs and labels
    num_ids = 103
216
217
218
    node_pairs = torch.arange(0, 2 * num_ids).reshape(-1, 2)
    labels = node_pairs[:, 0]
    item_set = gb.ItemSet((node_pairs, labels), names=("node_pairs", "labels"))
219
    item_sampler = gb.ItemSampler(
220
221
222
223
224
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
    labels = []
225
226
    for i, minibatch in enumerate(item_sampler):
        assert minibatch.node_pairs is not None
227
        assert isinstance(minibatch.node_pairs, tuple)
228
        assert minibatch.labels is not None
229
        src, dst = minibatch.node_pairs
230
        label = minibatch.labels
231
232
        assert len(src) == len(dst)
        assert len(src) == len(label)
233
234
235
236
237
238
239
240
241
242
243
244
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        assert len(label) == expected_batch_size
        # Verify src/dst IDs and labels match.
245
        assert torch.equal(src + 1, dst)
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
        assert torch.equal(src, label)
        # Archive batch.
        src_ids.append(src)
        dst_ids.append(dst)
        labels.append(label)
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    labels = torch.cat(labels)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
    assert torch.all(labels[:-1] <= labels[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
262
263
def test_ItemSet_node_pairs_negative_dsts(batch_size, shuffle, drop_last):
    # Node pairs and negative destinations.
264
265
    num_ids = 103
    num_negs = 2
266
267
268
269
270
271
272
    node_pairs = torch.arange(0, 2 * num_ids).reshape(-1, 2)
    neg_dsts = torch.arange(
        2 * num_ids, 2 * num_ids + num_ids * num_negs
    ).reshape(-1, num_negs)
    item_set = gb.ItemSet(
        (node_pairs, neg_dsts), names=("node_pairs", "negative_dsts")
    )
273
    item_sampler = gb.ItemSampler(
274
275
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
276
277
    src_ids = []
    dst_ids = []
278
    negs_ids = []
279
280
    for i, minibatch in enumerate(item_sampler):
        assert minibatch.node_pairs is not None
281
        assert isinstance(minibatch.node_pairs, tuple)
282
        assert minibatch.negative_dsts is not None
283
        src, dst = minibatch.node_pairs
284
        negs = minibatch.negative_dsts
285
286
287
288
289
290
291
292
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
293
294
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
295
296
297
        assert negs.dim() == 2
        assert negs.shape[0] == expected_batch_size
        assert negs.shape[1] == num_negs
298
299
300
        # Verify node pairs and negative destinations.
        assert torch.equal(src + 1, dst)
        assert torch.equal(negs[:, 0] + 1, negs[:, 1])
301
        # Archive batch.
302
303
        src_ids.append(src)
        dst_ids.append(dst)
304
        negs_ids.append(negs)
305
306
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
307
    negs_ids = torch.cat(negs_ids)
308
309
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
310
311
312
313
314
315
316
317
    assert torch.all(negs_ids[:-1, 0] <= negs_ids[1:, 0]) is not shuffle
    assert torch.all(negs_ids[:-1, 1] <= negs_ids[1:, 1]) is not shuffle


def test_append_with_other_datapipes():
    num_ids = 100
    batch_size = 4
    item_set = gb.ItemSet(torch.arange(0, num_ids))
318
    data_pipe = gb.ItemSampler(item_set, batch_size)
319
320
321
322
323
    # torchdata.datapipes.iter.Enumerator
    data_pipe = data_pipe.enumerate()
    for i, (idx, data) in enumerate(data_pipe):
        assert i == idx
        assert len(data) == batch_size
324
325
326
327
328


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
def test_ItemSetDict_seed_nodes(batch_size, shuffle, drop_last):
    # Node IDs.
    num_ids = 205
    ids = {
        "user": gb.ItemSet(torch.arange(0, 99), names="seed_nodes"),
        "item": gb.ItemSet(torch.arange(99, num_ids), names="seed_nodes"),
    }
    chained_ids = []
    for key, value in ids.items():
        chained_ids += [(key, v) for v in value]
    item_set = gb.ItemSetDict(ids)
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    for i, minibatch in enumerate(item_sampler):
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seed_nodes is not None
        ids = []
        for _, v in minibatch.seed_nodes.items():
            ids.append(v)
        ids = torch.cat(ids)
        assert len(ids) == expected_batch_size
        minibatch_ids.append(ids)
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSetDict_seed_nodes_labels(batch_size, shuffle, drop_last):
369
370
371
    # Node IDs.
    num_ids = 205
    ids = {
372
373
374
375
376
377
378
379
        "user": gb.ItemSet(
            (torch.arange(0, 99), torch.arange(0, 99)),
            names=("seed_nodes", "labels"),
        ),
        "item": gb.ItemSet(
            (torch.arange(99, num_ids), torch.arange(99, num_ids)),
            names=("seed_nodes", "labels"),
        ),
380
381
382
383
    }
    chained_ids = []
    for key, value in ids.items():
        chained_ids += [(key, v) for v in value]
384
    item_set = gb.ItemSetDict(ids)
385
    item_sampler = gb.ItemSampler(
386
387
388
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
389
390
391
392
393
    minibatch_labels = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seed_nodes is not None
        assert minibatch.labels is not None
394
395
396
397
398
399
400
401
402
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        ids = []
403
        for _, v in minibatch.seed_nodes.items():
404
405
406
407
            ids.append(v)
        ids = torch.cat(ids)
        assert len(ids) == expected_batch_size
        minibatch_ids.append(ids)
408
409
410
411
412
413
        labels = []
        for _, v in minibatch.labels.items():
            labels.append(v)
        labels = torch.cat(labels)
        assert len(labels) == expected_batch_size
        minibatch_labels.append(labels)
414
    minibatch_ids = torch.cat(minibatch_ids)
415
    minibatch_labels = torch.cat(minibatch_labels)
416
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle
417
418
419
    assert (
        torch.all(minibatch_labels[:-1] <= minibatch_labels[1:]) is not shuffle
    )
420
421
422
423
424


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
425
def test_ItemSetDict_node_pairs(batch_size, shuffle, drop_last):
426
427
    # Node pairs.
    num_ids = 103
428
429
430
    total_pairs = 2 * num_ids
    node_pairs_like = torch.arange(0, num_ids * 2).reshape(-1, 2)
    node_pairs_follow = torch.arange(num_ids * 2, num_ids * 4).reshape(-1, 2)
431
    node_pairs_dict = {
432
433
        "user:like:item": gb.ItemSet(node_pairs_like, names="node_pairs"),
        "user:follow:user": gb.ItemSet(node_pairs_follow, names="node_pairs"),
434
    }
435
    item_set = gb.ItemSetDict(node_pairs_dict)
436
    item_sampler = gb.ItemSampler(
437
438
439
440
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
441
442
443
444
445
446
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.node_pairs is not None
        assert minibatch.labels is None
        is_last = (i + 1) * batch_size >= total_pairs
        if not is_last or total_pairs % batch_size == 0:
447
448
449
            expected_batch_size = batch_size
        else:
            if not drop_last:
450
                expected_batch_size = total_pairs % batch_size
451
452
453
454
            else:
                assert False
        src = []
        dst = []
455
456
457
458
        for _, (node_pairs) in minibatch.node_pairs.items():
            assert isinstance(node_pairs, tuple)
            src.append(node_pairs[0])
            dst.append(node_pairs[1])
459
460
461
462
463
464
        src = torch.cat(src)
        dst = torch.cat(dst)
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        src_ids.append(src)
        dst_ids.append(dst)
465
        assert torch.equal(src + 1, dst)
466
467
468
469
470
471
472
473
474
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
475
def test_ItemSetDict_node_pairs_labels(batch_size, shuffle, drop_last):
476
477
478
    # Node pairs and labels
    num_ids = 103
    total_ids = 2 * num_ids
479
480
    node_pairs_like = torch.arange(0, num_ids * 2).reshape(-1, 2)
    node_pairs_follow = torch.arange(num_ids * 2, num_ids * 4).reshape(-1, 2)
481
482
    labels = torch.arange(0, num_ids)
    node_pairs_dict = {
483
        "user:like:item": gb.ItemSet(
484
485
            (node_pairs_like, node_pairs_like[:, 0]),
            names=("node_pairs", "labels"),
486
        ),
487
        "user:follow:user": gb.ItemSet(
488
489
            (node_pairs_follow, node_pairs_follow[:, 0]),
            names=("node_pairs", "labels"),
490
491
        ),
    }
492
    item_set = gb.ItemSetDict(node_pairs_dict)
493
    item_sampler = gb.ItemSampler(
494
495
496
497
498
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
    labels = []
499
500
501
502
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.node_pairs is not None
        assert minibatch.labels is not None
503
504
505
506
507
508
509
510
511
512
513
        is_last = (i + 1) * batch_size >= total_ids
        if not is_last or total_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = total_ids % batch_size
            else:
                assert False
        src = []
        dst = []
        label = []
514
        for _, node_pairs in minibatch.node_pairs.items():
515
516
517
            assert isinstance(node_pairs, tuple)
            src.append(node_pairs[0])
            dst.append(node_pairs[1])
518
        for _, v_label in minibatch.labels.items():
519
520
521
522
523
524
525
526
527
528
            label.append(v_label)
        src = torch.cat(src)
        dst = torch.cat(dst)
        label = torch.cat(label)
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        assert len(label) == expected_batch_size
        src_ids.append(src)
        dst_ids.append(dst)
        labels.append(label)
529
        assert torch.equal(src + 1, dst)
530
531
532
533
534
535
536
537
538
539
540
541
        assert torch.equal(src, label)
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    labels = torch.cat(labels)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
    assert torch.all(labels[:-1] <= labels[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
542
def test_ItemSetDict_node_pairs_negative_dsts(batch_size, shuffle, drop_last):
543
544
545
546
    # Head, tail and negative tails.
    num_ids = 103
    total_ids = 2 * num_ids
    num_negs = 2
547
548
549
550
551
552
553
554
    node_paris_like = torch.arange(0, num_ids * 2).reshape(-1, 2)
    node_pairs_follow = torch.arange(num_ids * 2, num_ids * 4).reshape(-1, 2)
    neg_dsts_like = torch.arange(
        num_ids * 4, num_ids * 4 + num_ids * num_negs
    ).reshape(-1, num_negs)
    neg_dsts_follow = torch.arange(
        num_ids * 4 + num_ids * num_negs, num_ids * 4 + num_ids * num_negs * 2
    ).reshape(-1, num_negs)
555
    data_dict = {
556
557
558
559
560
561
562
563
        "user:like:item": gb.ItemSet(
            (node_paris_like, neg_dsts_like),
            names=("node_pairs", "negative_dsts"),
        ),
        "user:follow:user": gb.ItemSet(
            (node_pairs_follow, neg_dsts_follow),
            names=("node_pairs", "negative_dsts"),
        ),
564
    }
565
    item_set = gb.ItemSetDict(data_dict)
566
    item_sampler = gb.ItemSampler(
567
568
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
569
570
    src_ids = []
    dst_ids = []
571
    negs_ids = []
572
573
574
575
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.node_pairs is not None
        assert minibatch.negative_dsts is not None
576
577
578
579
580
581
582
583
        is_last = (i + 1) * batch_size >= total_ids
        if not is_last or total_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = total_ids % batch_size
            else:
                assert False
584
585
        src = []
        dst = []
586
        negs = []
587
        for _, node_pairs in minibatch.node_pairs.items():
588
589
590
            assert isinstance(node_pairs, tuple)
            src.append(node_pairs[0])
            dst.append(node_pairs[1])
591
        for _, v_negs in minibatch.negative_dsts.items():
592
            negs.append(v_negs)
593
594
        src = torch.cat(src)
        dst = torch.cat(dst)
595
        negs = torch.cat(negs)
596
597
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
598
        assert len(negs) == expected_batch_size
599
600
        src_ids.append(src)
        dst_ids.append(dst)
601
602
603
604
        negs_ids.append(negs)
        assert negs.dim() == 2
        assert negs.shape[0] == expected_batch_size
        assert negs.shape[1] == num_negs
605
606
607
608
        assert torch.equal(src + 1, dst)
        assert torch.equal(negs[:, 0] + 1, negs[:, 1])
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
609
    negs_ids = torch.cat(negs_ids)
610
611
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
612
    assert torch.all(negs_ids[:-1] <= negs_ids[1:]) is not shuffle