test_item_sampler.py 40.1 KB
Newer Older
1
import os
2
import re
3
from sys import platform
4

5
6
7
import dgl
import pytest
import torch
8
9
import torch.distributed as dist
import torch.multiprocessing as mp
10
11
12
13
from dgl import graphbolt as gb
from torch.testing import assert_close


14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
def test_ItemSampler_minibatcher():
    # Default minibatcher is used if not specified.
    # Warning message is raised if names are not specified.
    item_set = gb.ItemSet(torch.arange(0, 10))
    item_sampler = gb.ItemSampler(item_set, batch_size=4)
    with pytest.warns(
        UserWarning,
        match=re.escape(
            "Failed to map item list to `MiniBatch` as the names of items are "
            "not provided. Please provide a customized `MiniBatcher`. The "
            "item list is returned as is."
        ),
    ):
        minibatch = next(iter(item_sampler))
        assert not isinstance(minibatch, gb.MiniBatch)

    # Default minibatcher is used if not specified.
    # Warning message is raised if unrecognized names are specified.
    item_set = gb.ItemSet(torch.arange(0, 10), names="unknown_name")
    item_sampler = gb.ItemSampler(item_set, batch_size=4)
    with pytest.warns(
        UserWarning,
        match=re.escape(
            "Unknown item name 'unknown_name' is detected and added into "
            "`MiniBatch`. You probably need to provide a customized "
            "`MiniBatcher`."
        ),
    ):
        minibatch = next(iter(item_sampler))
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.unknown_name is not None

    # Default minibatcher is used if not specified.
    # `MiniBatch` is returned if expected names are specified.
    item_set = gb.ItemSet(torch.arange(0, 10), names="seed_nodes")
    item_sampler = gb.ItemSampler(item_set, batch_size=4)
    minibatch = next(iter(item_sampler))
    assert isinstance(minibatch, gb.MiniBatch)
    assert minibatch.seed_nodes is not None
    assert len(minibatch.seed_nodes) == 4

    # Customized minibatcher is used if specified.
    def minibatcher(batch, names):
        return gb.MiniBatch(seed_nodes=batch)

    item_sampler = gb.ItemSampler(
        item_set, batch_size=4, minibatcher=minibatcher
    )
    minibatch = next(iter(item_sampler))
    assert isinstance(minibatch, gb.MiniBatch)
    assert minibatch.seed_nodes is not None
    assert len(minibatch.seed_nodes) == 4


68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_Iterable_Only(batch_size, shuffle, drop_last):
    num_ids = 103

    class InvalidLength:
        def __iter__(self):
            return iter(torch.arange(0, num_ids))

    seed_nodes = gb.ItemSet(InvalidLength())
    item_set = gb.ItemSet(seed_nodes, names="seed_nodes")
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        assert minibatch.seed_nodes is not None
        assert minibatch.labels is None
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            assert len(minibatch.seed_nodes) == batch_size
        else:
            if not drop_last:
                assert len(minibatch.seed_nodes) == num_ids % batch_size
            else:
                assert False
        minibatch_ids.append(minibatch.seed_nodes)
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_integer(batch_size, shuffle, drop_last):
    # Node IDs.
    num_ids = 103
    item_set = gb.ItemSet(num_ids, names="seed_nodes")
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        assert minibatch.seed_nodes is not None
        assert minibatch.labels is None
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            assert len(minibatch.seed_nodes) == batch_size
        else:
            if not drop_last:
                assert len(minibatch.seed_nodes) == num_ids % batch_size
            else:
                assert False
        minibatch_ids.append(minibatch.seed_nodes)
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


129
130
131
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
132
def test_ItemSet_seed_nodes(batch_size, shuffle, drop_last):
133
    # Node IDs.
134
    num_ids = 103
135
136
    seed_nodes = torch.arange(0, num_ids)
    item_set = gb.ItemSet(seed_nodes, names="seed_nodes")
137
    item_sampler = gb.ItemSampler(
138
139
140
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
141
    for i, minibatch in enumerate(item_sampler):
142
143
144
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seed_nodes is not None
        assert minibatch.labels is None
145
146
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
147
            assert len(minibatch.seed_nodes) == batch_size
148
149
        else:
            if not drop_last:
150
                assert len(minibatch.seed_nodes) == num_ids % batch_size
151
152
            else:
                assert False
153
        minibatch_ids.append(minibatch.seed_nodes)
154
155
156
157
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_seed_nodes_labels(batch_size, shuffle, drop_last):
    # Node IDs.
    num_ids = 103
    seed_nodes = torch.arange(0, num_ids)
    labels = torch.arange(0, num_ids)
    item_set = gb.ItemSet((seed_nodes, labels), names=("seed_nodes", "labels"))
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    minibatch_labels = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seed_nodes is not None
        assert minibatch.labels is not None
        assert len(minibatch.seed_nodes) == len(minibatch.labels)
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            assert len(minibatch.seed_nodes) == batch_size
        else:
            if not drop_last:
                assert len(minibatch.seed_nodes) == num_ids % batch_size
            else:
                assert False
        minibatch_ids.append(minibatch.seed_nodes)
        minibatch_labels.append(minibatch.labels)
    minibatch_ids = torch.cat(minibatch_ids)
    minibatch_labels = torch.cat(minibatch_labels)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle
    assert (
        torch.all(minibatch_labels[:-1] <= minibatch_labels[1:]) is not shuffle
    )


195
196
197
198
199
200
201
202
203
204
205
206
207
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_graphs(batch_size, shuffle, drop_last):
    # Graphs.
    num_graphs = 103
    num_nodes = 10
    num_edges = 20
    graphs = [
        dgl.rand_graph(num_nodes * (i + 1), num_edges * (i + 1))
        for i in range(num_graphs)
    ]
    item_set = gb.ItemSet(graphs)
208
    item_sampler = gb.ItemSampler(
209
210
211
212
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_num_nodes = []
    minibatch_num_edges = []
213
    for i, minibatch in enumerate(item_sampler):
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        is_last = (i + 1) * batch_size >= num_graphs
        if not is_last or num_graphs % batch_size == 0:
            assert minibatch.batch_size == batch_size
        else:
            if not drop_last:
                assert minibatch.batch_size == num_graphs % batch_size
            else:
                assert False
        minibatch_num_nodes.append(minibatch.batch_num_nodes())
        minibatch_num_edges.append(minibatch.batch_num_edges())
    minibatch_num_nodes = torch.cat(minibatch_num_nodes)
    minibatch_num_edges = torch.cat(minibatch_num_edges)
    assert (
        torch.all(minibatch_num_nodes[:-1] <= minibatch_num_nodes[1:])
        is not shuffle
    )
    assert (
        torch.all(minibatch_num_edges[:-1] <= minibatch_num_edges[1:])
        is not shuffle
    )


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_node_pairs(batch_size, shuffle, drop_last):
    # Node pairs.
    num_ids = 103
242
243
    node_pairs = torch.arange(0, 2 * num_ids).reshape(-1, 2)
    item_set = gb.ItemSet(node_pairs, names="node_pairs")
244
    item_sampler = gb.ItemSampler(
245
246
247
248
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
249
250
    for i, minibatch in enumerate(item_sampler):
        assert minibatch.node_pairs is not None
251
        assert isinstance(minibatch.node_pairs, tuple)
252
        assert minibatch.labels is None
253
        src, dst = minibatch.node_pairs
254
255
256
257
258
259
260
261
262
263
264
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        # Verify src and dst IDs match.
265
        assert torch.equal(src + 1, dst)
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
        # Archive batch.
        src_ids.append(src)
        dst_ids.append(dst)
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_node_pairs_labels(batch_size, shuffle, drop_last):
    # Node pairs and labels
    num_ids = 103
281
282
283
    node_pairs = torch.arange(0, 2 * num_ids).reshape(-1, 2)
    labels = node_pairs[:, 0]
    item_set = gb.ItemSet((node_pairs, labels), names=("node_pairs", "labels"))
284
    item_sampler = gb.ItemSampler(
285
286
287
288
289
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
    labels = []
290
291
    for i, minibatch in enumerate(item_sampler):
        assert minibatch.node_pairs is not None
292
        assert isinstance(minibatch.node_pairs, tuple)
293
        assert minibatch.labels is not None
294
        src, dst = minibatch.node_pairs
295
        label = minibatch.labels
296
297
        assert len(src) == len(dst)
        assert len(src) == len(label)
298
299
300
301
302
303
304
305
306
307
308
309
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        assert len(label) == expected_batch_size
        # Verify src/dst IDs and labels match.
310
        assert torch.equal(src + 1, dst)
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
        assert torch.equal(src, label)
        # Archive batch.
        src_ids.append(src)
        dst_ids.append(dst)
        labels.append(label)
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    labels = torch.cat(labels)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
    assert torch.all(labels[:-1] <= labels[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
327
328
def test_ItemSet_node_pairs_negative_dsts(batch_size, shuffle, drop_last):
    # Node pairs and negative destinations.
329
330
    num_ids = 103
    num_negs = 2
331
332
333
334
335
336
337
    node_pairs = torch.arange(0, 2 * num_ids).reshape(-1, 2)
    neg_dsts = torch.arange(
        2 * num_ids, 2 * num_ids + num_ids * num_negs
    ).reshape(-1, num_negs)
    item_set = gb.ItemSet(
        (node_pairs, neg_dsts), names=("node_pairs", "negative_dsts")
    )
338
    item_sampler = gb.ItemSampler(
339
340
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
341
342
    src_ids = []
    dst_ids = []
343
    negs_ids = []
344
345
    for i, minibatch in enumerate(item_sampler):
        assert minibatch.node_pairs is not None
346
        assert isinstance(minibatch.node_pairs, tuple)
347
        assert minibatch.negative_dsts is not None
348
        src, dst = minibatch.node_pairs
349
        negs = minibatch.negative_dsts
350
351
352
353
354
355
356
357
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
358
359
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
360
361
362
        assert negs.dim() == 2
        assert negs.shape[0] == expected_batch_size
        assert negs.shape[1] == num_negs
363
364
365
        # Verify node pairs and negative destinations.
        assert torch.equal(src + 1, dst)
        assert torch.equal(negs[:, 0] + 1, negs[:, 1])
366
        # Archive batch.
367
368
        src_ids.append(src)
        dst_ids.append(dst)
369
        negs_ids.append(negs)
370
371
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
372
    negs_ids = torch.cat(negs_ids)
373
374
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
375
376
377
378
    assert torch.all(negs_ids[:-1, 0] <= negs_ids[1:, 0]) is not shuffle
    assert torch.all(negs_ids[:-1, 1] <= negs_ids[1:, 1]) is not shuffle


379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_seeds(batch_size, shuffle, drop_last):
    # Node pairs.
    num_ids = 103
    seeds = torch.arange(0, 3 * num_ids).reshape(-1, 3)
    item_set = gb.ItemSet(seeds, names="seeds")
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    seeds_ids = []
    for i, minibatch in enumerate(item_sampler):
        assert minibatch.seeds is not None
        assert isinstance(minibatch.seeds, torch.Tensor)
        assert minibatch.labels is None
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert minibatch.seeds.shape == (expected_batch_size, 3)
        # Verify seeds match.
        assert torch.equal(minibatch.seeds[:, 0] + 1, minibatch.seeds[:, 1])
        assert torch.equal(minibatch.seeds[:, 1] + 1, minibatch.seeds[:, 2])
        # Archive batch.
        seeds_ids.append(minibatch.seeds)
    seeds_ids = torch.cat(seeds_ids)
    assert torch.all(seeds_ids[:-1, 0] <= seeds_ids[1:, 0]) is not shuffle
    assert torch.all(seeds_ids[:-1, 1] <= seeds_ids[1:, 1]) is not shuffle
    assert torch.all(seeds_ids[:-1, 2] <= seeds_ids[1:, 2]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_seeds_labels(batch_size, shuffle, drop_last):
    # Node pairs and labels
    num_ids = 103
    seeds = torch.arange(0, 3 * num_ids).reshape(-1, 3)
    labels = seeds[:, 0]
    item_set = gb.ItemSet((seeds, labels), names=("seeds", "labels"))
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    seeds_ids = []
    labels = []
    for i, minibatch in enumerate(item_sampler):
        assert minibatch.seeds is not None
        assert isinstance(minibatch.seeds, torch.Tensor)
        assert minibatch.labels is not None
        label = minibatch.labels
        assert len(minibatch.seeds) == len(label)
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert minibatch.seeds.shape == (expected_batch_size, 3)
        assert len(label) == expected_batch_size
        # Verify seeds and labels match.
        assert torch.equal(minibatch.seeds[:, 0] + 1, minibatch.seeds[:, 1])
        assert torch.equal(minibatch.seeds[:, 1] + 1, minibatch.seeds[:, 2])
        # Archive batch.
        seeds_ids.append(minibatch.seeds)
        labels.append(label)
    seeds_ids = torch.cat(seeds_ids)
    labels = torch.cat(labels)
    assert torch.all(seeds_ids[:-1, 0] <= seeds_ids[1:, 0]) is not shuffle
    assert torch.all(seeds_ids[:-1, 1] <= seeds_ids[1:, 1]) is not shuffle
    assert torch.all(seeds_ids[:-1, 2] <= seeds_ids[1:, 2]) is not shuffle
    assert torch.all(labels[:-1] <= labels[1:]) is not shuffle


459
460
461
462
def test_append_with_other_datapipes():
    num_ids = 100
    batch_size = 4
    item_set = gb.ItemSet(torch.arange(0, num_ids))
463
    data_pipe = gb.ItemSampler(item_set, batch_size)
464
465
466
467
468
    # torchdata.datapipes.iter.Enumerator
    data_pipe = data_pipe.enumerate()
    for i, (idx, data) in enumerate(data_pipe):
        assert i == idx
        assert len(data) == batch_size
469
470


471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSetDict_iterable_only(batch_size, shuffle, drop_last):
    class IterableOnly:
        def __init__(self, start, stop):
            self._start = start
            self._stop = stop

        def __iter__(self):
            return iter(torch.arange(self._start, self._stop))

    num_ids = 205
    ids = {
        "user": gb.ItemSet(IterableOnly(0, 99), names="seed_nodes"),
        "item": gb.ItemSet(IterableOnly(99, num_ids), names="seed_nodes"),
    }
    chained_ids = []
    for key, value in ids.items():
        chained_ids += [(key, v) for v in value]
    item_set = gb.ItemSetDict(ids)
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    for i, minibatch in enumerate(item_sampler):
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seed_nodes is not None
        ids = []
        for _, v in minibatch.seed_nodes.items():
            ids.append(v)
        ids = torch.cat(ids)
        assert len(ids) == expected_batch_size
        minibatch_ids.append(ids)
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


517
518
519
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
def test_ItemSetDict_seed_nodes(batch_size, shuffle, drop_last):
    # Node IDs.
    num_ids = 205
    ids = {
        "user": gb.ItemSet(torch.arange(0, 99), names="seed_nodes"),
        "item": gb.ItemSet(torch.arange(99, num_ids), names="seed_nodes"),
    }
    chained_ids = []
    for key, value in ids.items():
        chained_ids += [(key, v) for v in value]
    item_set = gb.ItemSetDict(ids)
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    for i, minibatch in enumerate(item_sampler):
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seed_nodes is not None
        ids = []
        for _, v in minibatch.seed_nodes.items():
            ids.append(v)
        ids = torch.cat(ids)
        assert len(ids) == expected_batch_size
        minibatch_ids.append(ids)
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSetDict_seed_nodes_labels(batch_size, shuffle, drop_last):
560
561
562
    # Node IDs.
    num_ids = 205
    ids = {
563
564
565
566
567
568
569
570
        "user": gb.ItemSet(
            (torch.arange(0, 99), torch.arange(0, 99)),
            names=("seed_nodes", "labels"),
        ),
        "item": gb.ItemSet(
            (torch.arange(99, num_ids), torch.arange(99, num_ids)),
            names=("seed_nodes", "labels"),
        ),
571
572
573
574
    }
    chained_ids = []
    for key, value in ids.items():
        chained_ids += [(key, v) for v in value]
575
    item_set = gb.ItemSetDict(ids)
576
    item_sampler = gb.ItemSampler(
577
578
579
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
580
581
582
583
584
    minibatch_labels = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seed_nodes is not None
        assert minibatch.labels is not None
585
586
587
588
589
590
591
592
593
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        ids = []
594
        for _, v in minibatch.seed_nodes.items():
595
596
597
598
            ids.append(v)
        ids = torch.cat(ids)
        assert len(ids) == expected_batch_size
        minibatch_ids.append(ids)
599
600
601
602
603
604
        labels = []
        for _, v in minibatch.labels.items():
            labels.append(v)
        labels = torch.cat(labels)
        assert len(labels) == expected_batch_size
        minibatch_labels.append(labels)
605
    minibatch_ids = torch.cat(minibatch_ids)
606
    minibatch_labels = torch.cat(minibatch_labels)
607
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle
608
609
610
    assert (
        torch.all(minibatch_labels[:-1] <= minibatch_labels[1:]) is not shuffle
    )
611
612
613
614
615


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
616
def test_ItemSetDict_node_pairs(batch_size, shuffle, drop_last):
617
618
    # Node pairs.
    num_ids = 103
619
620
621
    total_pairs = 2 * num_ids
    node_pairs_like = torch.arange(0, num_ids * 2).reshape(-1, 2)
    node_pairs_follow = torch.arange(num_ids * 2, num_ids * 4).reshape(-1, 2)
622
    node_pairs_dict = {
623
624
        "user:like:item": gb.ItemSet(node_pairs_like, names="node_pairs"),
        "user:follow:user": gb.ItemSet(node_pairs_follow, names="node_pairs"),
625
    }
626
    item_set = gb.ItemSetDict(node_pairs_dict)
627
    item_sampler = gb.ItemSampler(
628
629
630
631
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
632
633
634
635
636
637
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.node_pairs is not None
        assert minibatch.labels is None
        is_last = (i + 1) * batch_size >= total_pairs
        if not is_last or total_pairs % batch_size == 0:
638
639
640
            expected_batch_size = batch_size
        else:
            if not drop_last:
641
                expected_batch_size = total_pairs % batch_size
642
643
644
645
            else:
                assert False
        src = []
        dst = []
646
647
648
649
        for _, (node_pairs) in minibatch.node_pairs.items():
            assert isinstance(node_pairs, tuple)
            src.append(node_pairs[0])
            dst.append(node_pairs[1])
650
651
652
653
654
655
        src = torch.cat(src)
        dst = torch.cat(dst)
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        src_ids.append(src)
        dst_ids.append(dst)
656
        assert torch.equal(src + 1, dst)
657
658
659
660
661
662
663
664
665
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
666
def test_ItemSetDict_node_pairs_labels(batch_size, shuffle, drop_last):
667
668
669
    # Node pairs and labels
    num_ids = 103
    total_ids = 2 * num_ids
670
671
    node_pairs_like = torch.arange(0, num_ids * 2).reshape(-1, 2)
    node_pairs_follow = torch.arange(num_ids * 2, num_ids * 4).reshape(-1, 2)
672
673
    labels = torch.arange(0, num_ids)
    node_pairs_dict = {
674
        "user:like:item": gb.ItemSet(
675
676
            (node_pairs_like, node_pairs_like[:, 0]),
            names=("node_pairs", "labels"),
677
        ),
678
        "user:follow:user": gb.ItemSet(
679
680
            (node_pairs_follow, node_pairs_follow[:, 0]),
            names=("node_pairs", "labels"),
681
682
        ),
    }
683
    item_set = gb.ItemSetDict(node_pairs_dict)
684
    item_sampler = gb.ItemSampler(
685
686
687
688
689
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
    labels = []
690
691
692
693
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.node_pairs is not None
        assert minibatch.labels is not None
694
695
696
697
698
699
700
701
702
703
704
        is_last = (i + 1) * batch_size >= total_ids
        if not is_last or total_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = total_ids % batch_size
            else:
                assert False
        src = []
        dst = []
        label = []
705
        for _, node_pairs in minibatch.node_pairs.items():
706
707
708
            assert isinstance(node_pairs, tuple)
            src.append(node_pairs[0])
            dst.append(node_pairs[1])
709
        for _, v_label in minibatch.labels.items():
710
711
712
713
714
715
716
717
718
719
            label.append(v_label)
        src = torch.cat(src)
        dst = torch.cat(dst)
        label = torch.cat(label)
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        assert len(label) == expected_batch_size
        src_ids.append(src)
        dst_ids.append(dst)
        labels.append(label)
720
        assert torch.equal(src + 1, dst)
721
722
723
724
725
726
727
728
729
730
731
732
        assert torch.equal(src, label)
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    labels = torch.cat(labels)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
    assert torch.all(labels[:-1] <= labels[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
733
def test_ItemSetDict_node_pairs_negative_dsts(batch_size, shuffle, drop_last):
734
735
736
737
    # Head, tail and negative tails.
    num_ids = 103
    total_ids = 2 * num_ids
    num_negs = 2
738
739
740
741
742
743
744
745
    node_paris_like = torch.arange(0, num_ids * 2).reshape(-1, 2)
    node_pairs_follow = torch.arange(num_ids * 2, num_ids * 4).reshape(-1, 2)
    neg_dsts_like = torch.arange(
        num_ids * 4, num_ids * 4 + num_ids * num_negs
    ).reshape(-1, num_negs)
    neg_dsts_follow = torch.arange(
        num_ids * 4 + num_ids * num_negs, num_ids * 4 + num_ids * num_negs * 2
    ).reshape(-1, num_negs)
746
    data_dict = {
747
748
749
750
751
752
753
754
        "user:like:item": gb.ItemSet(
            (node_paris_like, neg_dsts_like),
            names=("node_pairs", "negative_dsts"),
        ),
        "user:follow:user": gb.ItemSet(
            (node_pairs_follow, neg_dsts_follow),
            names=("node_pairs", "negative_dsts"),
        ),
755
    }
756
    item_set = gb.ItemSetDict(data_dict)
757
    item_sampler = gb.ItemSampler(
758
759
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
760
761
    src_ids = []
    dst_ids = []
762
    negs_ids = []
763
764
765
766
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.node_pairs is not None
        assert minibatch.negative_dsts is not None
767
768
769
770
771
772
773
774
        is_last = (i + 1) * batch_size >= total_ids
        if not is_last or total_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = total_ids % batch_size
            else:
                assert False
775
776
        src = []
        dst = []
777
        negs = []
778
        for _, node_pairs in minibatch.node_pairs.items():
779
780
781
            assert isinstance(node_pairs, tuple)
            src.append(node_pairs[0])
            dst.append(node_pairs[1])
782
        for _, v_negs in minibatch.negative_dsts.items():
783
            negs.append(v_negs)
784
785
        src = torch.cat(src)
        dst = torch.cat(dst)
786
        negs = torch.cat(negs)
787
788
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
789
        assert len(negs) == expected_batch_size
790
791
        src_ids.append(src)
        dst_ids.append(dst)
792
793
794
795
        negs_ids.append(negs)
        assert negs.dim() == 2
        assert negs.shape[0] == expected_batch_size
        assert negs.shape[1] == num_negs
796
797
798
799
        assert torch.equal(src + 1, dst)
        assert torch.equal(negs[:, 0] + 1, negs[:, 1])
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
800
    negs_ids = torch.cat(negs_ids)
801
802
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
803
    assert torch.all(negs_ids[:-1] <= negs_ids[1:]) is not shuffle
804
805


806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSetDict_seeds(batch_size, shuffle, drop_last):
    # Node pairs.
    num_ids = 103
    total_pairs = 2 * num_ids
    seeds_like = torch.arange(0, num_ids * 3).reshape(-1, 3)
    seeds_follow = torch.arange(num_ids * 3, num_ids * 6).reshape(-1, 3)
    seeds_dict = {
        "user:like:item": gb.ItemSet(seeds_like, names="seeds"),
        "user:follow:user": gb.ItemSet(seeds_follow, names="seeds"),
    }
    item_set = gb.ItemSetDict(seeds_dict)
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    seeds_ids = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seeds is not None
        assert minibatch.labels is None
        is_last = (i + 1) * batch_size >= total_pairs
        if not is_last or total_pairs % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = total_pairs % batch_size
            else:
                assert False
        seeds_lst = []
        for _, (seeds) in minibatch.seeds.items():
            assert isinstance(seeds, torch.Tensor)
            seeds_lst.append(seeds)
        seeds_lst = torch.cat(seeds_lst)
        assert seeds_lst.shape == (expected_batch_size, 3)
        seeds_ids.append(seeds_lst)
        assert torch.equal(seeds_lst[:, 0] + 1, seeds_lst[:, 1])
        assert torch.equal(seeds_lst[:, 1] + 1, seeds_lst[:, 2])
    seeds_ids = torch.cat(seeds_ids)
    assert torch.all(seeds_ids[:-1, 0] <= seeds_ids[1:, 0]) is not shuffle
    assert torch.all(seeds_ids[:-1, 1] <= seeds_ids[1:, 1]) is not shuffle
    assert torch.all(seeds_ids[:-1, 2] <= seeds_ids[1:, 2]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSetDict_seeds_labels(batch_size, shuffle, drop_last):
    # Node pairs and labels
    num_ids = 103
    total_ids = 2 * num_ids
    seeds_like = torch.arange(0, num_ids * 3).reshape(-1, 3)
    seeds_follow = torch.arange(num_ids * 3, num_ids * 6).reshape(-1, 3)
    seeds_dict = {
        "user:like:item": gb.ItemSet(
            (seeds_like, seeds_like[:, 0]),
            names=("seeds", "labels"),
        ),
        "user:follow:user": gb.ItemSet(
            (seeds_follow, seeds_follow[:, 0]),
            names=("seeds", "labels"),
        ),
    }
    item_set = gb.ItemSetDict(seeds_dict)
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    seeds_ids = []
    labels = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seeds is not None
        assert minibatch.labels is not None
        is_last = (i + 1) * batch_size >= total_ids
        if not is_last or total_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = total_ids % batch_size
            else:
                assert False
        seeds_lst = []
        label = []
        for _, seeds in minibatch.seeds.items():
            assert isinstance(seeds, torch.Tensor)
            seeds_lst.append(seeds)
        for _, v_label in minibatch.labels.items():
            label.append(v_label)
        seeds_lst = torch.cat(seeds_lst)
        label = torch.cat(label)
        assert seeds_lst.shape == (expected_batch_size, 3)
        assert len(label) == expected_batch_size
        seeds_ids.append(seeds_lst)
        labels.append(label)
        assert torch.equal(seeds_lst[:, 0] + 1, seeds_lst[:, 1])
        assert torch.equal(seeds_lst[:, 1] + 1, seeds_lst[:, 2])
        assert torch.equal(seeds_lst[:, 0], label)
    seeds_ids = torch.cat(seeds_ids)
    labels = torch.cat(labels)
    assert torch.all(seeds_ids[:-1, 0] <= seeds_ids[1:, 0]) is not shuffle
    assert torch.all(seeds_ids[:-1, 1] <= seeds_ids[1:, 1]) is not shuffle
    assert torch.all(seeds_ids[:-1, 2] <= seeds_ids[1:, 2]) is not shuffle
    assert torch.all(labels[:-1] <= labels[1:]) is not shuffle


912
913
914
915
916
def distributed_item_sampler_subprocess(
    proc_id,
    nprocs,
    item_set,
    num_ids,
917
    num_workers,
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
    batch_size,
    drop_last,
    drop_uneven_inputs,
):
    # On Windows, the init method can only be file.
    init_method = (
        f"file:///{os.path.join(os.getcwd(), 'dis_tempfile')}"
        if platform == "win32"
        else "tcp://127.0.0.1:12345"
    )
    dist.init_process_group(
        backend="gloo",  # Use Gloo backend for CPU multiprocessing
        init_method=init_method,
        world_size=nprocs,
        rank=proc_id,
    )

    # Create a DistributedItemSampler.
    item_sampler = gb.DistributedItemSampler(
        item_set,
        batch_size=batch_size,
939
        shuffle=True,
940
941
942
943
944
945
946
947
        drop_last=drop_last,
        drop_uneven_inputs=drop_uneven_inputs,
    )
    feature_fetcher = gb.FeatureFetcher(
        item_sampler,
        gb.BasicFeatureStore({}),
        [],
    )
948
    data_loader = gb.DataLoader(feature_fetcher, num_workers=num_workers)
949
950
951
952
953
954
955

    # Count the numbers of items and batches.
    num_items = 0
    sampled_count = torch.zeros(num_ids, dtype=torch.int32)
    for i in data_loader:
        # Count how many times each item is sampled.
        sampled_count[i.seed_nodes] += 1
956
957
        if drop_last:
            assert i.seed_nodes.size(0) == batch_size
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
        num_items += i.seed_nodes.size(0)
    num_batches = len(list(item_sampler))

    if drop_uneven_inputs:
        num_batches_tensor = torch.tensor(num_batches)
        dist.broadcast(num_batches_tensor, 0)
        # Test if the number of batches are the same for all processes.
        assert num_batches_tensor == num_batches

    # Add up results from all processes.
    dist.reduce(sampled_count, 0)

    try:
        # Make sure no item is sampled more than once.
        assert sampled_count.max() <= 1
    finally:
        dist.destroy_process_group()


977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
@pytest.mark.parametrize(
    "params",
    [
        ((24, 4, 0, 4, False, False), [(8, 8), (8, 8), (4, 4), (4, 4)]),
        ((30, 4, 0, 4, False, False), [(8, 8), (8, 8), (8, 8), (6, 6)]),
        ((30, 4, 0, 4, True, False), [(8, 8), (8, 8), (8, 8), (6, 4)]),
        ((30, 4, 0, 4, False, True), [(8, 8), (8, 8), (8, 8), (6, 6)]),
        ((30, 4, 0, 4, True, True), [(8, 4), (8, 4), (8, 4), (6, 4)]),
        (
            (53, 4, 2, 4, False, False),
            [(8, 8), (8, 8), (8, 8), (5, 5), (8, 8), (4, 4), (8, 8), (4, 4)],
        ),
        (
            (53, 4, 2, 4, True, False),
            [(8, 8), (8, 8), (9, 8), (4, 4), (8, 8), (4, 4), (8, 8), (4, 4)],
        ),
        (
            (53, 4, 2, 4, False, True),
            [(10, 8), (6, 4), (9, 8), (4, 4), (8, 8), (4, 4), (8, 8), (4, 4)],
        ),
        (
            (53, 4, 2, 4, True, True),
            [(10, 8), (6, 4), (9, 8), (4, 4), (8, 8), (4, 4), (8, 8), (4, 4)],
        ),
        (
            (63, 4, 2, 4, False, False),
            [(8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (7, 7)],
        ),
        (
            (63, 4, 2, 4, True, False),
            [(8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (10, 8), (5, 4)],
        ),
        (
            (63, 4, 2, 4, False, True),
            [(8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (7, 7)],
        ),
        (
            (63, 4, 2, 4, True, True),
            [
                (10, 8),
                (6, 4),
                (10, 8),
                (6, 4),
                (10, 8),
                (6, 4),
                (10, 8),
                (5, 4),
            ],
        ),
        (
            (65, 4, 2, 4, False, False),
            [(9, 9), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8)],
        ),
        (
            (65, 4, 2, 4, True, True),
            [(9, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8)],
        ),
    ],
)
def test_RangeCalculation(params):
    (
        (
            total,
            num_replicas,
            num_workers,
            batch_size,
            drop_last,
            drop_uneven_inputs,
        ),
        key,
    ) = params
    answer = []
    sum = 0
    for rank in range(num_replicas):
        for worker_id in range(max(num_workers, 1)):
1052
            result = gb.internal.calculate_range(
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
                True,
                total,
                num_replicas,
                rank,
                num_workers,
                worker_id,
                batch_size,
                drop_last,
                drop_uneven_inputs,
            )
            assert sum == result[0]
            sum += result[1]
            answer.append((result[1], result[2]))
    assert key == answer


1069
@pytest.mark.parametrize("num_ids", [24, 30, 32, 34, 36])
1070
@pytest.mark.parametrize("num_workers", [0, 2])
1071
1072
1073
@pytest.mark.parametrize("drop_last", [False, True])
@pytest.mark.parametrize("drop_uneven_inputs", [False, True])
def test_DistributedItemSampler(
1074
    num_ids, num_workers, drop_last, drop_uneven_inputs
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
):
    nprocs = 4
    batch_size = 4
    item_set = gb.ItemSet(torch.arange(0, num_ids), names="seed_nodes")

    # On Windows, if the process group initialization file already exists,
    # the program may hang. So we need to delete it if it exists.
    if platform == "win32":
        try:
            os.remove(os.path.join(os.getcwd(), "dis_tempfile"))
        except FileNotFoundError:
            pass

    mp.spawn(
        distributed_item_sampler_subprocess,
        args=(
            nprocs,
            item_set,
            num_ids,
1094
            num_workers,
1095
1096
1097
1098
1099
1100
1101
            batch_size,
            drop_last,
            drop_uneven_inputs,
        ),
        nprocs=nprocs,
        join=True,
    )