test_item_sampler.py 41 KB
Newer Older
1
import os
2
import re
3
from sys import platform
4

5
6
7
import dgl
import pytest
import torch
8
9
import torch.distributed as dist
import torch.multiprocessing as mp
10
11
12
13
from dgl import graphbolt as gb
from torch.testing import assert_close


14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
def test_ItemSampler_minibatcher():
    # Default minibatcher is used if not specified.
    # Warning message is raised if names are not specified.
    item_set = gb.ItemSet(torch.arange(0, 10))
    item_sampler = gb.ItemSampler(item_set, batch_size=4)
    with pytest.warns(
        UserWarning,
        match=re.escape(
            "Failed to map item list to `MiniBatch` as the names of items are "
            "not provided. Please provide a customized `MiniBatcher`. The "
            "item list is returned as is."
        ),
    ):
        minibatch = next(iter(item_sampler))
        assert not isinstance(minibatch, gb.MiniBatch)

    # Default minibatcher is used if not specified.
    # Warning message is raised if unrecognized names are specified.
    item_set = gb.ItemSet(torch.arange(0, 10), names="unknown_name")
    item_sampler = gb.ItemSampler(item_set, batch_size=4)
    with pytest.warns(
        UserWarning,
        match=re.escape(
            "Unknown item name 'unknown_name' is detected and added into "
            "`MiniBatch`. You probably need to provide a customized "
            "`MiniBatcher`."
        ),
    ):
        minibatch = next(iter(item_sampler))
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.unknown_name is not None

    # Default minibatcher is used if not specified.
    # `MiniBatch` is returned if expected names are specified.
    item_set = gb.ItemSet(torch.arange(0, 10), names="seed_nodes")
    item_sampler = gb.ItemSampler(item_set, batch_size=4)
    minibatch = next(iter(item_sampler))
    assert isinstance(minibatch, gb.MiniBatch)
52
53
    assert minibatch.seeds is not None
    assert len(minibatch.seeds) == 4
54
55
56

    # Customized minibatcher is used if specified.
    def minibatcher(batch, names):
57
        return gb.MiniBatch(seeds=batch)
58
59
60
61
62
63

    item_sampler = gb.ItemSampler(
        item_set, batch_size=4, minibatcher=minibatcher
    )
    minibatch = next(iter(item_sampler))
    assert isinstance(minibatch, gb.MiniBatch)
64
65
    assert minibatch.seeds is not None
    assert len(minibatch.seeds) == 4
66
67


68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_Iterable_Only(batch_size, shuffle, drop_last):
    num_ids = 103

    class InvalidLength:
        def __iter__(self):
            return iter(torch.arange(0, num_ids))

    seed_nodes = gb.ItemSet(InvalidLength())
    item_set = gb.ItemSet(seed_nodes, names="seed_nodes")
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
86
        assert minibatch.seeds is not None
87
88
89
        assert minibatch.labels is None
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
90
            assert len(minibatch.seeds) == batch_size
91
92
        else:
            if not drop_last:
93
                assert len(minibatch.seeds) == num_ids % batch_size
94
95
            else:
                assert False
96
        minibatch_ids.append(minibatch.seeds)
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_integer(batch_size, shuffle, drop_last):
    # Node IDs.
    num_ids = 103
    item_set = gb.ItemSet(num_ids, names="seed_nodes")
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
114
        assert minibatch.seeds is not None
115
116
117
        assert minibatch.labels is None
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
118
            assert len(minibatch.seeds) == batch_size
119
120
        else:
            if not drop_last:
121
                assert len(minibatch.seeds) == num_ids % batch_size
122
123
            else:
                assert False
124
        minibatch_ids.append(minibatch.seeds)
125
126
127
128
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


129
130
131
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
132
def test_ItemSet_seed_nodes(batch_size, shuffle, drop_last):
133
    # Node IDs.
134
    num_ids = 103
135
136
    seed_nodes = torch.arange(0, num_ids)
    item_set = gb.ItemSet(seed_nodes, names="seed_nodes")
137
    item_sampler = gb.ItemSampler(
138
139
140
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
141
    for i, minibatch in enumerate(item_sampler):
142
        assert isinstance(minibatch, gb.MiniBatch)
143
        assert minibatch.seeds is not None
144
        assert minibatch.labels is None
145
146
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
147
            assert len(minibatch.seeds) == batch_size
148
149
        else:
            if not drop_last:
150
                assert len(minibatch.seeds) == num_ids % batch_size
151
152
            else:
                assert False
153
        minibatch_ids.append(minibatch.seeds)
154
155
156
157
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_seed_nodes_labels(batch_size, shuffle, drop_last):
    # Node IDs.
    num_ids = 103
    seed_nodes = torch.arange(0, num_ids)
    labels = torch.arange(0, num_ids)
    item_set = gb.ItemSet((seed_nodes, labels), names=("seed_nodes", "labels"))
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    minibatch_labels = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
174
        assert minibatch.seeds is not None
175
        assert minibatch.labels is not None
176
        assert len(minibatch.seeds) == len(minibatch.labels)
177
178
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
179
            assert len(minibatch.seeds) == batch_size
180
181
        else:
            if not drop_last:
182
                assert len(minibatch.seeds) == num_ids % batch_size
183
184
            else:
                assert False
185
        minibatch_ids.append(minibatch.seeds)
186
187
188
189
190
191
192
193
194
        minibatch_labels.append(minibatch.labels)
    minibatch_ids = torch.cat(minibatch_ids)
    minibatch_labels = torch.cat(minibatch_labels)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle
    assert (
        torch.all(minibatch_labels[:-1] <= minibatch_labels[1:]) is not shuffle
    )


195
196
197
198
199
200
201
202
203
204
205
206
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_graphs(batch_size, shuffle, drop_last):
    # Graphs.
    num_graphs = 103
    num_nodes = 10
    num_edges = 20
    graphs = [
        dgl.rand_graph(num_nodes * (i + 1), num_edges * (i + 1))
        for i in range(num_graphs)
    ]
207
208
209
210
    item_set = gb.ItemSet(graphs, names="graphs")
    # DGLGraph is not supported in gb.MiniBatch yet. Let's use a customized
    # minibatcher to return the original graphs.
    customized_minibatcher = lambda batch, names: batch
211
    item_sampler = gb.ItemSampler(
212
213
214
215
216
        item_set,
        batch_size=batch_size,
        shuffle=shuffle,
        drop_last=drop_last,
        minibatcher=customized_minibatcher,
217
218
219
    )
    minibatch_num_nodes = []
    minibatch_num_edges = []
220
    for i, minibatch in enumerate(item_sampler):
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        is_last = (i + 1) * batch_size >= num_graphs
        if not is_last or num_graphs % batch_size == 0:
            assert minibatch.batch_size == batch_size
        else:
            if not drop_last:
                assert minibatch.batch_size == num_graphs % batch_size
            else:
                assert False
        minibatch_num_nodes.append(minibatch.batch_num_nodes())
        minibatch_num_edges.append(minibatch.batch_num_edges())
    minibatch_num_nodes = torch.cat(minibatch_num_nodes)
    minibatch_num_edges = torch.cat(minibatch_num_edges)
    assert (
        torch.all(minibatch_num_nodes[:-1] <= minibatch_num_nodes[1:])
        is not shuffle
    )
    assert (
        torch.all(minibatch_num_edges[:-1] <= minibatch_num_edges[1:])
        is not shuffle
    )


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_node_pairs(batch_size, shuffle, drop_last):
    # Node pairs.
    num_ids = 103
249
250
    node_pairs = torch.arange(0, 2 * num_ids).reshape(-1, 2)
    item_set = gb.ItemSet(node_pairs, names="node_pairs")
251
    item_sampler = gb.ItemSampler(
252
253
254
255
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
256
    for i, minibatch in enumerate(item_sampler):
257
258
        assert minibatch.seeds is not None
        assert isinstance(minibatch.seeds, torch.Tensor)
259
        assert minibatch.labels is None
260
        src, dst = minibatch.seeds.T
261
262
263
264
265
266
267
268
269
270
271
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        # Verify src and dst IDs match.
272
        assert torch.equal(src + 1, dst)
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
        # Archive batch.
        src_ids.append(src)
        dst_ids.append(dst)
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_node_pairs_labels(batch_size, shuffle, drop_last):
    # Node pairs and labels
    num_ids = 103
288
289
290
    node_pairs = torch.arange(0, 2 * num_ids).reshape(-1, 2)
    labels = node_pairs[:, 0]
    item_set = gb.ItemSet((node_pairs, labels), names=("node_pairs", "labels"))
291
    item_sampler = gb.ItemSampler(
292
293
294
295
296
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
    labels = []
297
    for i, minibatch in enumerate(item_sampler):
298
299
        assert minibatch.seeds is not None
        assert isinstance(minibatch.seeds, torch.Tensor)
300
        assert minibatch.labels is not None
301
        src, dst = minibatch.seeds.T
302
        label = minibatch.labels
303
304
        assert len(src) == len(dst)
        assert len(src) == len(label)
305
306
307
308
309
310
311
312
313
314
315
316
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        assert len(label) == expected_batch_size
        # Verify src/dst IDs and labels match.
317
        assert torch.equal(src + 1, dst)
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
        assert torch.equal(src, label)
        # Archive batch.
        src_ids.append(src)
        dst_ids.append(dst)
        labels.append(label)
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    labels = torch.cat(labels)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
    assert torch.all(labels[:-1] <= labels[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
334
335
def test_ItemSet_node_pairs_negative_dsts(batch_size, shuffle, drop_last):
    # Node pairs and negative destinations.
336
337
    num_ids = 103
    num_negs = 2
338
339
340
341
342
343
344
    node_pairs = torch.arange(0, 2 * num_ids).reshape(-1, 2)
    neg_dsts = torch.arange(
        2 * num_ids, 2 * num_ids + num_ids * num_negs
    ).reshape(-1, num_negs)
    item_set = gb.ItemSet(
        (node_pairs, neg_dsts), names=("node_pairs", "negative_dsts")
    )
345
    item_sampler = gb.ItemSampler(
346
347
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
348
349
    src_ids = []
    dst_ids = []
350
    negs_ids = []
351
    for i, minibatch in enumerate(item_sampler):
352
353
354
355
356
357
358
        assert minibatch.seeds is not None
        assert isinstance(minibatch.seeds, torch.Tensor)
        assert minibatch.labels is not None
        assert minibatch.indexes is not None
        src, dst = minibatch.seeds.T
        negs_src = src[~minibatch.labels.to(bool)]
        negs_dst = dst[~minibatch.labels.to(bool)]
359
360
361
362
363
364
365
366
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
367
368
369
370
371
372
373
374
375
376
377
        assert len(src) == expected_batch_size * 3
        assert len(dst) == expected_batch_size * 3
        assert negs_src.dim() == 1
        assert negs_dst.dim() == 1
        assert len(negs_src) == expected_batch_size * 2
        assert len(negs_dst) == expected_batch_size * 2
        expected_indexes = torch.arange(expected_batch_size)
        expected_indexes = torch.cat(
            (expected_indexes, expected_indexes.repeat_interleave(2))
        )
        assert torch.equal(minibatch.indexes, expected_indexes)
378
        # Verify node pairs and negative destinations.
379
380
381
382
        assert torch.equal(
            src[minibatch.labels.to(bool)] + 1, dst[minibatch.labels.to(bool)]
        )
        assert torch.equal((negs_dst - 2 * num_ids) // 2 * 2, negs_src)
383
        # Archive batch.
384
385
        src_ids.append(src)
        dst_ids.append(dst)
386
        negs_ids.append(negs_dst)
387
388
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
389
    negs_ids = torch.cat(negs_ids)
390
391
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
392
    assert torch.all(negs_ids[:-1] <= negs_ids[1:]) is not shuffle
393
394


395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_seeds(batch_size, shuffle, drop_last):
    # Node pairs.
    num_ids = 103
    seeds = torch.arange(0, 3 * num_ids).reshape(-1, 3)
    item_set = gb.ItemSet(seeds, names="seeds")
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    seeds_ids = []
    for i, minibatch in enumerate(item_sampler):
        assert minibatch.seeds is not None
        assert isinstance(minibatch.seeds, torch.Tensor)
        assert minibatch.labels is None
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert minibatch.seeds.shape == (expected_batch_size, 3)
        # Verify seeds match.
        assert torch.equal(minibatch.seeds[:, 0] + 1, minibatch.seeds[:, 1])
        assert torch.equal(minibatch.seeds[:, 1] + 1, minibatch.seeds[:, 2])
        # Archive batch.
        seeds_ids.append(minibatch.seeds)
    seeds_ids = torch.cat(seeds_ids)
    assert torch.all(seeds_ids[:-1, 0] <= seeds_ids[1:, 0]) is not shuffle
    assert torch.all(seeds_ids[:-1, 1] <= seeds_ids[1:, 1]) is not shuffle
    assert torch.all(seeds_ids[:-1, 2] <= seeds_ids[1:, 2]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_seeds_labels(batch_size, shuffle, drop_last):
    # Node pairs and labels
    num_ids = 103
    seeds = torch.arange(0, 3 * num_ids).reshape(-1, 3)
    labels = seeds[:, 0]
    item_set = gb.ItemSet((seeds, labels), names=("seeds", "labels"))
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    seeds_ids = []
    labels = []
    for i, minibatch in enumerate(item_sampler):
        assert minibatch.seeds is not None
        assert isinstance(minibatch.seeds, torch.Tensor)
        assert minibatch.labels is not None
        label = minibatch.labels
        assert len(minibatch.seeds) == len(label)
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert minibatch.seeds.shape == (expected_batch_size, 3)
        assert len(label) == expected_batch_size
        # Verify seeds and labels match.
        assert torch.equal(minibatch.seeds[:, 0] + 1, minibatch.seeds[:, 1])
        assert torch.equal(minibatch.seeds[:, 1] + 1, minibatch.seeds[:, 2])
        # Archive batch.
        seeds_ids.append(minibatch.seeds)
        labels.append(label)
    seeds_ids = torch.cat(seeds_ids)
    labels = torch.cat(labels)
    assert torch.all(seeds_ids[:-1, 0] <= seeds_ids[1:, 0]) is not shuffle
    assert torch.all(seeds_ids[:-1, 1] <= seeds_ids[1:, 1]) is not shuffle
    assert torch.all(seeds_ids[:-1, 2] <= seeds_ids[1:, 2]) is not shuffle
    assert torch.all(labels[:-1] <= labels[1:]) is not shuffle


475
476
477
def test_append_with_other_datapipes():
    num_ids = 100
    batch_size = 4
478
    item_set = gb.ItemSet(torch.arange(0, num_ids), names="seed_nodes")
479
    data_pipe = gb.ItemSampler(item_set, batch_size)
480
481
482
483
    # torchdata.datapipes.iter.Enumerator
    data_pipe = data_pipe.enumerate()
    for i, (idx, data) in enumerate(data_pipe):
        assert i == idx
484
        assert len(data.seeds) == batch_size
485
486


487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSetDict_iterable_only(batch_size, shuffle, drop_last):
    class IterableOnly:
        def __init__(self, start, stop):
            self._start = start
            self._stop = stop

        def __iter__(self):
            return iter(torch.arange(self._start, self._stop))

    num_ids = 205
    ids = {
        "user": gb.ItemSet(IterableOnly(0, 99), names="seed_nodes"),
        "item": gb.ItemSet(IterableOnly(99, num_ids), names="seed_nodes"),
    }
    chained_ids = []
    for key, value in ids.items():
        chained_ids += [(key, v) for v in value]
    item_set = gb.ItemSetDict(ids)
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    for i, minibatch in enumerate(item_sampler):
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert isinstance(minibatch, gb.MiniBatch)
522
        assert minibatch.seeds is not None
523
        ids = []
524
        for _, v in minibatch.seeds.items():
525
526
527
528
529
530
531
532
            ids.append(v)
        ids = torch.cat(ids)
        assert len(ids) == expected_batch_size
        minibatch_ids.append(ids)
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


533
534
535
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
def test_ItemSetDict_seed_nodes(batch_size, shuffle, drop_last):
    # Node IDs.
    num_ids = 205
    ids = {
        "user": gb.ItemSet(torch.arange(0, 99), names="seed_nodes"),
        "item": gb.ItemSet(torch.arange(99, num_ids), names="seed_nodes"),
    }
    chained_ids = []
    for key, value in ids.items():
        chained_ids += [(key, v) for v in value]
    item_set = gb.ItemSetDict(ids)
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    for i, minibatch in enumerate(item_sampler):
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert isinstance(minibatch, gb.MiniBatch)
561
        assert minibatch.seeds is not None
562
        ids = []
563
        for _, v in minibatch.seeds.items():
564
565
566
567
568
569
570
571
572
573
574
575
            ids.append(v)
        ids = torch.cat(ids)
        assert len(ids) == expected_batch_size
        minibatch_ids.append(ids)
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSetDict_seed_nodes_labels(batch_size, shuffle, drop_last):
576
577
578
    # Node IDs.
    num_ids = 205
    ids = {
579
580
581
582
583
584
585
586
        "user": gb.ItemSet(
            (torch.arange(0, 99), torch.arange(0, 99)),
            names=("seed_nodes", "labels"),
        ),
        "item": gb.ItemSet(
            (torch.arange(99, num_ids), torch.arange(99, num_ids)),
            names=("seed_nodes", "labels"),
        ),
587
588
589
590
    }
    chained_ids = []
    for key, value in ids.items():
        chained_ids += [(key, v) for v in value]
591
    item_set = gb.ItemSetDict(ids)
592
    item_sampler = gb.ItemSampler(
593
594
595
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
596
597
598
    minibatch_labels = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
599
        assert minibatch.seeds is not None
600
        assert minibatch.labels is not None
601
602
603
604
605
606
607
608
609
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        ids = []
610
        for _, v in minibatch.seeds.items():
611
612
613
614
            ids.append(v)
        ids = torch.cat(ids)
        assert len(ids) == expected_batch_size
        minibatch_ids.append(ids)
615
616
617
618
619
620
        labels = []
        for _, v in minibatch.labels.items():
            labels.append(v)
        labels = torch.cat(labels)
        assert len(labels) == expected_batch_size
        minibatch_labels.append(labels)
621
    minibatch_ids = torch.cat(minibatch_ids)
622
    minibatch_labels = torch.cat(minibatch_labels)
623
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle
624
625
626
    assert (
        torch.all(minibatch_labels[:-1] <= minibatch_labels[1:]) is not shuffle
    )
627
628
629
630
631


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
632
def test_ItemSetDict_node_pairs(batch_size, shuffle, drop_last):
633
634
    # Node pairs.
    num_ids = 103
635
636
637
    total_pairs = 2 * num_ids
    node_pairs_like = torch.arange(0, num_ids * 2).reshape(-1, 2)
    node_pairs_follow = torch.arange(num_ids * 2, num_ids * 4).reshape(-1, 2)
638
    node_pairs_dict = {
639
640
        "user:like:item": gb.ItemSet(node_pairs_like, names="node_pairs"),
        "user:follow:user": gb.ItemSet(node_pairs_follow, names="node_pairs"),
641
    }
642
    item_set = gb.ItemSetDict(node_pairs_dict)
643
    item_sampler = gb.ItemSampler(
644
645
646
647
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
648
649
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
650
        assert minibatch.seeds is not None
651
652
653
        assert minibatch.labels is None
        is_last = (i + 1) * batch_size >= total_pairs
        if not is_last or total_pairs % batch_size == 0:
654
655
656
            expected_batch_size = batch_size
        else:
            if not drop_last:
657
                expected_batch_size = total_pairs % batch_size
658
659
660
661
            else:
                assert False
        src = []
        dst = []
662
663
664
665
        for _, (seeds) in minibatch.seeds.items():
            assert isinstance(seeds, torch.Tensor)
            src.append(seeds[:, 0])
            dst.append(seeds[:, 1])
666
667
668
669
670
671
        src = torch.cat(src)
        dst = torch.cat(dst)
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        src_ids.append(src)
        dst_ids.append(dst)
672
        assert torch.equal(src + 1, dst)
673
674
675
676
677
678
679
680
681
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
682
def test_ItemSetDict_node_pairs_labels(batch_size, shuffle, drop_last):
683
684
685
    # Node pairs and labels
    num_ids = 103
    total_ids = 2 * num_ids
686
687
    node_pairs_like = torch.arange(0, num_ids * 2).reshape(-1, 2)
    node_pairs_follow = torch.arange(num_ids * 2, num_ids * 4).reshape(-1, 2)
688
689
    labels = torch.arange(0, num_ids)
    node_pairs_dict = {
690
        "user:like:item": gb.ItemSet(
691
692
            (node_pairs_like, node_pairs_like[:, 0]),
            names=("node_pairs", "labels"),
693
        ),
694
        "user:follow:user": gb.ItemSet(
695
696
            (node_pairs_follow, node_pairs_follow[:, 0]),
            names=("node_pairs", "labels"),
697
698
        ),
    }
699
    item_set = gb.ItemSetDict(node_pairs_dict)
700
    item_sampler = gb.ItemSampler(
701
702
703
704
705
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
    labels = []
706
707
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
708
        assert minibatch.seeds is not None
709
        assert minibatch.labels is not None
710
        assert minibatch.negative_dsts is None
711
712
713
714
715
716
717
718
719
720
721
        is_last = (i + 1) * batch_size >= total_ids
        if not is_last or total_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = total_ids % batch_size
            else:
                assert False
        src = []
        dst = []
        label = []
722
723
724
725
        for _, seeds in minibatch.seeds.items():
            assert isinstance(seeds, torch.Tensor)
            src.append(seeds[:, 0])
            dst.append(seeds[:, 1])
726
        for _, v_label in minibatch.labels.items():
727
728
729
730
731
732
733
734
735
736
            label.append(v_label)
        src = torch.cat(src)
        dst = torch.cat(dst)
        label = torch.cat(label)
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        assert len(label) == expected_batch_size
        src_ids.append(src)
        dst_ids.append(dst)
        labels.append(label)
737
        assert torch.equal(src + 1, dst)
738
739
740
741
742
743
744
745
746
747
748
749
        assert torch.equal(src, label)
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    labels = torch.cat(labels)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
    assert torch.all(labels[:-1] <= labels[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
750
def test_ItemSetDict_node_pairs_negative_dsts(batch_size, shuffle, drop_last):
751
752
753
754
    # Head, tail and negative tails.
    num_ids = 103
    total_ids = 2 * num_ids
    num_negs = 2
755
756
757
758
759
760
761
762
    node_paris_like = torch.arange(0, num_ids * 2).reshape(-1, 2)
    node_pairs_follow = torch.arange(num_ids * 2, num_ids * 4).reshape(-1, 2)
    neg_dsts_like = torch.arange(
        num_ids * 4, num_ids * 4 + num_ids * num_negs
    ).reshape(-1, num_negs)
    neg_dsts_follow = torch.arange(
        num_ids * 4 + num_ids * num_negs, num_ids * 4 + num_ids * num_negs * 2
    ).reshape(-1, num_negs)
763
    data_dict = {
764
765
766
767
768
769
770
771
        "user:like:item": gb.ItemSet(
            (node_paris_like, neg_dsts_like),
            names=("node_pairs", "negative_dsts"),
        ),
        "user:follow:user": gb.ItemSet(
            (node_pairs_follow, neg_dsts_follow),
            names=("node_pairs", "negative_dsts"),
        ),
772
    }
773
    item_set = gb.ItemSetDict(data_dict)
774
    item_sampler = gb.ItemSampler(
775
776
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
777
778
    src_ids = []
    dst_ids = []
779
    negs_ids = []
780
781
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
782
783
784
        assert minibatch.seeds is not None
        assert minibatch.labels is not None
        assert minibatch.negative_dsts is None
785
786
787
788
789
790
791
792
        is_last = (i + 1) * batch_size >= total_ids
        if not is_last or total_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = total_ids % batch_size
            else:
                assert False
793
794
        src = []
        dst = []
795
796
797
798
799
800
801
802
803
804
        negs_src = []
        negs_dst = []
        for etype, seeds in minibatch.seeds.items():
            assert isinstance(seeds, torch.Tensor)
            src_etype = seeds[:, 0]
            dst_etype = seeds[:, 1]
            src.append(src_etype[minibatch.labels[etype].to(bool)])
            dst.append(dst_etype[minibatch.labels[etype].to(bool)])
            negs_src.append(src_etype[~minibatch.labels[etype].to(bool)])
            negs_dst.append(dst_etype[~minibatch.labels[etype].to(bool)])
805
806
        src = torch.cat(src)
        dst = torch.cat(dst)
807
808
        negs_src = torch.cat(negs_src)
        negs_dst = torch.cat(negs_dst)
809
810
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
811
812
        assert len(negs_src) == expected_batch_size * 2
        assert len(negs_dst) == expected_batch_size * 2
813
814
        src_ids.append(src)
        dst_ids.append(dst)
815
816
817
        negs_ids.append(negs_dst)
        assert negs_src.dim() == 1
        assert negs_dst.dim() == 1
818
        assert torch.equal(src + 1, dst)
819
        assert torch.equal(negs_src, (negs_dst - num_ids * 4) // 2 * 2)
820
821
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
822
    negs_ids = torch.cat(negs_ids)
823
824
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
825
    assert torch.all(negs_ids <= negs_ids) is not shuffle
826
827


828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSetDict_seeds(batch_size, shuffle, drop_last):
    # Node pairs.
    num_ids = 103
    total_pairs = 2 * num_ids
    seeds_like = torch.arange(0, num_ids * 3).reshape(-1, 3)
    seeds_follow = torch.arange(num_ids * 3, num_ids * 6).reshape(-1, 3)
    seeds_dict = {
        "user:like:item": gb.ItemSet(seeds_like, names="seeds"),
        "user:follow:user": gb.ItemSet(seeds_follow, names="seeds"),
    }
    item_set = gb.ItemSetDict(seeds_dict)
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    seeds_ids = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seeds is not None
        assert minibatch.labels is None
850
        assert minibatch.indexes is None
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
        is_last = (i + 1) * batch_size >= total_pairs
        if not is_last or total_pairs % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = total_pairs % batch_size
            else:
                assert False
        seeds_lst = []
        for _, (seeds) in minibatch.seeds.items():
            assert isinstance(seeds, torch.Tensor)
            seeds_lst.append(seeds)
        seeds_lst = torch.cat(seeds_lst)
        assert seeds_lst.shape == (expected_batch_size, 3)
        seeds_ids.append(seeds_lst)
        assert torch.equal(seeds_lst[:, 0] + 1, seeds_lst[:, 1])
        assert torch.equal(seeds_lst[:, 1] + 1, seeds_lst[:, 2])
    seeds_ids = torch.cat(seeds_ids)
    assert torch.all(seeds_ids[:-1, 0] <= seeds_ids[1:, 0]) is not shuffle
    assert torch.all(seeds_ids[:-1, 1] <= seeds_ids[1:, 1]) is not shuffle
    assert torch.all(seeds_ids[:-1, 2] <= seeds_ids[1:, 2]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSetDict_seeds_labels(batch_size, shuffle, drop_last):
    # Node pairs and labels
    num_ids = 103
    total_ids = 2 * num_ids
    seeds_like = torch.arange(0, num_ids * 3).reshape(-1, 3)
    seeds_follow = torch.arange(num_ids * 3, num_ids * 6).reshape(-1, 3)
    seeds_dict = {
        "user:like:item": gb.ItemSet(
            (seeds_like, seeds_like[:, 0]),
            names=("seeds", "labels"),
        ),
        "user:follow:user": gb.ItemSet(
            (seeds_follow, seeds_follow[:, 0]),
            names=("seeds", "labels"),
        ),
    }
    item_set = gb.ItemSetDict(seeds_dict)
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    seeds_ids = []
    labels = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seeds is not None
        assert minibatch.labels is not None
903
        assert minibatch.indexes is None
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
        is_last = (i + 1) * batch_size >= total_ids
        if not is_last or total_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = total_ids % batch_size
            else:
                assert False
        seeds_lst = []
        label = []
        for _, seeds in minibatch.seeds.items():
            assert isinstance(seeds, torch.Tensor)
            seeds_lst.append(seeds)
        for _, v_label in minibatch.labels.items():
            label.append(v_label)
        seeds_lst = torch.cat(seeds_lst)
        label = torch.cat(label)
        assert seeds_lst.shape == (expected_batch_size, 3)
        assert len(label) == expected_batch_size
        seeds_ids.append(seeds_lst)
        labels.append(label)
        assert torch.equal(seeds_lst[:, 0] + 1, seeds_lst[:, 1])
        assert torch.equal(seeds_lst[:, 1] + 1, seeds_lst[:, 2])
        assert torch.equal(seeds_lst[:, 0], label)
    seeds_ids = torch.cat(seeds_ids)
    labels = torch.cat(labels)
    assert torch.all(seeds_ids[:-1, 0] <= seeds_ids[1:, 0]) is not shuffle
    assert torch.all(seeds_ids[:-1, 1] <= seeds_ids[1:, 1]) is not shuffle
    assert torch.all(seeds_ids[:-1, 2] <= seeds_ids[1:, 2]) is not shuffle
    assert torch.all(labels[:-1] <= labels[1:]) is not shuffle


936
937
938
939
940
def distributed_item_sampler_subprocess(
    proc_id,
    nprocs,
    item_set,
    num_ids,
941
    num_workers,
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
    batch_size,
    drop_last,
    drop_uneven_inputs,
):
    # On Windows, the init method can only be file.
    init_method = (
        f"file:///{os.path.join(os.getcwd(), 'dis_tempfile')}"
        if platform == "win32"
        else "tcp://127.0.0.1:12345"
    )
    dist.init_process_group(
        backend="gloo",  # Use Gloo backend for CPU multiprocessing
        init_method=init_method,
        world_size=nprocs,
        rank=proc_id,
    )

    # Create a DistributedItemSampler.
    item_sampler = gb.DistributedItemSampler(
        item_set,
        batch_size=batch_size,
963
        shuffle=True,
964
965
966
967
968
969
970
971
        drop_last=drop_last,
        drop_uneven_inputs=drop_uneven_inputs,
    )
    feature_fetcher = gb.FeatureFetcher(
        item_sampler,
        gb.BasicFeatureStore({}),
        [],
    )
972
    data_loader = gb.DataLoader(feature_fetcher, num_workers=num_workers)
973
974
975
976
977
978

    # Count the numbers of items and batches.
    num_items = 0
    sampled_count = torch.zeros(num_ids, dtype=torch.int32)
    for i in data_loader:
        # Count how many times each item is sampled.
979
        sampled_count[i.seeds] += 1
980
        if drop_last:
981
982
            assert i.seeds.size(0) == batch_size
        num_items += i.seeds.size(0)
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
    num_batches = len(list(item_sampler))

    if drop_uneven_inputs:
        num_batches_tensor = torch.tensor(num_batches)
        dist.broadcast(num_batches_tensor, 0)
        # Test if the number of batches are the same for all processes.
        assert num_batches_tensor == num_batches

    # Add up results from all processes.
    dist.reduce(sampled_count, 0)

    try:
        # Make sure no item is sampled more than once.
        assert sampled_count.max() <= 1
    finally:
        dist.destroy_process_group()


1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
@pytest.mark.parametrize(
    "params",
    [
        ((24, 4, 0, 4, False, False), [(8, 8), (8, 8), (4, 4), (4, 4)]),
        ((30, 4, 0, 4, False, False), [(8, 8), (8, 8), (8, 8), (6, 6)]),
        ((30, 4, 0, 4, True, False), [(8, 8), (8, 8), (8, 8), (6, 4)]),
        ((30, 4, 0, 4, False, True), [(8, 8), (8, 8), (8, 8), (6, 6)]),
        ((30, 4, 0, 4, True, True), [(8, 4), (8, 4), (8, 4), (6, 4)]),
        (
            (53, 4, 2, 4, False, False),
            [(8, 8), (8, 8), (8, 8), (5, 5), (8, 8), (4, 4), (8, 8), (4, 4)],
        ),
        (
            (53, 4, 2, 4, True, False),
            [(8, 8), (8, 8), (9, 8), (4, 4), (8, 8), (4, 4), (8, 8), (4, 4)],
        ),
        (
            (53, 4, 2, 4, False, True),
            [(10, 8), (6, 4), (9, 8), (4, 4), (8, 8), (4, 4), (8, 8), (4, 4)],
        ),
        (
            (53, 4, 2, 4, True, True),
            [(10, 8), (6, 4), (9, 8), (4, 4), (8, 8), (4, 4), (8, 8), (4, 4)],
        ),
        (
            (63, 4, 2, 4, False, False),
            [(8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (7, 7)],
        ),
        (
            (63, 4, 2, 4, True, False),
            [(8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (10, 8), (5, 4)],
        ),
        (
            (63, 4, 2, 4, False, True),
            [(8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (7, 7)],
        ),
        (
            (63, 4, 2, 4, True, True),
            [
                (10, 8),
                (6, 4),
                (10, 8),
                (6, 4),
                (10, 8),
                (6, 4),
                (10, 8),
                (5, 4),
            ],
        ),
        (
            (65, 4, 2, 4, False, False),
            [(9, 9), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8)],
        ),
        (
            (65, 4, 2, 4, True, True),
            [(9, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8)],
        ),
    ],
)
def test_RangeCalculation(params):
    (
        (
            total,
            num_replicas,
            num_workers,
            batch_size,
            drop_last,
            drop_uneven_inputs,
        ),
        key,
    ) = params
    answer = []
    sum = 0
    for rank in range(num_replicas):
        for worker_id in range(max(num_workers, 1)):
1076
            result = gb.internal.calculate_range(
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
                True,
                total,
                num_replicas,
                rank,
                num_workers,
                worker_id,
                batch_size,
                drop_last,
                drop_uneven_inputs,
            )
            assert sum == result[0]
            sum += result[1]
            answer.append((result[1], result[2]))
    assert key == answer


1093
@pytest.mark.parametrize("num_ids", [24, 30, 32, 34, 36])
1094
@pytest.mark.parametrize("num_workers", [0, 2])
1095
1096
1097
@pytest.mark.parametrize("drop_last", [False, True])
@pytest.mark.parametrize("drop_uneven_inputs", [False, True])
def test_DistributedItemSampler(
1098
    num_ids, num_workers, drop_last, drop_uneven_inputs
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
):
    nprocs = 4
    batch_size = 4
    item_set = gb.ItemSet(torch.arange(0, num_ids), names="seed_nodes")

    # On Windows, if the process group initialization file already exists,
    # the program may hang. So we need to delete it if it exists.
    if platform == "win32":
        try:
            os.remove(os.path.join(os.getcwd(), "dis_tempfile"))
        except FileNotFoundError:
            pass

    mp.spawn(
        distributed_item_sampler_subprocess,
        args=(
            nprocs,
            item_set,
            num_ids,
1118
            num_workers,
1119
1120
1121
1122
1123
1124
1125
            batch_size,
            drop_last,
            drop_uneven_inputs,
        ),
        nprocs=nprocs,
        join=True,
    )