test_item_sampler.py 40.5 KB
Newer Older
1
import os
2
import re
3
from sys import platform
4

5
6
7
import dgl
import pytest
import torch
8
9
import torch.distributed as dist
import torch.multiprocessing as mp
10
11
12
13
from dgl import graphbolt as gb
from torch.testing import assert_close


14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
def test_ItemSampler_minibatcher():
    # Default minibatcher is used if not specified.
    # Warning message is raised if names are not specified.
    item_set = gb.ItemSet(torch.arange(0, 10))
    item_sampler = gb.ItemSampler(item_set, batch_size=4)
    with pytest.warns(
        UserWarning,
        match=re.escape(
            "Failed to map item list to `MiniBatch` as the names of items are "
            "not provided. Please provide a customized `MiniBatcher`. The "
            "item list is returned as is."
        ),
    ):
        minibatch = next(iter(item_sampler))
        assert not isinstance(minibatch, gb.MiniBatch)

    # Default minibatcher is used if not specified.
    # Warning message is raised if unrecognized names are specified.
    item_set = gb.ItemSet(torch.arange(0, 10), names="unknown_name")
    item_sampler = gb.ItemSampler(item_set, batch_size=4)
    with pytest.warns(
        UserWarning,
        match=re.escape(
            "Unknown item name 'unknown_name' is detected and added into "
            "`MiniBatch`. You probably need to provide a customized "
            "`MiniBatcher`."
        ),
    ):
        minibatch = next(iter(item_sampler))
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.unknown_name is not None

    # Default minibatcher is used if not specified.
    # `MiniBatch` is returned if expected names are specified.
    item_set = gb.ItemSet(torch.arange(0, 10), names="seed_nodes")
    item_sampler = gb.ItemSampler(item_set, batch_size=4)
    minibatch = next(iter(item_sampler))
    assert isinstance(minibatch, gb.MiniBatch)
    assert minibatch.seed_nodes is not None
    assert len(minibatch.seed_nodes) == 4

    # Customized minibatcher is used if specified.
    def minibatcher(batch, names):
        return gb.MiniBatch(seed_nodes=batch)

    item_sampler = gb.ItemSampler(
        item_set, batch_size=4, minibatcher=minibatcher
    )
    minibatch = next(iter(item_sampler))
    assert isinstance(minibatch, gb.MiniBatch)
    assert minibatch.seed_nodes is not None
    assert len(minibatch.seed_nodes) == 4


68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_Iterable_Only(batch_size, shuffle, drop_last):
    num_ids = 103

    class InvalidLength:
        def __iter__(self):
            return iter(torch.arange(0, num_ids))

    seed_nodes = gb.ItemSet(InvalidLength())
    item_set = gb.ItemSet(seed_nodes, names="seed_nodes")
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        assert minibatch.seed_nodes is not None
        assert minibatch.labels is None
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            assert len(minibatch.seed_nodes) == batch_size
        else:
            if not drop_last:
                assert len(minibatch.seed_nodes) == num_ids % batch_size
            else:
                assert False
        minibatch_ids.append(minibatch.seed_nodes)
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_integer(batch_size, shuffle, drop_last):
    # Node IDs.
    num_ids = 103
    item_set = gb.ItemSet(num_ids, names="seed_nodes")
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        assert minibatch.seed_nodes is not None
        assert minibatch.labels is None
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            assert len(minibatch.seed_nodes) == batch_size
        else:
            if not drop_last:
                assert len(minibatch.seed_nodes) == num_ids % batch_size
            else:
                assert False
        minibatch_ids.append(minibatch.seed_nodes)
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


129
130
131
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
132
def test_ItemSet_seed_nodes(batch_size, shuffle, drop_last):
133
    # Node IDs.
134
    num_ids = 103
135
136
    seed_nodes = torch.arange(0, num_ids)
    item_set = gb.ItemSet(seed_nodes, names="seed_nodes")
137
    item_sampler = gb.ItemSampler(
138
139
140
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
141
    for i, minibatch in enumerate(item_sampler):
142
143
144
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seed_nodes is not None
        assert minibatch.labels is None
145
146
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
147
            assert len(minibatch.seed_nodes) == batch_size
148
149
        else:
            if not drop_last:
150
                assert len(minibatch.seed_nodes) == num_ids % batch_size
151
152
            else:
                assert False
153
        minibatch_ids.append(minibatch.seed_nodes)
154
155
156
157
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_seed_nodes_labels(batch_size, shuffle, drop_last):
    # Node IDs.
    num_ids = 103
    seed_nodes = torch.arange(0, num_ids)
    labels = torch.arange(0, num_ids)
    item_set = gb.ItemSet((seed_nodes, labels), names=("seed_nodes", "labels"))
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    minibatch_labels = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seed_nodes is not None
        assert minibatch.labels is not None
        assert len(minibatch.seed_nodes) == len(minibatch.labels)
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            assert len(minibatch.seed_nodes) == batch_size
        else:
            if not drop_last:
                assert len(minibatch.seed_nodes) == num_ids % batch_size
            else:
                assert False
        minibatch_ids.append(minibatch.seed_nodes)
        minibatch_labels.append(minibatch.labels)
    minibatch_ids = torch.cat(minibatch_ids)
    minibatch_labels = torch.cat(minibatch_labels)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle
    assert (
        torch.all(minibatch_labels[:-1] <= minibatch_labels[1:]) is not shuffle
    )


195
196
197
198
199
200
201
202
203
204
205
206
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_graphs(batch_size, shuffle, drop_last):
    # Graphs.
    num_graphs = 103
    num_nodes = 10
    num_edges = 20
    graphs = [
        dgl.rand_graph(num_nodes * (i + 1), num_edges * (i + 1))
        for i in range(num_graphs)
    ]
207
208
209
210
    item_set = gb.ItemSet(graphs, names="graphs")
    # DGLGraph is not supported in gb.MiniBatch yet. Let's use a customized
    # minibatcher to return the original graphs.
    customized_minibatcher = lambda batch, names: batch
211
    item_sampler = gb.ItemSampler(
212
213
214
215
216
        item_set,
        batch_size=batch_size,
        shuffle=shuffle,
        drop_last=drop_last,
        minibatcher=customized_minibatcher,
217
218
219
    )
    minibatch_num_nodes = []
    minibatch_num_edges = []
220
    for i, minibatch in enumerate(item_sampler):
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        is_last = (i + 1) * batch_size >= num_graphs
        if not is_last or num_graphs % batch_size == 0:
            assert minibatch.batch_size == batch_size
        else:
            if not drop_last:
                assert minibatch.batch_size == num_graphs % batch_size
            else:
                assert False
        minibatch_num_nodes.append(minibatch.batch_num_nodes())
        minibatch_num_edges.append(minibatch.batch_num_edges())
    minibatch_num_nodes = torch.cat(minibatch_num_nodes)
    minibatch_num_edges = torch.cat(minibatch_num_edges)
    assert (
        torch.all(minibatch_num_nodes[:-1] <= minibatch_num_nodes[1:])
        is not shuffle
    )
    assert (
        torch.all(minibatch_num_edges[:-1] <= minibatch_num_edges[1:])
        is not shuffle
    )


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_node_pairs(batch_size, shuffle, drop_last):
    # Node pairs.
    num_ids = 103
249
250
    node_pairs = torch.arange(0, 2 * num_ids).reshape(-1, 2)
    item_set = gb.ItemSet(node_pairs, names="node_pairs")
251
    item_sampler = gb.ItemSampler(
252
253
254
255
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
256
257
    for i, minibatch in enumerate(item_sampler):
        assert minibatch.node_pairs is not None
258
        assert isinstance(minibatch.node_pairs, tuple)
259
        assert minibatch.labels is None
260
        src, dst = minibatch.node_pairs
261
262
263
264
265
266
267
268
269
270
271
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        # Verify src and dst IDs match.
272
        assert torch.equal(src + 1, dst)
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
        # Archive batch.
        src_ids.append(src)
        dst_ids.append(dst)
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_node_pairs_labels(batch_size, shuffle, drop_last):
    # Node pairs and labels
    num_ids = 103
288
289
290
    node_pairs = torch.arange(0, 2 * num_ids).reshape(-1, 2)
    labels = node_pairs[:, 0]
    item_set = gb.ItemSet((node_pairs, labels), names=("node_pairs", "labels"))
291
    item_sampler = gb.ItemSampler(
292
293
294
295
296
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
    labels = []
297
298
    for i, minibatch in enumerate(item_sampler):
        assert minibatch.node_pairs is not None
299
        assert isinstance(minibatch.node_pairs, tuple)
300
        assert minibatch.labels is not None
301
        src, dst = minibatch.node_pairs
302
        label = minibatch.labels
303
304
        assert len(src) == len(dst)
        assert len(src) == len(label)
305
306
307
308
309
310
311
312
313
314
315
316
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        assert len(label) == expected_batch_size
        # Verify src/dst IDs and labels match.
317
        assert torch.equal(src + 1, dst)
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
        assert torch.equal(src, label)
        # Archive batch.
        src_ids.append(src)
        dst_ids.append(dst)
        labels.append(label)
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    labels = torch.cat(labels)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
    assert torch.all(labels[:-1] <= labels[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
334
335
def test_ItemSet_node_pairs_negative_dsts(batch_size, shuffle, drop_last):
    # Node pairs and negative destinations.
336
337
    num_ids = 103
    num_negs = 2
338
339
340
341
342
343
344
    node_pairs = torch.arange(0, 2 * num_ids).reshape(-1, 2)
    neg_dsts = torch.arange(
        2 * num_ids, 2 * num_ids + num_ids * num_negs
    ).reshape(-1, num_negs)
    item_set = gb.ItemSet(
        (node_pairs, neg_dsts), names=("node_pairs", "negative_dsts")
    )
345
    item_sampler = gb.ItemSampler(
346
347
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
348
349
    src_ids = []
    dst_ids = []
350
    negs_ids = []
351
352
    for i, minibatch in enumerate(item_sampler):
        assert minibatch.node_pairs is not None
353
        assert isinstance(minibatch.node_pairs, tuple)
354
        assert minibatch.negative_dsts is not None
355
        src, dst = minibatch.node_pairs
356
        negs = minibatch.negative_dsts
357
358
359
360
361
362
363
364
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
365
366
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
367
368
369
        assert negs.dim() == 2
        assert negs.shape[0] == expected_batch_size
        assert negs.shape[1] == num_negs
370
371
372
        # Verify node pairs and negative destinations.
        assert torch.equal(src + 1, dst)
        assert torch.equal(negs[:, 0] + 1, negs[:, 1])
373
        # Archive batch.
374
375
        src_ids.append(src)
        dst_ids.append(dst)
376
        negs_ids.append(negs)
377
378
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
379
    negs_ids = torch.cat(negs_ids)
380
381
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
382
383
384
385
    assert torch.all(negs_ids[:-1, 0] <= negs_ids[1:, 0]) is not shuffle
    assert torch.all(negs_ids[:-1, 1] <= negs_ids[1:, 1]) is not shuffle


386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_seeds(batch_size, shuffle, drop_last):
    # Node pairs.
    num_ids = 103
    seeds = torch.arange(0, 3 * num_ids).reshape(-1, 3)
    item_set = gb.ItemSet(seeds, names="seeds")
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    seeds_ids = []
    for i, minibatch in enumerate(item_sampler):
        assert minibatch.seeds is not None
        assert isinstance(minibatch.seeds, torch.Tensor)
        assert minibatch.labels is None
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert minibatch.seeds.shape == (expected_batch_size, 3)
        # Verify seeds match.
        assert torch.equal(minibatch.seeds[:, 0] + 1, minibatch.seeds[:, 1])
        assert torch.equal(minibatch.seeds[:, 1] + 1, minibatch.seeds[:, 2])
        # Archive batch.
        seeds_ids.append(minibatch.seeds)
    seeds_ids = torch.cat(seeds_ids)
    assert torch.all(seeds_ids[:-1, 0] <= seeds_ids[1:, 0]) is not shuffle
    assert torch.all(seeds_ids[:-1, 1] <= seeds_ids[1:, 1]) is not shuffle
    assert torch.all(seeds_ids[:-1, 2] <= seeds_ids[1:, 2]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_seeds_labels(batch_size, shuffle, drop_last):
    # Node pairs and labels
    num_ids = 103
    seeds = torch.arange(0, 3 * num_ids).reshape(-1, 3)
    labels = seeds[:, 0]
    item_set = gb.ItemSet((seeds, labels), names=("seeds", "labels"))
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    seeds_ids = []
    labels = []
    for i, minibatch in enumerate(item_sampler):
        assert minibatch.seeds is not None
        assert isinstance(minibatch.seeds, torch.Tensor)
        assert minibatch.labels is not None
        label = minibatch.labels
        assert len(minibatch.seeds) == len(label)
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert minibatch.seeds.shape == (expected_batch_size, 3)
        assert len(label) == expected_batch_size
        # Verify seeds and labels match.
        assert torch.equal(minibatch.seeds[:, 0] + 1, minibatch.seeds[:, 1])
        assert torch.equal(minibatch.seeds[:, 1] + 1, minibatch.seeds[:, 2])
        # Archive batch.
        seeds_ids.append(minibatch.seeds)
        labels.append(label)
    seeds_ids = torch.cat(seeds_ids)
    labels = torch.cat(labels)
    assert torch.all(seeds_ids[:-1, 0] <= seeds_ids[1:, 0]) is not shuffle
    assert torch.all(seeds_ids[:-1, 1] <= seeds_ids[1:, 1]) is not shuffle
    assert torch.all(seeds_ids[:-1, 2] <= seeds_ids[1:, 2]) is not shuffle
    assert torch.all(labels[:-1] <= labels[1:]) is not shuffle


466
467
468
def test_append_with_other_datapipes():
    num_ids = 100
    batch_size = 4
469
    item_set = gb.ItemSet(torch.arange(0, num_ids), names="seed_nodes")
470
    data_pipe = gb.ItemSampler(item_set, batch_size)
471
472
473
474
    # torchdata.datapipes.iter.Enumerator
    data_pipe = data_pipe.enumerate()
    for i, (idx, data) in enumerate(data_pipe):
        assert i == idx
475
        assert len(data.seed_nodes) == batch_size
476
477


478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSetDict_iterable_only(batch_size, shuffle, drop_last):
    class IterableOnly:
        def __init__(self, start, stop):
            self._start = start
            self._stop = stop

        def __iter__(self):
            return iter(torch.arange(self._start, self._stop))

    num_ids = 205
    ids = {
        "user": gb.ItemSet(IterableOnly(0, 99), names="seed_nodes"),
        "item": gb.ItemSet(IterableOnly(99, num_ids), names="seed_nodes"),
    }
    chained_ids = []
    for key, value in ids.items():
        chained_ids += [(key, v) for v in value]
    item_set = gb.ItemSetDict(ids)
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    for i, minibatch in enumerate(item_sampler):
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seed_nodes is not None
        ids = []
        for _, v in minibatch.seed_nodes.items():
            ids.append(v)
        ids = torch.cat(ids)
        assert len(ids) == expected_batch_size
        minibatch_ids.append(ids)
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


524
525
526
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
def test_ItemSetDict_seed_nodes(batch_size, shuffle, drop_last):
    # Node IDs.
    num_ids = 205
    ids = {
        "user": gb.ItemSet(torch.arange(0, 99), names="seed_nodes"),
        "item": gb.ItemSet(torch.arange(99, num_ids), names="seed_nodes"),
    }
    chained_ids = []
    for key, value in ids.items():
        chained_ids += [(key, v) for v in value]
    item_set = gb.ItemSetDict(ids)
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    for i, minibatch in enumerate(item_sampler):
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seed_nodes is not None
        ids = []
        for _, v in minibatch.seed_nodes.items():
            ids.append(v)
        ids = torch.cat(ids)
        assert len(ids) == expected_batch_size
        minibatch_ids.append(ids)
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSetDict_seed_nodes_labels(batch_size, shuffle, drop_last):
567
568
569
    # Node IDs.
    num_ids = 205
    ids = {
570
571
572
573
574
575
576
577
        "user": gb.ItemSet(
            (torch.arange(0, 99), torch.arange(0, 99)),
            names=("seed_nodes", "labels"),
        ),
        "item": gb.ItemSet(
            (torch.arange(99, num_ids), torch.arange(99, num_ids)),
            names=("seed_nodes", "labels"),
        ),
578
579
580
581
    }
    chained_ids = []
    for key, value in ids.items():
        chained_ids += [(key, v) for v in value]
582
    item_set = gb.ItemSetDict(ids)
583
    item_sampler = gb.ItemSampler(
584
585
586
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
587
588
589
590
591
    minibatch_labels = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seed_nodes is not None
        assert minibatch.labels is not None
592
593
594
595
596
597
598
599
600
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        ids = []
601
        for _, v in minibatch.seed_nodes.items():
602
603
604
605
            ids.append(v)
        ids = torch.cat(ids)
        assert len(ids) == expected_batch_size
        minibatch_ids.append(ids)
606
607
608
609
610
611
        labels = []
        for _, v in minibatch.labels.items():
            labels.append(v)
        labels = torch.cat(labels)
        assert len(labels) == expected_batch_size
        minibatch_labels.append(labels)
612
    minibatch_ids = torch.cat(minibatch_ids)
613
    minibatch_labels = torch.cat(minibatch_labels)
614
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle
615
616
617
    assert (
        torch.all(minibatch_labels[:-1] <= minibatch_labels[1:]) is not shuffle
    )
618
619
620
621
622


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
623
def test_ItemSetDict_node_pairs(batch_size, shuffle, drop_last):
624
625
    # Node pairs.
    num_ids = 103
626
627
628
    total_pairs = 2 * num_ids
    node_pairs_like = torch.arange(0, num_ids * 2).reshape(-1, 2)
    node_pairs_follow = torch.arange(num_ids * 2, num_ids * 4).reshape(-1, 2)
629
    node_pairs_dict = {
630
631
        "user:like:item": gb.ItemSet(node_pairs_like, names="node_pairs"),
        "user:follow:user": gb.ItemSet(node_pairs_follow, names="node_pairs"),
632
    }
633
    item_set = gb.ItemSetDict(node_pairs_dict)
634
    item_sampler = gb.ItemSampler(
635
636
637
638
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
639
640
641
642
643
644
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.node_pairs is not None
        assert minibatch.labels is None
        is_last = (i + 1) * batch_size >= total_pairs
        if not is_last or total_pairs % batch_size == 0:
645
646
647
            expected_batch_size = batch_size
        else:
            if not drop_last:
648
                expected_batch_size = total_pairs % batch_size
649
650
651
652
            else:
                assert False
        src = []
        dst = []
653
654
655
656
        for _, (node_pairs) in minibatch.node_pairs.items():
            assert isinstance(node_pairs, tuple)
            src.append(node_pairs[0])
            dst.append(node_pairs[1])
657
658
659
660
661
662
        src = torch.cat(src)
        dst = torch.cat(dst)
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        src_ids.append(src)
        dst_ids.append(dst)
663
        assert torch.equal(src + 1, dst)
664
665
666
667
668
669
670
671
672
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
673
def test_ItemSetDict_node_pairs_labels(batch_size, shuffle, drop_last):
674
675
676
    # Node pairs and labels
    num_ids = 103
    total_ids = 2 * num_ids
677
678
    node_pairs_like = torch.arange(0, num_ids * 2).reshape(-1, 2)
    node_pairs_follow = torch.arange(num_ids * 2, num_ids * 4).reshape(-1, 2)
679
680
    labels = torch.arange(0, num_ids)
    node_pairs_dict = {
681
        "user:like:item": gb.ItemSet(
682
683
            (node_pairs_like, node_pairs_like[:, 0]),
            names=("node_pairs", "labels"),
684
        ),
685
        "user:follow:user": gb.ItemSet(
686
687
            (node_pairs_follow, node_pairs_follow[:, 0]),
            names=("node_pairs", "labels"),
688
689
        ),
    }
690
    item_set = gb.ItemSetDict(node_pairs_dict)
691
    item_sampler = gb.ItemSampler(
692
693
694
695
696
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
    labels = []
697
698
699
700
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.node_pairs is not None
        assert minibatch.labels is not None
701
702
703
704
705
706
707
708
709
710
711
        is_last = (i + 1) * batch_size >= total_ids
        if not is_last or total_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = total_ids % batch_size
            else:
                assert False
        src = []
        dst = []
        label = []
712
        for _, node_pairs in minibatch.node_pairs.items():
713
714
715
            assert isinstance(node_pairs, tuple)
            src.append(node_pairs[0])
            dst.append(node_pairs[1])
716
        for _, v_label in minibatch.labels.items():
717
718
719
720
721
722
723
724
725
726
            label.append(v_label)
        src = torch.cat(src)
        dst = torch.cat(dst)
        label = torch.cat(label)
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        assert len(label) == expected_batch_size
        src_ids.append(src)
        dst_ids.append(dst)
        labels.append(label)
727
        assert torch.equal(src + 1, dst)
728
729
730
731
732
733
734
735
736
737
738
739
        assert torch.equal(src, label)
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    labels = torch.cat(labels)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
    assert torch.all(labels[:-1] <= labels[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
740
def test_ItemSetDict_node_pairs_negative_dsts(batch_size, shuffle, drop_last):
741
742
743
744
    # Head, tail and negative tails.
    num_ids = 103
    total_ids = 2 * num_ids
    num_negs = 2
745
746
747
748
749
750
751
752
    node_paris_like = torch.arange(0, num_ids * 2).reshape(-1, 2)
    node_pairs_follow = torch.arange(num_ids * 2, num_ids * 4).reshape(-1, 2)
    neg_dsts_like = torch.arange(
        num_ids * 4, num_ids * 4 + num_ids * num_negs
    ).reshape(-1, num_negs)
    neg_dsts_follow = torch.arange(
        num_ids * 4 + num_ids * num_negs, num_ids * 4 + num_ids * num_negs * 2
    ).reshape(-1, num_negs)
753
    data_dict = {
754
755
756
757
758
759
760
761
        "user:like:item": gb.ItemSet(
            (node_paris_like, neg_dsts_like),
            names=("node_pairs", "negative_dsts"),
        ),
        "user:follow:user": gb.ItemSet(
            (node_pairs_follow, neg_dsts_follow),
            names=("node_pairs", "negative_dsts"),
        ),
762
    }
763
    item_set = gb.ItemSetDict(data_dict)
764
    item_sampler = gb.ItemSampler(
765
766
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
767
768
    src_ids = []
    dst_ids = []
769
    negs_ids = []
770
771
772
773
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.node_pairs is not None
        assert minibatch.negative_dsts is not None
774
775
776
777
778
779
780
781
        is_last = (i + 1) * batch_size >= total_ids
        if not is_last or total_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = total_ids % batch_size
            else:
                assert False
782
783
        src = []
        dst = []
784
        negs = []
785
        for _, node_pairs in minibatch.node_pairs.items():
786
787
788
            assert isinstance(node_pairs, tuple)
            src.append(node_pairs[0])
            dst.append(node_pairs[1])
789
        for _, v_negs in minibatch.negative_dsts.items():
790
            negs.append(v_negs)
791
792
        src = torch.cat(src)
        dst = torch.cat(dst)
793
        negs = torch.cat(negs)
794
795
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
796
        assert len(negs) == expected_batch_size
797
798
        src_ids.append(src)
        dst_ids.append(dst)
799
800
801
802
        negs_ids.append(negs)
        assert negs.dim() == 2
        assert negs.shape[0] == expected_batch_size
        assert negs.shape[1] == num_negs
803
804
805
806
        assert torch.equal(src + 1, dst)
        assert torch.equal(negs[:, 0] + 1, negs[:, 1])
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
807
    negs_ids = torch.cat(negs_ids)
808
809
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
810
    assert torch.all(negs_ids[:-1] <= negs_ids[1:]) is not shuffle
811
812


813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSetDict_seeds(batch_size, shuffle, drop_last):
    # Node pairs.
    num_ids = 103
    total_pairs = 2 * num_ids
    seeds_like = torch.arange(0, num_ids * 3).reshape(-1, 3)
    seeds_follow = torch.arange(num_ids * 3, num_ids * 6).reshape(-1, 3)
    seeds_dict = {
        "user:like:item": gb.ItemSet(seeds_like, names="seeds"),
        "user:follow:user": gb.ItemSet(seeds_follow, names="seeds"),
    }
    item_set = gb.ItemSetDict(seeds_dict)
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    seeds_ids = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seeds is not None
        assert minibatch.labels is None
835
        assert minibatch.indexes is None
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
        is_last = (i + 1) * batch_size >= total_pairs
        if not is_last or total_pairs % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = total_pairs % batch_size
            else:
                assert False
        seeds_lst = []
        for _, (seeds) in minibatch.seeds.items():
            assert isinstance(seeds, torch.Tensor)
            seeds_lst.append(seeds)
        seeds_lst = torch.cat(seeds_lst)
        assert seeds_lst.shape == (expected_batch_size, 3)
        seeds_ids.append(seeds_lst)
        assert torch.equal(seeds_lst[:, 0] + 1, seeds_lst[:, 1])
        assert torch.equal(seeds_lst[:, 1] + 1, seeds_lst[:, 2])
    seeds_ids = torch.cat(seeds_ids)
    assert torch.all(seeds_ids[:-1, 0] <= seeds_ids[1:, 0]) is not shuffle
    assert torch.all(seeds_ids[:-1, 1] <= seeds_ids[1:, 1]) is not shuffle
    assert torch.all(seeds_ids[:-1, 2] <= seeds_ids[1:, 2]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSetDict_seeds_labels(batch_size, shuffle, drop_last):
    # Node pairs and labels
    num_ids = 103
    total_ids = 2 * num_ids
    seeds_like = torch.arange(0, num_ids * 3).reshape(-1, 3)
    seeds_follow = torch.arange(num_ids * 3, num_ids * 6).reshape(-1, 3)
    seeds_dict = {
        "user:like:item": gb.ItemSet(
            (seeds_like, seeds_like[:, 0]),
            names=("seeds", "labels"),
        ),
        "user:follow:user": gb.ItemSet(
            (seeds_follow, seeds_follow[:, 0]),
            names=("seeds", "labels"),
        ),
    }
    item_set = gb.ItemSetDict(seeds_dict)
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    seeds_ids = []
    labels = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seeds is not None
        assert minibatch.labels is not None
888
        assert minibatch.indexes is None
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
        is_last = (i + 1) * batch_size >= total_ids
        if not is_last or total_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = total_ids % batch_size
            else:
                assert False
        seeds_lst = []
        label = []
        for _, seeds in minibatch.seeds.items():
            assert isinstance(seeds, torch.Tensor)
            seeds_lst.append(seeds)
        for _, v_label in minibatch.labels.items():
            label.append(v_label)
        seeds_lst = torch.cat(seeds_lst)
        label = torch.cat(label)
        assert seeds_lst.shape == (expected_batch_size, 3)
        assert len(label) == expected_batch_size
        seeds_ids.append(seeds_lst)
        labels.append(label)
        assert torch.equal(seeds_lst[:, 0] + 1, seeds_lst[:, 1])
        assert torch.equal(seeds_lst[:, 1] + 1, seeds_lst[:, 2])
        assert torch.equal(seeds_lst[:, 0], label)
    seeds_ids = torch.cat(seeds_ids)
    labels = torch.cat(labels)
    assert torch.all(seeds_ids[:-1, 0] <= seeds_ids[1:, 0]) is not shuffle
    assert torch.all(seeds_ids[:-1, 1] <= seeds_ids[1:, 1]) is not shuffle
    assert torch.all(seeds_ids[:-1, 2] <= seeds_ids[1:, 2]) is not shuffle
    assert torch.all(labels[:-1] <= labels[1:]) is not shuffle


921
922
923
924
925
def distributed_item_sampler_subprocess(
    proc_id,
    nprocs,
    item_set,
    num_ids,
926
    num_workers,
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
    batch_size,
    drop_last,
    drop_uneven_inputs,
):
    # On Windows, the init method can only be file.
    init_method = (
        f"file:///{os.path.join(os.getcwd(), 'dis_tempfile')}"
        if platform == "win32"
        else "tcp://127.0.0.1:12345"
    )
    dist.init_process_group(
        backend="gloo",  # Use Gloo backend for CPU multiprocessing
        init_method=init_method,
        world_size=nprocs,
        rank=proc_id,
    )

    # Create a DistributedItemSampler.
    item_sampler = gb.DistributedItemSampler(
        item_set,
        batch_size=batch_size,
948
        shuffle=True,
949
950
951
952
953
954
955
956
        drop_last=drop_last,
        drop_uneven_inputs=drop_uneven_inputs,
    )
    feature_fetcher = gb.FeatureFetcher(
        item_sampler,
        gb.BasicFeatureStore({}),
        [],
    )
957
    data_loader = gb.DataLoader(feature_fetcher, num_workers=num_workers)
958
959
960
961
962
963
964

    # Count the numbers of items and batches.
    num_items = 0
    sampled_count = torch.zeros(num_ids, dtype=torch.int32)
    for i in data_loader:
        # Count how many times each item is sampled.
        sampled_count[i.seed_nodes] += 1
965
966
        if drop_last:
            assert i.seed_nodes.size(0) == batch_size
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
        num_items += i.seed_nodes.size(0)
    num_batches = len(list(item_sampler))

    if drop_uneven_inputs:
        num_batches_tensor = torch.tensor(num_batches)
        dist.broadcast(num_batches_tensor, 0)
        # Test if the number of batches are the same for all processes.
        assert num_batches_tensor == num_batches

    # Add up results from all processes.
    dist.reduce(sampled_count, 0)

    try:
        # Make sure no item is sampled more than once.
        assert sampled_count.max() <= 1
    finally:
        dist.destroy_process_group()


986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
@pytest.mark.parametrize(
    "params",
    [
        ((24, 4, 0, 4, False, False), [(8, 8), (8, 8), (4, 4), (4, 4)]),
        ((30, 4, 0, 4, False, False), [(8, 8), (8, 8), (8, 8), (6, 6)]),
        ((30, 4, 0, 4, True, False), [(8, 8), (8, 8), (8, 8), (6, 4)]),
        ((30, 4, 0, 4, False, True), [(8, 8), (8, 8), (8, 8), (6, 6)]),
        ((30, 4, 0, 4, True, True), [(8, 4), (8, 4), (8, 4), (6, 4)]),
        (
            (53, 4, 2, 4, False, False),
            [(8, 8), (8, 8), (8, 8), (5, 5), (8, 8), (4, 4), (8, 8), (4, 4)],
        ),
        (
            (53, 4, 2, 4, True, False),
            [(8, 8), (8, 8), (9, 8), (4, 4), (8, 8), (4, 4), (8, 8), (4, 4)],
        ),
        (
            (53, 4, 2, 4, False, True),
            [(10, 8), (6, 4), (9, 8), (4, 4), (8, 8), (4, 4), (8, 8), (4, 4)],
        ),
        (
            (53, 4, 2, 4, True, True),
            [(10, 8), (6, 4), (9, 8), (4, 4), (8, 8), (4, 4), (8, 8), (4, 4)],
        ),
        (
            (63, 4, 2, 4, False, False),
            [(8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (7, 7)],
        ),
        (
            (63, 4, 2, 4, True, False),
            [(8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (10, 8), (5, 4)],
        ),
        (
            (63, 4, 2, 4, False, True),
            [(8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (7, 7)],
        ),
        (
            (63, 4, 2, 4, True, True),
            [
                (10, 8),
                (6, 4),
                (10, 8),
                (6, 4),
                (10, 8),
                (6, 4),
                (10, 8),
                (5, 4),
            ],
        ),
        (
            (65, 4, 2, 4, False, False),
            [(9, 9), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8)],
        ),
        (
            (65, 4, 2, 4, True, True),
            [(9, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8)],
        ),
    ],
)
def test_RangeCalculation(params):
    (
        (
            total,
            num_replicas,
            num_workers,
            batch_size,
            drop_last,
            drop_uneven_inputs,
        ),
        key,
    ) = params
    answer = []
    sum = 0
    for rank in range(num_replicas):
        for worker_id in range(max(num_workers, 1)):
1061
            result = gb.internal.calculate_range(
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
                True,
                total,
                num_replicas,
                rank,
                num_workers,
                worker_id,
                batch_size,
                drop_last,
                drop_uneven_inputs,
            )
            assert sum == result[0]
            sum += result[1]
            answer.append((result[1], result[2]))
    assert key == answer


1078
@pytest.mark.parametrize("num_ids", [24, 30, 32, 34, 36])
1079
@pytest.mark.parametrize("num_workers", [0, 2])
1080
1081
1082
@pytest.mark.parametrize("drop_last", [False, True])
@pytest.mark.parametrize("drop_uneven_inputs", [False, True])
def test_DistributedItemSampler(
1083
    num_ids, num_workers, drop_last, drop_uneven_inputs
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
):
    nprocs = 4
    batch_size = 4
    item_set = gb.ItemSet(torch.arange(0, num_ids), names="seed_nodes")

    # On Windows, if the process group initialization file already exists,
    # the program may hang. So we need to delete it if it exists.
    if platform == "win32":
        try:
            os.remove(os.path.join(os.getcwd(), "dis_tempfile"))
        except FileNotFoundError:
            pass

    mp.spawn(
        distributed_item_sampler_subprocess,
        args=(
            nprocs,
            item_set,
            num_ids,
1103
            num_workers,
1104
1105
1106
1107
1108
1109
1110
            batch_size,
            drop_last,
            drop_uneven_inputs,
        ),
        nprocs=nprocs,
        join=True,
    )