test_item_sampler.py 30.6 KB
Newer Older
1
import os
2
import re
3
from sys import platform
4

5
6
7
import dgl
import pytest
import torch
8
9
import torch.distributed as dist
import torch.multiprocessing as mp
10
11
12
13
from dgl import graphbolt as gb
from torch.testing import assert_close


14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
def test_ItemSampler_minibatcher():
    # Default minibatcher is used if not specified.
    # Warning message is raised if names are not specified.
    item_set = gb.ItemSet(torch.arange(0, 10))
    item_sampler = gb.ItemSampler(item_set, batch_size=4)
    with pytest.warns(
        UserWarning,
        match=re.escape(
            "Failed to map item list to `MiniBatch` as the names of items are "
            "not provided. Please provide a customized `MiniBatcher`. The "
            "item list is returned as is."
        ),
    ):
        minibatch = next(iter(item_sampler))
        assert not isinstance(minibatch, gb.MiniBatch)

    # Default minibatcher is used if not specified.
    # Warning message is raised if unrecognized names are specified.
    item_set = gb.ItemSet(torch.arange(0, 10), names="unknown_name")
    item_sampler = gb.ItemSampler(item_set, batch_size=4)
    with pytest.warns(
        UserWarning,
        match=re.escape(
            "Unknown item name 'unknown_name' is detected and added into "
            "`MiniBatch`. You probably need to provide a customized "
            "`MiniBatcher`."
        ),
    ):
        minibatch = next(iter(item_sampler))
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.unknown_name is not None

    # Default minibatcher is used if not specified.
    # `MiniBatch` is returned if expected names are specified.
    item_set = gb.ItemSet(torch.arange(0, 10), names="seed_nodes")
    item_sampler = gb.ItemSampler(item_set, batch_size=4)
    minibatch = next(iter(item_sampler))
    assert isinstance(minibatch, gb.MiniBatch)
    assert minibatch.seed_nodes is not None
    assert len(minibatch.seed_nodes) == 4

    # Customized minibatcher is used if specified.
    def minibatcher(batch, names):
        return gb.MiniBatch(seed_nodes=batch)

    item_sampler = gb.ItemSampler(
        item_set, batch_size=4, minibatcher=minibatcher
    )
    minibatch = next(iter(item_sampler))
    assert isinstance(minibatch, gb.MiniBatch)
    assert minibatch.seed_nodes is not None
    assert len(minibatch.seed_nodes) == 4


68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_Iterable_Only(batch_size, shuffle, drop_last):
    num_ids = 103

    class InvalidLength:
        def __iter__(self):
            return iter(torch.arange(0, num_ids))

    seed_nodes = gb.ItemSet(InvalidLength())
    item_set = gb.ItemSet(seed_nodes, names="seed_nodes")
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        assert minibatch.seed_nodes is not None
        assert minibatch.labels is None
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            assert len(minibatch.seed_nodes) == batch_size
        else:
            if not drop_last:
                assert len(minibatch.seed_nodes) == num_ids % batch_size
            else:
                assert False
        minibatch_ids.append(minibatch.seed_nodes)
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_integer(batch_size, shuffle, drop_last):
    # Node IDs.
    num_ids = 103
    item_set = gb.ItemSet(num_ids, names="seed_nodes")
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        assert minibatch.seed_nodes is not None
        assert minibatch.labels is None
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            assert len(minibatch.seed_nodes) == batch_size
        else:
            if not drop_last:
                assert len(minibatch.seed_nodes) == num_ids % batch_size
            else:
                assert False
        minibatch_ids.append(minibatch.seed_nodes)
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


129
130
131
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
132
def test_ItemSet_seed_nodes(batch_size, shuffle, drop_last):
133
    # Node IDs.
134
    num_ids = 103
135
136
    seed_nodes = torch.arange(0, num_ids)
    item_set = gb.ItemSet(seed_nodes, names="seed_nodes")
137
    item_sampler = gb.ItemSampler(
138
139
140
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
141
    for i, minibatch in enumerate(item_sampler):
142
143
144
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seed_nodes is not None
        assert minibatch.labels is None
145
146
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
147
            assert len(minibatch.seed_nodes) == batch_size
148
149
        else:
            if not drop_last:
150
                assert len(minibatch.seed_nodes) == num_ids % batch_size
151
152
            else:
                assert False
153
        minibatch_ids.append(minibatch.seed_nodes)
154
155
156
157
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_seed_nodes_labels(batch_size, shuffle, drop_last):
    # Node IDs.
    num_ids = 103
    seed_nodes = torch.arange(0, num_ids)
    labels = torch.arange(0, num_ids)
    item_set = gb.ItemSet((seed_nodes, labels), names=("seed_nodes", "labels"))
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    minibatch_labels = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seed_nodes is not None
        assert minibatch.labels is not None
        assert len(minibatch.seed_nodes) == len(minibatch.labels)
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            assert len(minibatch.seed_nodes) == batch_size
        else:
            if not drop_last:
                assert len(minibatch.seed_nodes) == num_ids % batch_size
            else:
                assert False
        minibatch_ids.append(minibatch.seed_nodes)
        minibatch_labels.append(minibatch.labels)
    minibatch_ids = torch.cat(minibatch_ids)
    minibatch_labels = torch.cat(minibatch_labels)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle
    assert (
        torch.all(minibatch_labels[:-1] <= minibatch_labels[1:]) is not shuffle
    )


195
196
197
198
199
200
201
202
203
204
205
206
207
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_graphs(batch_size, shuffle, drop_last):
    # Graphs.
    num_graphs = 103
    num_nodes = 10
    num_edges = 20
    graphs = [
        dgl.rand_graph(num_nodes * (i + 1), num_edges * (i + 1))
        for i in range(num_graphs)
    ]
    item_set = gb.ItemSet(graphs)
208
    item_sampler = gb.ItemSampler(
209
210
211
212
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_num_nodes = []
    minibatch_num_edges = []
213
    for i, minibatch in enumerate(item_sampler):
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        is_last = (i + 1) * batch_size >= num_graphs
        if not is_last or num_graphs % batch_size == 0:
            assert minibatch.batch_size == batch_size
        else:
            if not drop_last:
                assert minibatch.batch_size == num_graphs % batch_size
            else:
                assert False
        minibatch_num_nodes.append(minibatch.batch_num_nodes())
        minibatch_num_edges.append(minibatch.batch_num_edges())
    minibatch_num_nodes = torch.cat(minibatch_num_nodes)
    minibatch_num_edges = torch.cat(minibatch_num_edges)
    assert (
        torch.all(minibatch_num_nodes[:-1] <= minibatch_num_nodes[1:])
        is not shuffle
    )
    assert (
        torch.all(minibatch_num_edges[:-1] <= minibatch_num_edges[1:])
        is not shuffle
    )


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_node_pairs(batch_size, shuffle, drop_last):
    # Node pairs.
    num_ids = 103
242
243
    node_pairs = torch.arange(0, 2 * num_ids).reshape(-1, 2)
    item_set = gb.ItemSet(node_pairs, names="node_pairs")
244
    item_sampler = gb.ItemSampler(
245
246
247
248
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
249
250
    for i, minibatch in enumerate(item_sampler):
        assert minibatch.node_pairs is not None
251
        assert isinstance(minibatch.node_pairs, tuple)
252
        assert minibatch.labels is None
253
        src, dst = minibatch.node_pairs
254
255
256
257
258
259
260
261
262
263
264
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        # Verify src and dst IDs match.
265
        assert torch.equal(src + 1, dst)
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
        # Archive batch.
        src_ids.append(src)
        dst_ids.append(dst)
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_node_pairs_labels(batch_size, shuffle, drop_last):
    # Node pairs and labels
    num_ids = 103
281
282
283
    node_pairs = torch.arange(0, 2 * num_ids).reshape(-1, 2)
    labels = node_pairs[:, 0]
    item_set = gb.ItemSet((node_pairs, labels), names=("node_pairs", "labels"))
284
    item_sampler = gb.ItemSampler(
285
286
287
288
289
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
    labels = []
290
291
    for i, minibatch in enumerate(item_sampler):
        assert minibatch.node_pairs is not None
292
        assert isinstance(minibatch.node_pairs, tuple)
293
        assert minibatch.labels is not None
294
        src, dst = minibatch.node_pairs
295
        label = minibatch.labels
296
297
        assert len(src) == len(dst)
        assert len(src) == len(label)
298
299
300
301
302
303
304
305
306
307
308
309
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        assert len(label) == expected_batch_size
        # Verify src/dst IDs and labels match.
310
        assert torch.equal(src + 1, dst)
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
        assert torch.equal(src, label)
        # Archive batch.
        src_ids.append(src)
        dst_ids.append(dst)
        labels.append(label)
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    labels = torch.cat(labels)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
    assert torch.all(labels[:-1] <= labels[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
327
328
def test_ItemSet_node_pairs_negative_dsts(batch_size, shuffle, drop_last):
    # Node pairs and negative destinations.
329
330
    num_ids = 103
    num_negs = 2
331
332
333
334
335
336
337
    node_pairs = torch.arange(0, 2 * num_ids).reshape(-1, 2)
    neg_dsts = torch.arange(
        2 * num_ids, 2 * num_ids + num_ids * num_negs
    ).reshape(-1, num_negs)
    item_set = gb.ItemSet(
        (node_pairs, neg_dsts), names=("node_pairs", "negative_dsts")
    )
338
    item_sampler = gb.ItemSampler(
339
340
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
341
342
    src_ids = []
    dst_ids = []
343
    negs_ids = []
344
345
    for i, minibatch in enumerate(item_sampler):
        assert minibatch.node_pairs is not None
346
        assert isinstance(minibatch.node_pairs, tuple)
347
        assert minibatch.negative_dsts is not None
348
        src, dst = minibatch.node_pairs
349
        negs = minibatch.negative_dsts
350
351
352
353
354
355
356
357
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
358
359
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
360
361
362
        assert negs.dim() == 2
        assert negs.shape[0] == expected_batch_size
        assert negs.shape[1] == num_negs
363
364
365
        # Verify node pairs and negative destinations.
        assert torch.equal(src + 1, dst)
        assert torch.equal(negs[:, 0] + 1, negs[:, 1])
366
        # Archive batch.
367
368
        src_ids.append(src)
        dst_ids.append(dst)
369
        negs_ids.append(negs)
370
371
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
372
    negs_ids = torch.cat(negs_ids)
373
374
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
375
376
377
378
379
380
381
382
    assert torch.all(negs_ids[:-1, 0] <= negs_ids[1:, 0]) is not shuffle
    assert torch.all(negs_ids[:-1, 1] <= negs_ids[1:, 1]) is not shuffle


def test_append_with_other_datapipes():
    num_ids = 100
    batch_size = 4
    item_set = gb.ItemSet(torch.arange(0, num_ids))
383
    data_pipe = gb.ItemSampler(item_set, batch_size)
384
385
386
387
388
    # torchdata.datapipes.iter.Enumerator
    data_pipe = data_pipe.enumerate()
    for i, (idx, data) in enumerate(data_pipe):
        assert i == idx
        assert len(data) == batch_size
389
390


391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSetDict_iterable_only(batch_size, shuffle, drop_last):
    class IterableOnly:
        def __init__(self, start, stop):
            self._start = start
            self._stop = stop

        def __iter__(self):
            return iter(torch.arange(self._start, self._stop))

    num_ids = 205
    ids = {
        "user": gb.ItemSet(IterableOnly(0, 99), names="seed_nodes"),
        "item": gb.ItemSet(IterableOnly(99, num_ids), names="seed_nodes"),
    }
    chained_ids = []
    for key, value in ids.items():
        chained_ids += [(key, v) for v in value]
    item_set = gb.ItemSetDict(ids)
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    for i, minibatch in enumerate(item_sampler):
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seed_nodes is not None
        ids = []
        for _, v in minibatch.seed_nodes.items():
            ids.append(v)
        ids = torch.cat(ids)
        assert len(ids) == expected_batch_size
        minibatch_ids.append(ids)
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


437
438
439
@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
def test_ItemSetDict_seed_nodes(batch_size, shuffle, drop_last):
    # Node IDs.
    num_ids = 205
    ids = {
        "user": gb.ItemSet(torch.arange(0, 99), names="seed_nodes"),
        "item": gb.ItemSet(torch.arange(99, num_ids), names="seed_nodes"),
    }
    chained_ids = []
    for key, value in ids.items():
        chained_ids += [(key, v) for v in value]
    item_set = gb.ItemSetDict(ids)
    item_sampler = gb.ItemSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    for i, minibatch in enumerate(item_sampler):
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seed_nodes is not None
        ids = []
        for _, v in minibatch.seed_nodes.items():
            ids.append(v)
        ids = torch.cat(ids)
        assert len(ids) == expected_batch_size
        minibatch_ids.append(ids)
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSetDict_seed_nodes_labels(batch_size, shuffle, drop_last):
480
481
482
    # Node IDs.
    num_ids = 205
    ids = {
483
484
485
486
487
488
489
490
        "user": gb.ItemSet(
            (torch.arange(0, 99), torch.arange(0, 99)),
            names=("seed_nodes", "labels"),
        ),
        "item": gb.ItemSet(
            (torch.arange(99, num_ids), torch.arange(99, num_ids)),
            names=("seed_nodes", "labels"),
        ),
491
492
493
494
    }
    chained_ids = []
    for key, value in ids.items():
        chained_ids += [(key, v) for v in value]
495
    item_set = gb.ItemSetDict(ids)
496
    item_sampler = gb.ItemSampler(
497
498
499
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
500
501
502
503
504
    minibatch_labels = []
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.seed_nodes is not None
        assert minibatch.labels is not None
505
506
507
508
509
510
511
512
513
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        ids = []
514
        for _, v in minibatch.seed_nodes.items():
515
516
517
518
            ids.append(v)
        ids = torch.cat(ids)
        assert len(ids) == expected_batch_size
        minibatch_ids.append(ids)
519
520
521
522
523
524
        labels = []
        for _, v in minibatch.labels.items():
            labels.append(v)
        labels = torch.cat(labels)
        assert len(labels) == expected_batch_size
        minibatch_labels.append(labels)
525
    minibatch_ids = torch.cat(minibatch_ids)
526
    minibatch_labels = torch.cat(minibatch_labels)
527
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle
528
529
530
    assert (
        torch.all(minibatch_labels[:-1] <= minibatch_labels[1:]) is not shuffle
    )
531
532
533
534
535


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
536
def test_ItemSetDict_node_pairs(batch_size, shuffle, drop_last):
537
538
    # Node pairs.
    num_ids = 103
539
540
541
    total_pairs = 2 * num_ids
    node_pairs_like = torch.arange(0, num_ids * 2).reshape(-1, 2)
    node_pairs_follow = torch.arange(num_ids * 2, num_ids * 4).reshape(-1, 2)
542
    node_pairs_dict = {
543
544
        "user:like:item": gb.ItemSet(node_pairs_like, names="node_pairs"),
        "user:follow:user": gb.ItemSet(node_pairs_follow, names="node_pairs"),
545
    }
546
    item_set = gb.ItemSetDict(node_pairs_dict)
547
    item_sampler = gb.ItemSampler(
548
549
550
551
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
552
553
554
555
556
557
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.node_pairs is not None
        assert minibatch.labels is None
        is_last = (i + 1) * batch_size >= total_pairs
        if not is_last or total_pairs % batch_size == 0:
558
559
560
            expected_batch_size = batch_size
        else:
            if not drop_last:
561
                expected_batch_size = total_pairs % batch_size
562
563
564
565
            else:
                assert False
        src = []
        dst = []
566
567
568
569
        for _, (node_pairs) in minibatch.node_pairs.items():
            assert isinstance(node_pairs, tuple)
            src.append(node_pairs[0])
            dst.append(node_pairs[1])
570
571
572
573
574
575
        src = torch.cat(src)
        dst = torch.cat(dst)
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        src_ids.append(src)
        dst_ids.append(dst)
576
        assert torch.equal(src + 1, dst)
577
578
579
580
581
582
583
584
585
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
586
def test_ItemSetDict_node_pairs_labels(batch_size, shuffle, drop_last):
587
588
589
    # Node pairs and labels
    num_ids = 103
    total_ids = 2 * num_ids
590
591
    node_pairs_like = torch.arange(0, num_ids * 2).reshape(-1, 2)
    node_pairs_follow = torch.arange(num_ids * 2, num_ids * 4).reshape(-1, 2)
592
593
    labels = torch.arange(0, num_ids)
    node_pairs_dict = {
594
        "user:like:item": gb.ItemSet(
595
596
            (node_pairs_like, node_pairs_like[:, 0]),
            names=("node_pairs", "labels"),
597
        ),
598
        "user:follow:user": gb.ItemSet(
599
600
            (node_pairs_follow, node_pairs_follow[:, 0]),
            names=("node_pairs", "labels"),
601
602
        ),
    }
603
    item_set = gb.ItemSetDict(node_pairs_dict)
604
    item_sampler = gb.ItemSampler(
605
606
607
608
609
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
    labels = []
610
611
612
613
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.node_pairs is not None
        assert minibatch.labels is not None
614
615
616
617
618
619
620
621
622
623
624
        is_last = (i + 1) * batch_size >= total_ids
        if not is_last or total_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = total_ids % batch_size
            else:
                assert False
        src = []
        dst = []
        label = []
625
        for _, node_pairs in minibatch.node_pairs.items():
626
627
628
            assert isinstance(node_pairs, tuple)
            src.append(node_pairs[0])
            dst.append(node_pairs[1])
629
        for _, v_label in minibatch.labels.items():
630
631
632
633
634
635
636
637
638
639
            label.append(v_label)
        src = torch.cat(src)
        dst = torch.cat(dst)
        label = torch.cat(label)
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        assert len(label) == expected_batch_size
        src_ids.append(src)
        dst_ids.append(dst)
        labels.append(label)
640
        assert torch.equal(src + 1, dst)
641
642
643
644
645
646
647
648
649
650
651
652
        assert torch.equal(src, label)
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    labels = torch.cat(labels)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
    assert torch.all(labels[:-1] <= labels[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
653
def test_ItemSetDict_node_pairs_negative_dsts(batch_size, shuffle, drop_last):
654
655
656
657
    # Head, tail and negative tails.
    num_ids = 103
    total_ids = 2 * num_ids
    num_negs = 2
658
659
660
661
662
663
664
665
    node_paris_like = torch.arange(0, num_ids * 2).reshape(-1, 2)
    node_pairs_follow = torch.arange(num_ids * 2, num_ids * 4).reshape(-1, 2)
    neg_dsts_like = torch.arange(
        num_ids * 4, num_ids * 4 + num_ids * num_negs
    ).reshape(-1, num_negs)
    neg_dsts_follow = torch.arange(
        num_ids * 4 + num_ids * num_negs, num_ids * 4 + num_ids * num_negs * 2
    ).reshape(-1, num_negs)
666
    data_dict = {
667
668
669
670
671
672
673
674
        "user:like:item": gb.ItemSet(
            (node_paris_like, neg_dsts_like),
            names=("node_pairs", "negative_dsts"),
        ),
        "user:follow:user": gb.ItemSet(
            (node_pairs_follow, neg_dsts_follow),
            names=("node_pairs", "negative_dsts"),
        ),
675
    }
676
    item_set = gb.ItemSetDict(data_dict)
677
    item_sampler = gb.ItemSampler(
678
679
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
680
681
    src_ids = []
    dst_ids = []
682
    negs_ids = []
683
684
685
686
    for i, minibatch in enumerate(item_sampler):
        assert isinstance(minibatch, gb.MiniBatch)
        assert minibatch.node_pairs is not None
        assert minibatch.negative_dsts is not None
687
688
689
690
691
692
693
694
        is_last = (i + 1) * batch_size >= total_ids
        if not is_last or total_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = total_ids % batch_size
            else:
                assert False
695
696
        src = []
        dst = []
697
        negs = []
698
        for _, node_pairs in minibatch.node_pairs.items():
699
700
701
            assert isinstance(node_pairs, tuple)
            src.append(node_pairs[0])
            dst.append(node_pairs[1])
702
        for _, v_negs in minibatch.negative_dsts.items():
703
            negs.append(v_negs)
704
705
        src = torch.cat(src)
        dst = torch.cat(dst)
706
        negs = torch.cat(negs)
707
708
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
709
        assert len(negs) == expected_batch_size
710
711
        src_ids.append(src)
        dst_ids.append(dst)
712
713
714
715
        negs_ids.append(negs)
        assert negs.dim() == 2
        assert negs.shape[0] == expected_batch_size
        assert negs.shape[1] == num_negs
716
717
718
719
        assert torch.equal(src + 1, dst)
        assert torch.equal(negs[:, 0] + 1, negs[:, 1])
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
720
    negs_ids = torch.cat(negs_ids)
721
722
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
723
    assert torch.all(negs_ids[:-1] <= negs_ids[1:]) is not shuffle
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846


def distributed_item_sampler_subprocess(
    proc_id,
    nprocs,
    item_set,
    num_ids,
    batch_size,
    shuffle,
    drop_last,
    drop_uneven_inputs,
):
    # On Windows, the init method can only be file.
    init_method = (
        f"file:///{os.path.join(os.getcwd(), 'dis_tempfile')}"
        if platform == "win32"
        else "tcp://127.0.0.1:12345"
    )
    dist.init_process_group(
        backend="gloo",  # Use Gloo backend for CPU multiprocessing
        init_method=init_method,
        world_size=nprocs,
        rank=proc_id,
    )

    # Create a DistributedItemSampler.
    item_sampler = gb.DistributedItemSampler(
        item_set,
        batch_size=batch_size,
        shuffle=shuffle,
        drop_last=drop_last,
        drop_uneven_inputs=drop_uneven_inputs,
    )
    feature_fetcher = gb.FeatureFetcher(
        item_sampler,
        gb.BasicFeatureStore({}),
        [],
    )
    data_loader = gb.SingleProcessDataLoader(feature_fetcher)

    # Count the numbers of items and batches.
    num_items = 0
    sampled_count = torch.zeros(num_ids, dtype=torch.int32)
    for i in data_loader:
        # Count how many times each item is sampled.
        sampled_count[i.seed_nodes] += 1
        num_items += i.seed_nodes.size(0)
    num_batches = len(list(item_sampler))

    # Calculate expected numbers of items and batches.
    expected_num_items = num_ids // nprocs + (num_ids % nprocs > proc_id)
    if drop_last and expected_num_items % batch_size > 0:
        expected_num_items -= expected_num_items % batch_size
    expected_num_batches = expected_num_items // batch_size + (
        (not drop_last) and (expected_num_items % batch_size > 0)
    )
    if drop_uneven_inputs:
        if (
            (not drop_last)
            and (num_ids % (nprocs * batch_size) < nprocs)
            and (num_ids % (nprocs * batch_size) > proc_id)
        ):
            expected_num_batches -= 1
            expected_num_items -= 1
        elif (
            drop_last
            and (nprocs * batch_size - num_ids % (nprocs * batch_size) < nprocs)
            and (num_ids % nprocs > proc_id)
        ):
            expected_num_batches -= 1
            expected_num_items -= batch_size
        num_batches_tensor = torch.tensor(num_batches)
        dist.broadcast(num_batches_tensor, 0)
        # Test if the number of batches are the same for all processes.
        assert num_batches_tensor == num_batches

    # Add up results from all processes.
    dist.reduce(sampled_count, 0)

    try:
        # Check if the numbers are as expected.
        assert num_items == expected_num_items
        assert num_batches == expected_num_batches

        # Make sure no item is sampled more than once.
        assert sampled_count.max() <= 1
    finally:
        dist.destroy_process_group()


@pytest.mark.parametrize("num_ids", [24, 30, 32, 34, 36])
@pytest.mark.parametrize("shuffle", [False, True])
@pytest.mark.parametrize("drop_last", [False, True])
@pytest.mark.parametrize("drop_uneven_inputs", [False, True])
def test_DistributedItemSampler(
    num_ids, shuffle, drop_last, drop_uneven_inputs
):
    nprocs = 4
    batch_size = 4
    item_set = gb.ItemSet(torch.arange(0, num_ids), names="seed_nodes")

    # On Windows, if the process group initialization file already exists,
    # the program may hang. So we need to delete it if it exists.
    if platform == "win32":
        try:
            os.remove(os.path.join(os.getcwd(), "dis_tempfile"))
        except FileNotFoundError:
            pass

    mp.spawn(
        distributed_item_sampler_subprocess,
        args=(
            nprocs,
            item_set,
            num_ids,
            batch_size,
            shuffle,
            drop_last,
            drop_uneven_inputs,
        ),
        nprocs=nprocs,
        join=True,
    )