test_sampling.py 45.8 KB
Newer Older
1
2
3
4
import dgl
import backend as F
import numpy as np
import unittest
5
from collections import defaultdict
6
import pytest
7

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
8
def check_random_walk(g, metapath, traces, ntypes, prob=None, trace_eids=None):
9
10
11
12
13
14
15
16
17
18
19
20
    traces = F.asnumpy(traces)
    ntypes = F.asnumpy(ntypes)
    for j in range(traces.shape[1] - 1):
        assert ntypes[j] == g.get_ntype_id(g.to_canonical_etype(metapath[j])[0])
        assert ntypes[j + 1] == g.get_ntype_id(g.to_canonical_etype(metapath[j])[2])

    for i in range(traces.shape[0]):
        for j in range(traces.shape[1] - 1):
            assert g.has_edge_between(
                traces[i, j], traces[i, j+1], etype=metapath[j])
            if prob is not None and prob in g.edges[metapath[j]].data:
                p = F.asnumpy(g.edges[metapath[j]].data['p'])
21
                eids = g.edge_ids(traces[i, j], traces[i, j+1], etype=metapath[j])
22
                assert p[eids] != 0
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
23
24
25
            if trace_eids is not None:
                u, v = g.find_edges(trace_eids[i, j], etype=metapath[j])
                assert (u == traces[i, j]) and (v == traces[i, j + 1])
26

27
28
@unittest.skipIf(F._default_context_str == 'gpu', reason="Random walk with non-uniform prob is not supported in GPU.")
def test_non_uniform_random_walk():
29
    g2 = dgl.heterograph({
30
31
            ('user', 'follow', 'user'): ([0, 1, 1, 2, 3], [1, 2, 3, 0, 0])
        }).to(F.ctx())
32
    g4 = dgl.heterograph({
33
34
35
36
            ('user', 'follow', 'user'): ([0, 1, 1, 2, 3], [1, 2, 3, 0, 0]),
            ('user', 'view', 'item'): ([0, 0, 1, 2, 3, 3], [0, 1, 1, 2, 2, 1]),
            ('item', 'viewed-by', 'user'): ([0, 1, 1, 2, 2, 1], [0, 0, 1, 2, 3, 3])
        }).to(F.ctx())
37
38

    g2.edata['p'] = F.tensor([3, 0, 3, 3, 3], dtype=F.float32)
39
    g2.edata['p2'] = F.tensor([[3], [0], [3], [3], [3]], dtype=F.float32)
40
41
42
    g4.edges['follow'].data['p'] = F.tensor([3, 0, 3, 3, 3], dtype=F.float32)
    g4.edges['viewed-by'].data['p'] = F.tensor([1, 1, 1, 1, 1, 1], dtype=F.float32)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
43
44
45
    traces, eids, ntypes = dgl.sampling.random_walk(
        g2, [0, 1, 2, 3, 0, 1, 2, 3], length=4, prob='p', return_eids=True)
    check_random_walk(g2, ['follow'] * 4, traces, ntypes, 'p', trace_eids=eids)
46

47
48
49
50
51
52
53
54
    try:
        traces, ntypes = dgl.sampling.random_walk(
            g2, [0, 1, 2, 3, 0, 1, 2, 3], length=4, prob='p2')
        fail = False
    except dgl.DGLError:
        fail = True
    assert fail

55
    metapath = ['follow', 'view', 'viewed-by'] * 2
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
56
57
58
59
60
61
62
    traces, eids, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath, prob='p', return_eids=True)
    check_random_walk(g4, metapath, traces, ntypes, 'p', trace_eids=eids)
    traces, eids, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath, prob='p', restart_prob=0., return_eids=True)
    check_random_walk(g4, metapath, traces, ntypes, 'p', trace_eids=eids)
    traces, eids, ntypes = dgl.sampling.random_walk(
63
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath, prob='p',
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
64
65
66
        restart_prob=F.zeros((6,), F.float32, F.cpu()), return_eids=True)
    check_random_walk(g4, metapath, traces, ntypes, 'p', trace_eids=eids)
    traces, eids, ntypes = dgl.sampling.random_walk(
67
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath + ['follow'], prob='p',
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
68
69
        restart_prob=F.tensor([0, 0, 0, 0, 0, 0, 1], F.float32), return_eids=True)
    check_random_walk(g4, metapath, traces[:, :7], ntypes[:7], 'p', trace_eids=eids)
70
71
    assert (F.asnumpy(traces[:, 7]) == -1).all()

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
def _use_uva():
    if F._default_context_str == 'cpu':
        return [False]
    else:
        return [True, False]

@pytest.mark.parametrize('use_uva', _use_uva())
def test_uniform_random_walk(use_uva):
    g1 = dgl.heterograph({
            ('user', 'follow', 'user'): ([0, 1, 2], [1, 2, 0])
        })
    g2 = dgl.heterograph({
            ('user', 'follow', 'user'): ([0, 1, 1, 2, 3], [1, 2, 3, 0, 0])
        })
    g3 = dgl.heterograph({
            ('user', 'follow', 'user'): ([0, 1, 2], [1, 2, 0]),
            ('user', 'view', 'item'): ([0, 1, 2], [0, 1, 2]),
            ('item', 'viewed-by', 'user'): ([0, 1, 2], [0, 1, 2])
        })
    g4 = dgl.heterograph({
            ('user', 'follow', 'user'): ([0, 1, 1, 2, 3], [1, 2, 3, 0, 0]),
            ('user', 'view', 'item'): ([0, 0, 1, 2, 3, 3], [0, 1, 1, 2, 2, 1]),
            ('item', 'viewed-by', 'user'): ([0, 1, 1, 2, 2, 1], [0, 0, 1, 2, 3, 3])
        })

    if use_uva:
        for g in (g1, g2, g3, g4):
            g.create_formats_()
            g.pin_memory_()
    elif F._default_context_str == 'gpu':
        g1 = g1.to(F.ctx())
        g2 = g2.to(F.ctx())
        g3 = g3.to(F.ctx())
        g4 = g4.to(F.ctx())

    try:
        traces, eids, ntypes = dgl.sampling.random_walk(
            g1, F.tensor([0, 1, 2, 0, 1, 2], dtype=g1.idtype), length=4, return_eids=True)
        check_random_walk(g1, ['follow'] * 4, traces, ntypes, trace_eids=eids)
        if F._default_context_str == 'cpu':
            with pytest.raises(dgl.DGLError):
                dgl.sampling.random_walk(g1, F.tensor([0, 1, 2, 10], dtype=g1.idtype), length=4, return_eids=True)
        traces, eids, ntypes = dgl.sampling.random_walk(
            g1, F.tensor([0, 1, 2, 0, 1, 2], dtype=g1.idtype), length=4, restart_prob=0., return_eids=True)
        check_random_walk(g1, ['follow'] * 4, traces, ntypes, trace_eids=eids)
        traces, ntypes = dgl.sampling.random_walk(
            g1, F.tensor([0, 1, 2, 0, 1, 2], dtype=g1.idtype), length=4, restart_prob=F.zeros((4,), F.float32))
        check_random_walk(g1, ['follow'] * 4, traces, ntypes)
        traces, ntypes = dgl.sampling.random_walk(
            g1, F.tensor([0, 1, 2, 0, 1, 2], dtype=g1.idtype), length=5,
            restart_prob=F.tensor([0, 0, 0, 0, 1], dtype=F.float32))
        check_random_walk(
            g1, ['follow'] * 4, F.slice_axis(traces, 1, 0, 5), F.slice_axis(ntypes, 0, 0, 5))
        assert (F.asnumpy(traces)[:, 5] == -1).all()

        traces, eids, ntypes = dgl.sampling.random_walk(
            g2, F.tensor([0, 1, 2, 3, 0, 1, 2, 3], dtype=g2.idtype), length=4, return_eids=True)
        check_random_walk(g2, ['follow'] * 4, traces, ntypes, trace_eids=eids)

        metapath = ['follow', 'view', 'viewed-by'] * 2
        traces, eids, ntypes = dgl.sampling.random_walk(
            g3, F.tensor([0, 1, 2, 0, 1, 2], dtype=g3.idtype), metapath=metapath, return_eids=True)
        check_random_walk(g3, metapath, traces, ntypes, trace_eids=eids)

        metapath = ['follow', 'view', 'viewed-by'] * 2
        traces, eids, ntypes = dgl.sampling.random_walk(
            g4, F.tensor([0, 1, 2, 3, 0, 1, 2, 3], dtype=g4.idtype), metapath=metapath, return_eids=True)
        check_random_walk(g4, metapath, traces, ntypes, trace_eids=eids)

        traces, eids, ntypes = dgl.sampling.random_walk(
            g4, F.tensor([0, 1, 2, 0, 1, 2], dtype=g4.idtype), metapath=metapath, return_eids=True)
        check_random_walk(g4, metapath, traces, ntypes, trace_eids=eids)
    finally:    # make sure to unpin the graphs even if some test fails
        for g in (g1, g2, g3, g4):
            if g.is_pinned():
                g.unpin_memory_()

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU random walk not implemented")
def test_node2vec():
    g1 = dgl.heterograph({
        ('user', 'follow', 'user'): ([0, 1, 2], [1, 2, 0])
        })
    g2 = dgl.heterograph({
        ('user', 'follow', 'user'): ([0, 1, 1, 2, 3], [1, 2, 3, 0, 0])
        })
    g2.edata['p'] = F.tensor([3, 0, 3, 3, 3], dtype=F.float32)

    ntypes = F.zeros((5,), dtype=F.int64)

    traces, eids = dgl.sampling.node2vec_random_walk(g1, [0, 1, 2, 0, 1, 2], 1, 1, 4, return_eids=True)
    check_random_walk(g1, ['follow'] * 4, traces, ntypes, trace_eids=eids)

    traces, eids = dgl.sampling.node2vec_random_walk(
        g2, [0, 1, 2, 3, 0, 1, 2, 3], 1, 1, 4, prob='p', return_eids=True)
    check_random_walk(g2, ['follow'] * 4, traces, ntypes, 'p', trace_eids=eids)

168
169
170
171
172
173
174
175
176
177
178
179
180
181
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU pack traces not implemented")
def test_pack_traces():
    traces, types = (np.array(
        [[ 0,  1, -1, -1, -1, -1, -1],
         [ 0,  1,  1,  3,  0,  0,  0]], dtype='int64'),
        np.array([0, 0, 1, 0, 0, 1, 0], dtype='int64'))
    traces = F.zerocopy_from_numpy(traces)
    types = F.zerocopy_from_numpy(types)
    result = dgl.sampling.pack_traces(traces, types)
    assert F.array_equal(result[0], F.tensor([0, 1, 0, 1, 1, 3, 0, 0, 0], dtype=F.int64))
    assert F.array_equal(result[1], F.tensor([0, 0, 0, 0, 1, 0, 0, 1, 0], dtype=F.int64))
    assert F.array_equal(result[2], F.tensor([2, 7], dtype=F.int64))
    assert F.array_equal(result[3], F.tensor([0, 2], dtype=F.int64))

182
183
@pytest.mark.parametrize('use_uva', _use_uva())
def test_pinsage_sampling(use_uva):
184
    def _test_sampler(g, sampler, ntype):
185
        seeds = F.copy_to(F.tensor([0, 2], dtype=g.idtype), F.ctx())
186
        neighbor_g = sampler(seeds)
187
188
189
190
191
192
193
        assert neighbor_g.ntypes == [ntype]
        u, v = neighbor_g.all_edges(form='uv', order='eid')
        uv = list(zip(F.asnumpy(u).tolist(), F.asnumpy(v).tolist()))
        assert (1, 0) in uv or (0, 0) in uv
        assert (2, 2) in uv or (3, 2) in uv

    g = dgl.heterograph({
194
195
        ('item', 'bought-by', 'user'): ([0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 2, 3, 2, 3]),
        ('user', 'bought', 'item'): ([0, 1, 0, 1, 2, 3, 2, 3], [0, 0, 1, 1, 2, 2, 3, 3])})
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    if use_uva:
        g.create_formats_()
        g.pin_memory_()
    elif F._default_context_str == 'gpu':
        g = g.to(F.ctx())
    try:
        sampler = dgl.sampling.PinSAGESampler(g, 'item', 'user', 4, 0.5, 3, 2)
        _test_sampler(g, sampler, 'item')
        sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2, ['bought-by', 'bought'])
        _test_sampler(g, sampler, 'item')
        sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2,
            [('item', 'bought-by', 'user'), ('user', 'bought', 'item')])
        _test_sampler(g, sampler, 'item')
    finally:
        if g.is_pinned():
            g.unpin_memory_()

213
214
    g = dgl.graph(([0, 0, 1, 1, 2, 2, 3, 3],
                   [0, 1, 0, 1, 2, 3, 2, 3]))
215
216
217
218
219
220
221
222
223
224
225
226
    if use_uva:
        g.create_formats_()
        g.pin_memory_()
    elif F._default_context_str == 'gpu':
        g = g.to(F.ctx())
    try:
        sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2)
        _test_sampler(g, sampler, g.ntypes[0])
    finally:
        if g.is_pinned():
            g.unpin_memory_()

227
    g = dgl.heterograph({
228
229
230
        ('A', 'AB', 'B'): ([0, 2], [1, 3]),
        ('B', 'BC', 'C'): ([1, 3], [2, 1]),
        ('C', 'CA', 'A'): ([2, 1], [0, 2])})
231
232
233
234
235
236
237
238
239
240
241
    if use_uva:
        g.create_formats_()
        g.pin_memory_()
    elif F._default_context_str == 'gpu':
        g = g.to(F.ctx())
    try:
        sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2, ['AB', 'BC', 'CA'])
        _test_sampler(g, sampler, 'A')
    finally:
        if g.is_pinned():
            g.unpin_memory_()
242

243
244
245
246
def _gen_neighbor_sampling_test_graph(hypersparse, reverse):
    if hypersparse:
        # should crash if allocated a CSR
        card = 1 << 50
247
        num_nodes_dict = {'user': card, 'game': card, 'coin': card}
248
249
    else:
        card = None
250
251
        num_nodes_dict = None

252
    if reverse:
253
254
255
        g = dgl.heterograph({
            ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2], [1, 2, 3, 0, 2, 3, 0])
        }, {'user': card if card is not None else 4})
256
        g = g.to(F.ctx())
257
        g.edata['prob'] = F.tensor([.5, .5, 0., .5, .5, 0., 1.], dtype=F.float32)
258
259
260
261
262
263
264
        hg = dgl.heterograph({
            ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2],
                                         [1, 2, 3, 0, 2, 3, 0]),
            ('game', 'play', 'user'): ([0, 1, 2, 2], [0, 0, 1, 3]),
            ('user', 'liked-by', 'game'): ([0, 1, 2, 0, 3, 0], [2, 2, 2, 1, 1, 0]),
            ('coin', 'flips', 'user'): ([0, 0, 0, 0], [0, 1, 2, 3])
        }, num_nodes_dict)
265
        hg = hg.to(F.ctx())
266
    else:
267
268
269
        g = dgl.heterograph({
            ('user', 'follow', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2])
        }, {'user': card if card is not None else 4})
270
        g = g.to(F.ctx())
271
        g.edata['prob'] = F.tensor([.5, .5, 0., .5, .5, 0., 1.], dtype=F.float32)
272
273
274
275
276
277
278
        hg = dgl.heterograph({
            ('user', 'follow', 'user'): ([1, 2, 3, 0, 2, 3, 0],
                                         [0, 0, 0, 1, 1, 1, 2]),
            ('user', 'play', 'game'): ([0, 0, 1, 3], [0, 1, 2, 2]),
            ('game', 'liked-by', 'user'): ([2, 2, 2, 1, 1, 0], [0, 1, 2, 0, 3, 0]),
            ('user', 'flips', 'coin'): ([0, 1, 2, 3], [0, 0, 0, 0])
        }, num_nodes_dict)
279
        hg = hg.to(F.ctx())
280
281
282
    hg.edges['follow'].data['prob'] = F.tensor([.5, .5, 0., .5, .5, 0., 1.], dtype=F.float32)
    hg.edges['play'].data['prob'] = F.tensor([.8, .5, .5, .5], dtype=F.float32)
    hg.edges['liked-by'].data['prob'] = F.tensor([.3, .5, .2, .5, .1, .1], dtype=F.float32)
283
284
285
286
287
288
289
290
291

    return g, hg

def _gen_neighbor_topk_test_graph(hypersparse, reverse):
    if hypersparse:
        # should crash if allocated a CSR
        card = 1 << 50
    else:
        card = None
292

293
    if reverse:
294
295
296
        g = dgl.heterograph({
            ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2], [1, 2, 3, 0, 2, 3, 0])
        })
297
        g.edata['weight'] = F.tensor([.5, .3, 0., -5., 22., 0., 1.], dtype=F.float32)
298
299
300
301
302
303
304
        hg = dgl.heterograph({
            ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2],
                                         [1, 2, 3, 0, 2, 3, 0]),
            ('game', 'play', 'user'): ([0, 1, 2, 2], [0, 0, 1, 3]),
            ('user', 'liked-by', 'game'): ([0, 1, 2, 0, 3, 0], [2, 2, 2, 1, 1, 0]),
            ('coin', 'flips', 'user'): ([0, 0, 0, 0], [0, 1, 2, 3])
        })
305
    else:
306
307
308
        g = dgl.heterograph({
            ('user', 'follow', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2])
        })
309
        g.edata['weight'] = F.tensor([.5, .3, 0., -5., 22., 0., 1.], dtype=F.float32)
310
311
312
313
314
315
316
317
318
319
320
        hg = dgl.heterograph({
            ('user', 'follow', 'user'): ([1, 2, 3, 0, 2, 3, 0],
                                         [0, 0, 0, 1, 1, 1, 2]),
            ('user', 'play', 'game'): ([0, 0, 1, 3], [0, 1, 2, 2]),
            ('game', 'liked-by', 'user'): ([2, 2, 2, 1, 1, 0], [0, 1, 2, 0, 3, 0]),
            ('user', 'flips', 'coin'): ([0, 1, 2, 3], [0, 0, 0, 0])
        })
    hg.edges['follow'].data['weight'] = F.tensor([.5, .3, 0., -5., 22., 0., 1.], dtype=F.float32)
    hg.edges['play'].data['weight'] = F.tensor([.8, .5, .4, .5], dtype=F.float32)
    hg.edges['liked-by'].data['weight'] = F.tensor([.3, .5, .2, .5, .1, .1], dtype=F.float32)
    hg.edges['flips'].data['weight'] = F.tensor([10, 2, 13, -1], dtype=F.float32)
321
322
    return g, hg

323
def _test_sample_neighbors(hypersparse, prob):
324
325
326
    g, hg = _gen_neighbor_sampling_test_graph(hypersparse, False)

    def _test1(p, replace):
327
328
329
330
331
332
333
334
        subg = dgl.sampling.sample_neighbors(g, [0, 1], -1, prob=p, replace=replace)
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.in_edges([0, 1])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

335
336
337
338
339
340
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(g, [0, 1], 2, prob=p, replace=replace)
            assert subg.number_of_nodes() == g.number_of_nodes()
            assert subg.number_of_edges() == 4
            u, v = subg.edges()
            assert set(F.asnumpy(F.unique(v))) == {0, 1}
341
            assert F.array_equal(F.astype(g.has_edges_between(u, v), F.int64), F.ones((4,), dtype=F.int64))
342
343
344
345
346
347
348
349
            assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
            edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
            if not replace:
                # check no duplication
                assert len(edge_set) == 4
            if p is not None:
                assert not (3, 0) in edge_set
                assert not (3, 1) in edge_set
350
351
    _test1(prob, True)   # w/ replacement, uniform
    _test1(prob, False)  # w/o replacement, uniform
352
353

    def _test2(p, replace):  # fanout > #neighbors
354
355
356
357
358
359
360
361
        subg = dgl.sampling.sample_neighbors(g, [0, 2], -1, prob=p, replace=replace)
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.in_edges([0, 2])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

362
363
364
365
366
367
368
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(g, [0, 2], 2, prob=p, replace=replace)
            assert subg.number_of_nodes() == g.number_of_nodes()
            num_edges = 4 if replace else 3
            assert subg.number_of_edges() == num_edges
            u, v = subg.edges()
            assert set(F.asnumpy(F.unique(v))) == {0, 2}
369
            assert F.array_equal(F.astype(g.has_edges_between(u, v), F.int64), F.ones((num_edges,), dtype=F.int64))
370
371
372
373
374
375
376
            assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
            edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
            if not replace:
                # check no duplication
                assert len(edge_set) == num_edges
            if p is not None:
                assert not (3, 0) in edge_set
377
378
    _test2(prob, True)   # w/ replacement, uniform
    _test2(prob, False)  # w/o replacement, uniform
379
380

    def _test3(p, replace):
381
382
383
384
385
386
387
388
        subg = dgl.sampling.sample_neighbors(hg, {'user': [0, 1], 'game': 0}, -1, prob=p, replace=replace)
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        assert subg['follow'].number_of_edges() == 6
        assert subg['play'].number_of_edges() == 1
        assert subg['liked-by'].number_of_edges() == 4
        assert subg['flips'].number_of_edges() == 0

389
390
391
392
393
394
395
396
397
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(hg, {'user' : [0,1], 'game' : 0}, 2, prob=p, replace=replace)
            assert len(subg.ntypes) == 3
            assert len(subg.etypes) == 4
            assert subg['follow'].number_of_edges() == 4
            assert subg['play'].number_of_edges() == 2 if replace else 1
            assert subg['liked-by'].number_of_edges() == 4 if replace else 3
            assert subg['flips'].number_of_edges() == 0

398
399
    _test3(prob, True)   # w/ replacement, uniform
    _test3(prob, False)  # w/o replacement, uniform
400
401
402

    # test different fanouts for different relations
    for i in range(10):
403
404
        subg = dgl.sampling.sample_neighbors(
            hg,
405
406
            {'user' : [0,1], 'game' : 0, 'coin': 0},
            {'follow': 1, 'play': 2, 'liked-by': 0, 'flips': -1},
407
            replace=True)
408
409
410
411
412
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        assert subg['follow'].number_of_edges() == 2
        assert subg['play'].number_of_edges() == 2
        assert subg['liked-by'].number_of_edges() == 0
413
        assert subg['flips'].number_of_edges() == 4
414
415
416
417
418

def _test_sample_neighbors_outedge(hypersparse):
    g, hg = _gen_neighbor_sampling_test_graph(hypersparse, True)

    def _test1(p, replace):
419
420
421
422
423
424
425
426
        subg = dgl.sampling.sample_neighbors(g, [0, 1], -1, prob=p, replace=replace, edge_dir='out')
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.out_edges([0, 1])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

427
428
429
430
431
432
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(g, [0, 1], 2, prob=p, replace=replace, edge_dir='out')
            assert subg.number_of_nodes() == g.number_of_nodes()
            assert subg.number_of_edges() == 4
            u, v = subg.edges()
            assert set(F.asnumpy(F.unique(u))) == {0, 1}
433
            assert F.array_equal(F.astype(g.has_edges_between(u, v), F.int64), F.ones((4,), dtype=F.int64))
434
435
436
437
438
439
440
441
442
443
444
445
446
447
            assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
            edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
            if not replace:
                # check no duplication
                assert len(edge_set) == 4
            if p is not None:
                assert not (0, 3) in edge_set
                assert not (1, 3) in edge_set
    _test1(None, True)   # w/ replacement, uniform
    _test1(None, False)  # w/o replacement, uniform
    _test1('prob', True)   # w/ replacement
    _test1('prob', False)  # w/o replacement

    def _test2(p, replace):  # fanout > #neighbors
448
449
450
451
452
453
454
455
        subg = dgl.sampling.sample_neighbors(g, [0, 2], -1, prob=p, replace=replace, edge_dir='out')
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.out_edges([0, 2])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

456
457
458
459
460
461
462
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(g, [0, 2], 2, prob=p, replace=replace, edge_dir='out')
            assert subg.number_of_nodes() == g.number_of_nodes()
            num_edges = 4 if replace else 3
            assert subg.number_of_edges() == num_edges
            u, v = subg.edges()
            assert set(F.asnumpy(F.unique(u))) == {0, 2}
463
            assert F.array_equal(F.astype(g.has_edges_between(u, v), F.int64), F.ones((num_edges,), dtype=F.int64))
464
465
466
467
468
469
470
471
472
473
474
475
476
            assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
            edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
            if not replace:
                # check no duplication
                assert len(edge_set) == num_edges
            if p is not None:
                assert not (0, 3) in edge_set
    _test2(None, True)   # w/ replacement, uniform
    _test2(None, False)  # w/o replacement, uniform
    _test2('prob', True)   # w/ replacement
    _test2('prob', False)  # w/o replacement

    def _test3(p, replace):
477
478
479
480
481
482
483
484
        subg = dgl.sampling.sample_neighbors(hg, {'user': [0, 1], 'game': 0}, -1, prob=p, replace=replace, edge_dir='out')
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        assert subg['follow'].number_of_edges() == 6
        assert subg['play'].number_of_edges() == 1
        assert subg['liked-by'].number_of_edges() == 4
        assert subg['flips'].number_of_edges() == 0

485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(hg, {'user' : [0,1], 'game' : 0}, 2, prob=p, replace=replace, edge_dir='out')
            assert len(subg.ntypes) == 3
            assert len(subg.etypes) == 4
            assert subg['follow'].number_of_edges() == 4
            assert subg['play'].number_of_edges() == 2 if replace else 1
            assert subg['liked-by'].number_of_edges() == 4 if replace else 3
            assert subg['flips'].number_of_edges() == 0

    _test3(None, True)   # w/ replacement, uniform
    _test3(None, False)  # w/o replacement, uniform
    _test3('prob', True)   # w/ replacement
    _test3('prob', False)  # w/o replacement

def _test_sample_neighbors_topk(hypersparse):
    g, hg = _gen_neighbor_topk_test_graph(hypersparse, False)

    def _test1():
503
504
505
506
507
508
509
510
        subg = dgl.sampling.select_topk(g, -1, 'weight', [0, 1])
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.in_edges([0, 1])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

511
        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 1])
512
513
514
515
516
517
518
519
520
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 4
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        assert edge_set == {(2,0),(1,0),(2,1),(3,1)}
    _test1()

    def _test2():  # k > #neighbors
521
522
523
524
525
526
527
528
        subg = dgl.sampling.select_topk(g, -1, 'weight', [0, 2])
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.in_edges([0, 2])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

529
        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 2])
530
531
532
533
534
535
536
537
538
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 3
        u, v = subg.edges()
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert edge_set == {(2,0),(1,0),(0,2)}
    _test2()

    def _test3():
539
        subg = dgl.sampling.select_topk(hg, 2, 'weight', {'user' : [0,1], 'game' : 0})
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        u, v = subg['follow'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
        assert edge_set == {(2,0),(1,0),(2,1),(3,1)}
        u, v = subg['play'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
        assert edge_set == {(0,0)}
        u, v = subg['liked-by'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
        assert edge_set == {(2,0),(2,1),(1,0)}
        assert subg['flips'].number_of_edges() == 0
    _test3()

    # test different k for different relations
558
    subg = dgl.sampling.select_topk(
559
        hg, {'follow': 1, 'play': 2, 'liked-by': 0, 'flips': -1}, 'weight', {'user' : [0,1], 'game' : 0, 'coin': 0})
560
561
562
563
564
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4
    assert subg['follow'].number_of_edges() == 2
    assert subg['play'].number_of_edges() == 1
    assert subg['liked-by'].number_of_edges() == 0
565
    assert subg['flips'].number_of_edges() == 4
566
567
568
569
570

def _test_sample_neighbors_topk_outedge(hypersparse):
    g, hg = _gen_neighbor_topk_test_graph(hypersparse, True)

    def _test1():
571
572
573
574
575
576
577
578
        subg = dgl.sampling.select_topk(g, -1, 'weight', [0, 1], edge_dir='out')
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.out_edges([0, 1])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

579
        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 1], edge_dir='out')
580
581
582
583
584
585
586
587
588
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 4
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        assert edge_set == {(0,2),(0,1),(1,2),(1,3)}
    _test1()

    def _test2():  # k > #neighbors
589
590
591
592
593
594
595
596
        subg = dgl.sampling.select_topk(g, -1, 'weight', [0, 2], edge_dir='out')
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.out_edges([0, 2])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

597
        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 2], edge_dir='out')
598
599
600
601
602
603
604
605
606
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 3
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        assert edge_set == {(0,2),(0,1),(2,0)}
    _test2()

    def _test3():
607
        subg = dgl.sampling.select_topk(hg, 2, 'weight', {'user' : [0,1], 'game' : 0}, edge_dir='out')
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        u, v = subg['follow'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
        assert edge_set == {(0,2),(0,1),(1,2),(1,3)}
        u, v = subg['play'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
        assert edge_set == {(0,0)}
        u, v = subg['liked-by'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
        assert edge_set == {(0,2),(1,2),(0,1)}
        assert subg['flips'].number_of_edges() == 0
    _test3()

625
626
627
628
629
630
631
def test_sample_neighbors_noprob():
    _test_sample_neighbors(False, None)
    #_test_sample_neighbors(True)

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors with probability is not implemented")
def test_sample_neighbors_prob():
    _test_sample_neighbors(False, 'prob')
632
    #_test_sample_neighbors(True)
633
634
635
636

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_outedge():
    _test_sample_neighbors_outedge(False)
637
    #_test_sample_neighbors_outedge(True)
638
639
640
641

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_topk():
    _test_sample_neighbors_topk(False)
642
    #_test_sample_neighbors_topk(True)
643
644
645
646

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_topk_outedge():
    _test_sample_neighbors_topk_outedge(False)
647
    #_test_sample_neighbors_topk_outedge(True)
648

649
650
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_with_0deg():
651
    g = dgl.graph(([], []), num_nodes=5)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
652
653
654
655
656
657
658
659
    sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='in', replace=False)
    assert sg.number_of_edges() == 0
    sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='in', replace=True)
    assert sg.number_of_edges() == 0
    sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='out', replace=False)
    assert sg.number_of_edges() == 0
    sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='out', replace=True)
    assert sg.number_of_edges() == 0
660

661
662
663
664
665
666
667
668
669
670
671
672
def create_test_graph(num_nodes, num_edges_per_node, bipartite=False):
    src = np.concatenate(
        [np.array([i] * num_edges_per_node) for i in range(num_nodes)])
    dst = np.concatenate(
        [np.random.choice(num_nodes, num_edges_per_node, replace=False) for i in range(num_nodes)]
    )
    if bipartite:
        g = dgl.heterograph({("u", "e", "v") : (src, dst)})
    else:
        g = dgl.graph((src, dst))
    return g

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
def create_etype_test_graph(num_nodes, num_edges_per_node, rare_cnt):
    src = np.concatenate(
        [np.random.choice(num_nodes, num_edges_per_node, replace=False) for i in range(num_nodes)]
    )
    dst = np.concatenate(
        [np.array([i] * num_edges_per_node) for i in range(num_nodes)])

    minor_src = np.concatenate(
        [np.random.choice(num_nodes, 2, replace=False) for i in range(num_nodes)]
    )
    minor_dst = np.concatenate(
        [np.array([i] * 2) for i in range(num_nodes)])

    most_zero_src = np.concatenate(
        [np.random.choice(num_nodes, num_edges_per_node, replace=False) for i in range(rare_cnt)]
    )
    most_zero_dst = np.concatenate(
        [np.array([i] * num_edges_per_node) for i in range(rare_cnt)])


    g = dgl.heterograph({("v", "e_major", "u") : (src, dst),
                         ("u", "e_major_rev", "v") : (dst, src),
                         ("v2", "e_minor", "u") : (minor_src, minor_dst),
                         ("v2", "most_zero", "u") : (most_zero_src, most_zero_dst),
                         ("u", "e_minor_rev", "v2") : (minor_dst, minor_src)})

    return g

701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_biased_homogeneous():
    g = create_test_graph(100, 30)

    def check_num(nodes, tag):
        nodes, tag = F.asnumpy(nodes), F.asnumpy(tag)
        cnt = [sum(tag[nodes] == i) for i in range(4)]
        # No tag 0
        assert cnt[0] == 0

        # very rare tag 1
        assert cnt[2] > 2 * cnt[1]
        assert cnt[3] > 2 * cnt[1]

    tag = F.tensor(np.random.choice(4, 100))
    bias = F.tensor([0, 0.1, 10, 10], dtype=F.float32)
    # inedge / without replacement
718
    g_sorted = dgl.sort_csc_by_tag(g, tag)
719
720
721
722
723
724
725
726
727
728
729
730
731
    for _ in range(5):
        subg = dgl.sampling.sample_neighbors_biased(g_sorted, g.nodes(), 5, bias, replace=False)
        check_num(subg.edges()[0], tag)
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert len(edge_set) == subg.number_of_edges()

    # inedge / with replacement
    for _ in range(5):
        subg = dgl.sampling.sample_neighbors_biased(g_sorted, g.nodes(), 5, bias, replace=True)
        check_num(subg.edges()[0], tag)

    # outedge / without replacement
732
    g_sorted = dgl.sort_csr_by_tag(g, tag)
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
    for _ in range(5):
        subg = dgl.sampling.sample_neighbors_biased(g_sorted, g.nodes(), 5, bias, edge_dir='out', replace=False)
        check_num(subg.edges()[1], tag)
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert len(edge_set) == subg.number_of_edges()

    # outedge / with replacement
    for _ in range(5):
        subg = dgl.sampling.sample_neighbors_biased(g_sorted, g.nodes(), 5, bias, edge_dir='out', replace=True)
        check_num(subg.edges()[1], tag)

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_biased_bipartite():
    g = create_test_graph(100, 30, True)
    num_dst = g.number_of_dst_nodes()
    bias = F.tensor([0, 0.01, 10, 10], dtype=F.float32)
    def check_num(nodes, tag):
        nodes, tag = F.asnumpy(nodes), F.asnumpy(tag)
        cnt = [sum(tag[nodes] == i) for i in range(4)]
        # No tag 0
        assert cnt[0] == 0

        # very rare tag 1
        assert cnt[2] > 2 * cnt[1]
        assert cnt[3] > 2 * cnt[1]

    # inedge / without replacement
    tag = F.tensor(np.random.choice(4, 100))
762
    g_sorted = dgl.sort_csc_by_tag(g, tag)
763
764
765
766
767
768
769
770
771
772
773
774
775
776
    for _ in range(5):
        subg = dgl.sampling.sample_neighbors_biased(g_sorted, g.dstnodes(), 5, bias, replace=False)
        check_num(subg.edges()[0], tag)
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert len(edge_set) == subg.number_of_edges()

    # inedge / with replacement
    for _ in range(5):
        subg = dgl.sampling.sample_neighbors_biased(g_sorted, g.dstnodes(), 5, bias, replace=True)
        check_num(subg.edges()[0], tag)

    # outedge / without replacement
    tag = F.tensor(np.random.choice(4, num_dst))
777
    g_sorted = dgl.sort_csr_by_tag(g, tag)
778
779
780
781
782
783
784
785
786
787
788
789
    for _ in range(5):
        subg = dgl.sampling.sample_neighbors_biased(g_sorted, g.srcnodes(), 5, bias, edge_dir='out', replace=False)
        check_num(subg.edges()[1], tag)
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert len(edge_set) == subg.number_of_edges()

    # outedge / with replacement
    for _ in range(5):
        subg = dgl.sampling.sample_neighbors_biased(g_sorted, g.srcnodes(), 5, bias, edge_dir='out', replace=True)
        check_num(subg.edges()[1], tag)

790
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
791
792
793
794
@pytest.mark.parametrize('format_', ['coo', 'csr', 'csc'])
@pytest.mark.parametrize('direction', ['in', 'out'])
@pytest.mark.parametrize('replace', [False, True])
def test_sample_neighbors_etype_homogeneous(format_, direction, replace):
795
796
797
798
799
800
    num_nodes = 100
    rare_cnt = 4
    g = create_etype_test_graph(100, 30, rare_cnt)
    h_g = dgl.to_homogeneous(g)
    seed_ntype = g.get_ntype_id("u")
    seeds = F.nonzero_1d(h_g.ndata[dgl.NTYPE] == seed_ntype)
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
    fanouts = F.tensor([6, 5, 4, 3, 2], dtype=F.int64)

    def check_num(h_g, all_src, all_dst, subg, replace, fanouts, direction):
        src, dst = subg.edges()
        num_etypes = F.asnumpy(h_g.edata[dgl.ETYPE]).max()
        etype_array = F.asnumpy(subg.edata[dgl.ETYPE])
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        fanouts = F.asnumpy(fanouts)

        all_etype_array = F.asnumpy(h_g.edata[dgl.ETYPE])
        all_src = F.asnumpy(all_src)
        all_dst = F.asnumpy(all_dst)

        src_per_etype = []
        dst_per_etype = []
        for etype in range(num_etypes):
            src_per_etype.append(src[etype_array == etype])
            dst_per_etype.append(dst[etype_array == etype])

        if replace:
            if direction == 'in':
                in_degree_per_etype = [np.bincount(d) for d in dst_per_etype]
                for in_degree, fanout in zip(in_degree_per_etype, fanouts):
                    assert np.all(in_degree == fanout)
826
            else:
827
828
829
830
831
832
833
834
835
836
837
838
839
840
                out_degree_per_etype = [np.bincount(s) for s in src_per_etype]
                for out_degree, fanout in zip(out_degree_per_etype, fanouts):
                    assert np.all(out_degree == fanout)
        else:
            if direction == 'in':
                for v in set(dst):
                    u = src[dst == v]
                    et = etype_array[dst == v]
                    all_u = all_src[all_dst == v]
                    all_et = all_etype_array[all_dst == v]
                    for etype in set(et):
                        u_etype = set(u[et == etype])
                        all_u_etype = set(all_u[all_et == etype])
                        assert (len(u_etype) == fanouts[etype]) or (u_etype == all_u_etype)
841
            else:
842
843
844
845
846
847
848
849
850
851
852
853
854
855
                for u in set(src):
                    v = dst[src == u]
                    et = etype_array[src == u]
                    all_v = all_dst[all_src == u]
                    all_et = all_etype_array[all_src == u]
                    for etype in set(et):
                        v_etype = set(v[et == etype])
                        all_v_etype = set(all_v[all_et == etype])
                        assert (len(v_etype) == fanouts[etype]) or (v_etype == all_v_etype)

    all_src, all_dst = h_g.edges()
    h_g = h_g.formats(format_)
    if (direction, format_) in [('in', 'csr'), ('out', 'csc')]:
        h_g = h_g.formats(['csc', 'csr', 'coo'])
856
857
    for _ in range(5):
        subg = dgl.sampling.sample_etype_neighbors(
858
859
            h_g, seeds, dgl.ETYPE, fanouts, replace=replace, edge_dir=direction)
        check_num(h_g, all_src, all_dst, subg, replace, fanouts, direction)
860

861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
@pytest.mark.parametrize('dtype', ['int32', 'int64'])
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_exclude_edges_heteroG(dtype):
    d_i_d_u_nodes = F.zerocopy_from_numpy(np.unique(np.random.randint(300, size=100, dtype=dtype)))
    d_i_d_v_nodes = F.zerocopy_from_numpy(np.random.randint(25, size=d_i_d_u_nodes.shape, dtype=dtype))
    d_i_g_u_nodes = F.zerocopy_from_numpy(np.unique(np.random.randint(300, size=100, dtype=dtype)))
    d_i_g_v_nodes = F.zerocopy_from_numpy(np.random.randint(25, size=d_i_g_u_nodes.shape, dtype=dtype))
    d_t_d_u_nodes = F.zerocopy_from_numpy(np.unique(np.random.randint(300, size=100, dtype=dtype)))
    d_t_d_v_nodes = F.zerocopy_from_numpy(np.random.randint(25, size=d_t_d_u_nodes.shape, dtype=dtype))

    g = dgl.heterograph({
        ('drug', 'interacts', 'drug'): (d_i_d_u_nodes, d_i_d_v_nodes),
        ('drug', 'interacts', 'gene'): (d_i_g_u_nodes, d_i_g_v_nodes),
        ('drug', 'treats', 'disease'): (d_t_d_u_nodes, d_t_d_v_nodes)
    })

    (U, V, EID) = (0, 1, 2)

    nd_b_idx = np.random.randint(low=1, high=24, dtype=dtype)
    nd_e_idx = np.random.randint(low=25, high=49, dtype=dtype)
    did_b_idx = np.random.randint(low=1, high=24, dtype=dtype)
    did_e_idx = np.random.randint(low=25, high=49, dtype=dtype)
    sampled_amount = np.random.randint(low=1, high=10, dtype=dtype)

    drug_i_drug_edges = g.all_edges(form='all', etype=('drug','interacts','drug'))
    excluded_d_i_d_edges = drug_i_drug_edges[EID][did_b_idx:did_e_idx]
    sampled_drug_node = drug_i_drug_edges[V][nd_b_idx:nd_e_idx]
    did_excluded_nodes_U = drug_i_drug_edges[U][did_b_idx:did_e_idx]
    did_excluded_nodes_V = drug_i_drug_edges[V][did_b_idx:did_e_idx]

    nd_b_idx = np.random.randint(low=1, high=24, dtype=dtype)
    nd_e_idx = np.random.randint(low=25, high=49, dtype=dtype)
    dig_b_idx = np.random.randint(low=1, high=24, dtype=dtype)
    dig_e_idx = np.random.randint(low=25, high=49, dtype=dtype)
    drug_i_gene_edges = g.all_edges(form='all', etype=('drug','interacts','gene'))
    excluded_d_i_g_edges = drug_i_gene_edges[EID][dig_b_idx:dig_e_idx]
    dig_excluded_nodes_U = drug_i_gene_edges[U][dig_b_idx:dig_e_idx]
    dig_excluded_nodes_V = drug_i_gene_edges[V][dig_b_idx:dig_e_idx]
    sampled_gene_node = drug_i_gene_edges[V][nd_b_idx:nd_e_idx]

    nd_b_idx = np.random.randint(low=1, high=24, dtype=dtype)
    nd_e_idx = np.random.randint(low=25, high=49, dtype=dtype)
    dtd_b_idx = np.random.randint(low=1, high=24, dtype=dtype)
    dtd_e_idx = np.random.randint(low=25, high=49, dtype=dtype)
    drug_t_dis_edges = g.all_edges(form='all', etype=('drug','treats','disease'))
    excluded_d_t_d_edges = drug_t_dis_edges[EID][dtd_b_idx:dtd_e_idx]
    dtd_excluded_nodes_U = drug_t_dis_edges[U][dtd_b_idx:dtd_e_idx]
    dtd_excluded_nodes_V = drug_t_dis_edges[V][dtd_b_idx:dtd_e_idx]
    sampled_disease_node = drug_t_dis_edges[V][nd_b_idx:nd_e_idx]
    excluded_edges  = {('drug', 'interacts', 'drug'): excluded_d_i_d_edges,
                       ('drug', 'interacts', 'gene'): excluded_d_i_g_edges,
                       ('drug', 'treats', 'disease'): excluded_d_t_d_edges
                      }

    sg = dgl.sampling.sample_neighbors(g, {'drug': sampled_drug_node,
                                           'gene': sampled_gene_node,
                                           'disease': sampled_disease_node},
                                       sampled_amount, exclude_edges=excluded_edges)

    assert not np.any(F.asnumpy(sg.has_edges_between(did_excluded_nodes_U,did_excluded_nodes_V,
                                                     etype=('drug','interacts','drug'))))
    assert not np.any(F.asnumpy(sg.has_edges_between(dig_excluded_nodes_U,dig_excluded_nodes_V,
                                                     etype=('drug','interacts','gene'))))
    assert not np.any(F.asnumpy(sg.has_edges_between(dtd_excluded_nodes_U,dtd_excluded_nodes_V,
                                                     etype=('drug','treats','disease'))))

@pytest.mark.parametrize('dtype', ['int32', 'int64'])
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_exclude_edges_homoG(dtype):
    u_nodes = F.zerocopy_from_numpy(np.unique(np.random.randint(300,size=100, dtype=dtype)))
    v_nodes = F.zerocopy_from_numpy(np.random.randint(25, size=u_nodes.shape, dtype=dtype))
    g = dgl.graph((u_nodes, v_nodes))

    (U, V, EID) = (0, 1, 2)

    nd_b_idx = np.random.randint(low=1,high=24, dtype=dtype)
    nd_e_idx = np.random.randint(low=25,high=49, dtype=dtype)
    b_idx = np.random.randint(low=1,high=24, dtype=dtype)
    e_idx = np.random.randint(low=25,high=49, dtype=dtype)
    sampled_amount = np.random.randint(low=1,high=10, dtype=dtype)

    g_edges = g.all_edges(form='all')
    excluded_edges = g_edges[EID][b_idx:e_idx]
    sampled_node = g_edges[V][nd_b_idx:nd_e_idx]
    excluded_nodes_U = g_edges[U][b_idx:e_idx]
    excluded_nodes_V = g_edges[V][b_idx:e_idx]

    sg = dgl.sampling.sample_neighbors(g, sampled_node,
                                       sampled_amount, exclude_edges=excluded_edges)

    assert not np.any(F.asnumpy(sg.has_edges_between(excluded_nodes_U,excluded_nodes_V)))

953
954
@pytest.mark.parametrize('dtype', ['int32', 'int64'])
def test_global_uniform_negative_sampling(dtype):
955
956
957
958
    g = dgl.graph(([], []), num_nodes=1000).to(F.ctx())
    src, dst = dgl.sampling.global_uniform_negative_sampling(g, 2000, False, True)
    assert len(src) == 2000
    assert len(dst) == 2000
959

960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
    g = dgl.graph((np.random.randint(0, 20, (300,)), np.random.randint(0, 20, (300,)))).to(F.ctx())
    src, dst = dgl.sampling.global_uniform_negative_sampling(g, 20, False, True)
    assert not F.asnumpy(g.has_edges_between(src, dst)).any()

    src, dst = dgl.sampling.global_uniform_negative_sampling(g, 20, False, False)
    assert not F.asnumpy(g.has_edges_between(src, dst)).any()
    src = F.asnumpy(src)
    dst = F.asnumpy(dst)
    s = set(zip(src.tolist(), dst.tolist()))
    assert len(s) == len(src)

    g = dgl.graph(([0], [1])).to(F.ctx())
    src, dst = dgl.sampling.global_uniform_negative_sampling(g, 20, True, False, redundancy=10)
    src = F.asnumpy(src)
    dst = F.asnumpy(dst)
    # should have either no element or (1, 0)
    assert len(src) < 2
    assert len(dst) < 2
    if len(src) == 1:
        assert src[0] == 1
        assert dst[0] == 0

    g = dgl.heterograph({
        ('A', 'AB', 'B'): (np.random.randint(0, 20, (300,)), np.random.randint(0, 40, (300,))),
        ('B', 'BA', 'A'): (np.random.randint(0, 40, (200,)), np.random.randint(0, 20, (200,)))}).to(F.ctx())
    src, dst = dgl.sampling.global_uniform_negative_sampling(g, 20, False, etype='AB')
    assert not F.asnumpy(g.has_edges_between(src, dst, etype='AB')).any()

988

989
if __name__ == '__main__':
990
991
992
    from itertools import product
    for args in product(['coo', 'csr', 'csc'], ['in', 'out'], [False, True]):
        test_sample_neighbors_etype_homogeneous(*args)
993
994
    test_non_uniform_random_walk()
    test_uniform_random_walk(False)
995
    test_pack_traces()
996
    test_pinsage_sampling()
997
998
999
    test_sample_neighbors_outedge()
    test_sample_neighbors_topk()
    test_sample_neighbors_topk_outedge()
1000
    test_sample_neighbors_with_0deg()
1001
1002
    test_sample_neighbors_biased_homogeneous()
    test_sample_neighbors_biased_bipartite()
1003
1004
    test_sample_neighbors_exclude_edges_heteroG('int32')
    test_sample_neighbors_exclude_edges_homoG('int32')
1005
1006
    test_global_uniform_negative_sampling('int32')
    test_global_uniform_negative_sampling('int64')