test_transform.py 113 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
##
#   Copyright 2019-2021 Contributors
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.
#

17
from scipy import sparse as spsp
18
19
import networkx as nx
import numpy as np
20
import os
21
22
import dgl
import dgl.function as fn
23
import dgl.partition
24
import backend as F
25
import unittest
26
import math
27
28
import pytest
from test_utils.graph_cases import get_cases
nv-dlasalle's avatar
nv-dlasalle committed
29
from test_utils import parametrize_idtype
30

31
from test_heterograph import create_test_heterograph3, create_test_heterograph4, create_test_heterograph5
32

33
34
35
D = 5

# line graph related
36

37
def test_line_graph1():
38
    N = 5
39
    G = dgl.DGLGraph(nx.star_graph(N)).to(F.ctx())
40
    G.edata['h'] = F.randn((2 * N, D))
41
42
    L = G.line_graph(shared=True)
    assert L.number_of_nodes() == 2 * N
43
    assert F.allclose(L.ndata['h'], G.edata['h'])
44
    assert G.device == F.ctx()
45

nv-dlasalle's avatar
nv-dlasalle committed
46
@parametrize_idtype
47
def test_line_graph2(idtype):
48
49
50
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 1, 2, 2],[2, 0, 2, 0, 1])
    }, idtype=idtype)
51
    lg = dgl.line_graph(g)
52
53
54
55
56
57
58
59
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))

60
    lg = dgl.line_graph(g, backtracking=False)
61
62
63
64
65
66
67
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 4
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 1, 2, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([4, 0, 3, 1]))
68
69
70
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 1, 2, 2],[2, 0, 2, 0, 1])
    }, idtype=idtype).formats('csr')
71
    lg = dgl.line_graph(g)
72
73
74
75
76
77
78
79
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))

80
81
82
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 1, 2, 2],[2, 0, 2, 0, 1])
    }, idtype=idtype).formats('csc')
83
    lg = dgl.line_graph(g)
84
85
86
87
88
89
90
91
92
93
94
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col, eid = lg.edges('all')
    row = F.asnumpy(row)
    col = F.asnumpy(col)
    eid = F.asnumpy(eid).astype(int)
    order = np.argsort(eid)
    assert np.array_equal(row[order],
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(col[order],
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))
95

96
97
98
99
100
101
def test_no_backtracking():
    N = 5
    G = dgl.DGLGraph(nx.star_graph(N))
    L = G.line_graph(backtracking=False)
    assert L.number_of_nodes() == 2 * N
    for i in range(1, N):
102
103
104
105
        e1 = G.edge_ids(0, i)
        e2 = G.edge_ids(i, 0)
        assert not L.has_edges_between(e1, e2)
        assert not L.has_edges_between(e2, e1)
106
107

# reverse graph related
nv-dlasalle's avatar
nv-dlasalle committed
108
@parametrize_idtype
109
def test_reverse(idtype):
110
    g = dgl.DGLGraph()
111
    g = g.astype(idtype).to(F.ctx())
112
113
114
    g.add_nodes(5)
    # The graph need not to be completely connected.
    g.add_edges([0, 1, 2], [1, 2, 1])
115
116
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [3.], [4.]])
    g.edata['h'] = F.tensor([[5.], [6.], [7.]])
117
118
119
120
121
122
    rg = g.reverse()

    assert g.is_multigraph == rg.is_multigraph

    assert g.number_of_nodes() == rg.number_of_nodes()
    assert g.number_of_edges() == rg.number_of_edges()
123
124
    assert F.allclose(F.astype(rg.has_edges_between(
        [1, 2, 1], [0, 1, 2]), F.float32), F.ones((3,)))
125
126
127
    assert g.edge_ids(0, 1) == rg.edge_ids(1, 0)
    assert g.edge_ids(1, 2) == rg.edge_ids(2, 1)
    assert g.edge_ids(2, 1) == rg.edge_ids(1, 2)
128

129
    # test dgl.reverse
130
131
132
133
    # test homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 2]), F.tensor([1, 2, 0])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.]])
134
    g_r = dgl.reverse(g)
135
136
137
138
139
140
141
142
143
144
145
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    u_g, v_g, eids_g = g.all_edges(form='all')
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all')
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    assert F.array_equal(g.ndata['h'], g_r.ndata['h'])
    assert len(g_r.edata) == 0

    # without share ndata
146
    g_r = dgl.reverse(g, copy_ndata=False)
147
148
149
150
151
152
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    assert len(g_r.ndata) == 0
    assert len(g_r.edata) == 0

    # with share ndata and edata
153
    g_r = dgl.reverse(g, copy_ndata=True, copy_edata=True)
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    assert F.array_equal(g.ndata['h'], g_r.ndata['h'])
    assert F.array_equal(g.edata['h'], g_r.edata['h'])

    # add new node feature to g_r
    g_r.ndata['hh'] = F.tensor([0, 1, 2])
    assert ('hh' in g.ndata) is False
    assert ('hh' in g_r.ndata) is True

    # add new edge feature to g_r
    g_r.edata['hh'] = F.tensor([0, 1, 2])
    assert ('hh' in g.edata) is False
    assert ('hh' in g_r.edata) is True

    # test heterogeneous graph
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2, 4, 3 ,1, 3], [1, 2, 3, 2, 0, 0, 1]),
        ('user', 'plays', 'game'): ([0, 0, 2, 3, 3, 4, 1], [1, 0, 1, 0, 1, 0, 0]),
173
174
        ('developer', 'develops', 'game'): ([0, 1, 1, 2], [0, 0, 1, 1])},
        idtype=idtype, device=F.ctx())
175
176
177
178
179
    g.nodes['user'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    g.nodes['user'].data['hh'] = F.tensor([1, 1, 1, 1, 1])
    g.nodes['game'].data['h'] = F.tensor([0, 1])
    g.edges['follows'].data['h'] = F.tensor([0, 1, 2, 4, 3 ,1, 3])
    g.edges['follows'].data['hh'] = F.tensor([1, 2, 3, 2, 0, 0, 1])
180
    g_r = dgl.reverse(g)
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g_r.number_of_nodes(ntype)
    assert F.array_equal(g.nodes['user'].data['h'], g_r.nodes['user'].data['h'])
    assert F.array_equal(g.nodes['user'].data['hh'], g_r.nodes['user'].data['hh'])
    assert F.array_equal(g.nodes['game'].data['h'], g_r.nodes['game'].data['h'])
    assert len(g_r.edges['follows'].data) == 0
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('user', 'follows', 'user'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('user', 'follows', 'user'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('user', 'plays', 'game'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('game', 'plays', 'user'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('developer', 'develops', 'game'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('game', 'develops', 'developer'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)

    # withour share ndata
210
    g_r = dgl.reverse(g, copy_ndata=False)
211
212
213
214
215
216
217
218
219
220
    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g_r.number_of_nodes(ntype)
    assert len(g_r.nodes['user'].data) == 0
    assert len(g_r.nodes['game'].data) == 0

221
    g_r = dgl.reverse(g, copy_ndata=True, copy_edata=True)
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
    print(g_r)
    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    assert F.array_equal(g.edges['follows'].data['h'], g_r.edges['follows'].data['h'])
    assert F.array_equal(g.edges['follows'].data['hh'], g_r.edges['follows'].data['hh'])

    # add new node feature to g_r
    g_r.nodes['user'].data['hhh'] = F.tensor([0, 1, 2, 3, 4])
    assert ('hhh' in g.nodes['user'].data) is False
    assert ('hhh' in g_r.nodes['user'].data) is True

    # add new edge feature to g_r
    g_r.edges['follows'].data['hhh'] = F.tensor([1, 2, 3, 2, 0, 0, 1])
    assert ('hhh' in g.edges['follows'].data) is False
    assert ('hhh' in g_r.edges['follows'].data) is True

241

nv-dlasalle's avatar
nv-dlasalle committed
242
@parametrize_idtype
243
def test_reverse_shared_frames(idtype):
244
    g = dgl.DGLGraph()
245
    g = g.astype(idtype).to(F.ctx())
246
247
    g.add_nodes(3)
    g.add_edges([0, 1, 2], [1, 2, 1])
248
249
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.]])
250
251

    rg = g.reverse(share_ndata=True, share_edata=True)
252
253
254
    assert F.allclose(g.ndata['h'], rg.ndata['h'])
    assert F.allclose(g.edata['h'], rg.edata['h'])
    assert F.allclose(g.edges[[0, 2], [1, 1]].data['h'],
255
256
                      rg.edges[[1, 1], [0, 2]].data['h'])

257
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
258
def test_to_bidirected():
259
260
    # homogeneous graph
    elist = [(0, 0), (0, 1), (1, 0),
261
             (1, 1), (2, 1), (2, 2)]
262
    num_edges = 7
263
    g = dgl.graph(tuple(zip(*elist)))
264
265
266
267
268
269
270
271
272
273
274
275
276
    elist.append((1, 2))
    elist = set(elist)
    big = dgl.to_bidirected(g)
    assert big.number_of_edges() == num_edges
    src, dst = big.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist)

    # heterogeneous graph
    elist1 = [(0, 0), (0, 1), (1, 0),
                (1, 1), (2, 1), (2, 2)]
    elist2 = [(0, 0), (0, 1)]
    g = dgl.heterograph({
277
278
        ('user', 'wins', 'user'): tuple(zip(*elist1)),
        ('user', 'follows', 'user'): tuple(zip(*elist2))
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    })
    g.nodes['user'].data['h'] = F.ones((3, 1))
    elist1.append((1, 2))
    elist1 = set(elist1)
    elist2.append((1, 0))
    elist2 = set(elist2)
    big = dgl.to_bidirected(g)
    assert big.number_of_edges('wins') == 7
    assert big.number_of_edges('follows') == 3
    src, dst = big.edges(etype='wins')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist1)
    src, dst = big.edges(etype='follows')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist2)

    big = dgl.to_bidirected(g, copy_ndata=True)
    assert F.array_equal(g.nodes['user'].data['h'], big.nodes['user'].data['h'])

def test_add_reverse_edges():
299
300
301
302
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 3, 1]), F.tensor([1, 2, 0, 2])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [1.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
303
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True)
304
305
306
307
308
309
310
311
312
313
314
315
    u, v = g.edges()
    ub, vb = bg.edges()
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert F.array_equal(g.ndata['h'], bg.ndata['h'])
    assert F.array_equal(F.cat([g.edata['h'], g.edata['h']], dim=0), bg.edata['h'])
    bg.ndata['hh'] = F.tensor([[0.], [1.], [2.], [1.]])
    assert ('hh' in g.ndata) is False
    bg.edata['hh'] = F.tensor([[0.], [1.], [2.], [1.], [0.], [1.], [2.], [1.]])
    assert ('hh' in g.edata) is False

    # donot share ndata and edata
316
    bg = dgl.add_reverse_edges(g, copy_ndata=False, copy_edata=False)
317
318
319
320
321
322
323
    ub, vb = bg.edges()
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert ('h' in bg.ndata) is False
    assert ('h' in bg.edata) is False

    # zero edge graph
324
    g = dgl.graph(([], []))
325
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True, exclude_self=False)
326
327
328
329
330
331
332
333
334
335

    # heterogeneous graph
    g = dgl.heterograph({
        ('user', 'wins', 'user'): (F.tensor([0, 2, 0, 2, 2]), F.tensor([1, 1, 2, 1, 0])),
        ('user', 'plays', 'game'): (F.tensor([1, 2, 1]), F.tensor([2, 1, 1])),
        ('user', 'follows', 'user'): (F.tensor([1, 2, 1]), F.tensor([0, 0, 0]))
    })
    g.nodes['game'].data['hv'] = F.ones((3, 1))
    g.nodes['user'].data['hv'] = F.ones((3, 1))
    g.edges['wins'].data['h'] = F.tensor([0, 1, 2, 3, 4])
336
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True, ignore_bipartite=True)
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
    assert F.array_equal(g.nodes['game'].data['hv'], bg.nodes['game'].data['hv'])
    assert F.array_equal(g.nodes['user'].data['hv'], bg.nodes['user'].data['hv'])
    u, v = g.all_edges(order='eid', etype=('user', 'wins', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'wins', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert F.array_equal(F.cat([g.edges['wins'].data['h'], g.edges['wins'].data['h']], dim=0),
                         bg.edges['wins'].data['h'])
    u, v = g.all_edges(order='eid', etype=('user', 'follows', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'follows', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'plays', 'game'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'plays', 'game'))
    assert F.array_equal(u, ub)
    assert F.array_equal(v, vb)
353
354
    assert set(bg.edges['plays'].data.keys()) == {dgl.EID}
    assert set(bg.edges['follows'].data.keys()) == {dgl.EID}
355
356

    # donot share ndata and edata
357
    bg = dgl.add_reverse_edges(g, copy_ndata=False, copy_edata=False, ignore_bipartite=True)
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    assert len(bg.edges['wins'].data) == 0
    assert len(bg.edges['plays'].data) == 0
    assert len(bg.edges['follows'].data) == 0
    assert len(bg.nodes['game'].data) == 0
    assert len(bg.nodes['user'].data) == 0
    u, v = g.all_edges(order='eid', etype=('user', 'wins', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'wins', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'follows', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'follows', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'plays', 'game'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'plays', 'game'))
    assert F.array_equal(u, ub)
    assert F.array_equal(v, vb)

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
    # test the case when some nodes have zero degree
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 3, 1]), F.tensor([1, 2, 0, 2])), num_nodes=6)
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [1.], [1.], [1.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True)
    assert g.number_of_nodes() == bg.number_of_nodes()
    assert F.array_equal(g.ndata['h'], bg.ndata['h'])
    assert F.array_equal(F.cat([g.edata['h'], g.edata['h']], dim=0), bg.edata['h'])

    # heterogeneous graph
    g = dgl.heterograph({
        ('user', 'wins', 'user'): (F.tensor([0, 2, 0, 2, 2]), F.tensor([1, 1, 2, 1, 0])),
        ('user', 'plays', 'game'): (F.tensor([1, 2, 1]), F.tensor([2, 1, 1])),
        ('user', 'follows', 'user'): (F.tensor([1, 2, 1]), F.tensor([0, 0, 0]))},
        num_nodes_dict={
            'user': 5,
            'game': 3
        })
    g.nodes['game'].data['hv'] = F.ones((3, 1))
    g.nodes['user'].data['hv'] = F.ones((5, 1))
    g.edges['wins'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True, ignore_bipartite=True)
    assert g.number_of_nodes('user') == bg.number_of_nodes('user')
    assert g.number_of_nodes('game') == bg.number_of_nodes('game')
    assert F.array_equal(g.nodes['game'].data['hv'], bg.nodes['game'].data['hv'])
    assert F.array_equal(g.nodes['user'].data['hv'], bg.nodes['user'].data['hv'])
    assert F.array_equal(F.cat([g.edges['wins'].data['h'], g.edges['wins'].data['h']], dim=0),
                         bg.edges['wins'].data['h'])

406
407
408
409
410
411
412
413
414
415
    # test exclude_self
    g = dgl.heterograph({
        ('A', 'r1', 'A'): (F.tensor([0, 0, 1, 1]), F.tensor([0, 1, 1, 2])),
        ('A', 'r2', 'A'): (F.tensor([0, 1]), F.tensor([1, 2]))
    })
    g.edges['r1'].data['h'] = F.tensor([0, 1, 2, 3])
    rg = dgl.add_reverse_edges(g, copy_edata=True, exclude_self=True)
    assert rg.num_edges('r1') == 6
    assert rg.num_edges('r2') == 4
    assert F.array_equal(rg.edges['r1'].data['h'], F.tensor([0, 1, 2, 3, 1, 3]))
416

417
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
418
419
420
421
422
423
424
425
426
427
def test_simple_graph():
    elist = [(0, 1), (0, 2), (1, 2), (0, 1)]
    g = dgl.DGLGraph(elist, readonly=True)
    assert g.is_multigraph
    sg = dgl.to_simple_graph(g)
    assert not sg.is_multigraph
    assert sg.number_of_edges() == 3
    src, dst = sg.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist)
428

429
430
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
def _test_bidirected_graph():
431
    def _test(in_readonly, out_readonly):
432
433
434
        elist = [(0, 0), (0, 1), (1, 0),
                (1, 1), (2, 1), (2, 2)]
        num_edges = 7
435
436
437
        g = dgl.DGLGraph(elist, readonly=in_readonly)
        elist.append((1, 2))
        elist = set(elist)
438
        big = dgl.to_bidirected_stale(g, out_readonly)
439
        assert big.number_of_edges() == num_edges
440
441
442
443
444
445
446
447
448
        src, dst = big.edges()
        eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
        assert eset == set(elist)

    _test(True, True)
    _test(True, False)
    _test(False, True)
    _test(False, False)

449

450
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
451
452
453
454
def test_khop_graph():
    N = 20
    feat = F.randn((N, 5))

Mufei Li's avatar
Mufei Li committed
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
    def _test(g):
        for k in range(4):
            g_k = dgl.khop_graph(g, k)
            # use original graph to do message passing for k times.
            g.ndata['h'] = feat
            for _ in range(k):
                g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            h_0 = g.ndata.pop('h')
            # use k-hop graph to do message passing for one time.
            g_k.ndata['h'] = feat
            g_k.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            h_1 = g_k.ndata.pop('h')
            assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

    # Test for random undirected graphs
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    _test(g)
    # Test for random directed graphs
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3, directed=True))
    _test(g)
475

476
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
477
478
479
480
481
def test_khop_adj():
    N = 20
    feat = F.randn((N, 5))
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    for k in range(3):
482
        adj = F.tensor(F.swapaxes(dgl.khop_adj(g, k), 0, 1))
483
484
485
486
487
488
489
490
491
        # use original graph to do message passing for k times.
        g.ndata['h'] = feat
        for _ in range(k):
            g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
        h_0 = g.ndata.pop('h')
        # use k-hop adj to do message passing for one time.
        h_1 = F.matmul(adj, feat)
        assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

492

493
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
494
495
496
497
498
499
500
def test_laplacian_lambda_max():
    N = 20
    eps = 1e-6
    # test DGLGraph
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    l_max = dgl.laplacian_lambda_max(g)
    assert (l_max[0] < 2 + eps)
Zihao Ye's avatar
Zihao Ye committed
501
    # test batched DGLGraph
502
    '''
503
504
505
506
507
508
509
510
511
    N_arr = [20, 30, 10, 12]
    bg = dgl.batch([
        dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
        for N in N_arr
    ])
    l_max_arr = dgl.laplacian_lambda_max(bg)
    assert len(l_max_arr) == len(N_arr)
    for l_max in l_max_arr:
        assert l_max < 2 + eps
512
    '''
513

514
def create_large_graph(num_nodes, idtype=F.int64):
515
516
517
    row = np.random.choice(num_nodes, num_nodes * 10)
    col = np.random.choice(num_nodes, num_nodes * 10)
    spm = spsp.coo_matrix((np.ones(len(row)), (row, col)))
518
    spm.sum_duplicates()
519

520
    return dgl.from_scipy(spm, idtype=idtype)
521

522
# Disabled since everything will be on heterogeneous graphs
523
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
524
def test_partition_with_halo():
525
    g = create_large_graph(1000)
526
    node_part = np.random.choice(4, g.number_of_nodes())
527
    subgs, _, _ = dgl.transforms.partition_graph_with_halo(g, node_part, 2, reshuffle=True)
528
529
530
    for part_id, subg in subgs.items():
        node_ids = np.nonzero(node_part == part_id)[0]
        lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
531
532
533
534
        orig_nids = F.asnumpy(subg.ndata['orig_id'])[lnode_ids]
        assert np.all(np.sort(orig_nids) == node_ids)
        assert np.all(F.asnumpy(subg.in_degrees(lnode_ids)) == F.asnumpy(g.in_degrees(orig_nids)))
        assert np.all(F.asnumpy(subg.out_degrees(lnode_ids)) == F.asnumpy(g.out_degrees(orig_nids)))
535

536
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
537
@unittest.skipIf(F._default_context_str == 'gpu', reason="METIS doesn't support GPU")
nv-dlasalle's avatar
nv-dlasalle committed
538
@parametrize_idtype
539
def test_metis_partition(idtype):
Da Zheng's avatar
Da Zheng committed
540
    # TODO(zhengda) Metis fails to partition a small graph.
541
542
543
544
545
546
547
548
549
550
551
552
553
    g = create_large_graph(1000, idtype=idtype)
    if idtype == F.int64:
        check_metis_partition(g, 0)
        check_metis_partition(g, 1)
        check_metis_partition(g, 2)
        check_metis_partition_with_constraint(g)
    else:
        assert_fail = False
        try:
            check_metis_partition(g, 1)
        except:
            assert_fail = True
        assert assert_fail
554

555
556
557
558
def check_metis_partition_with_constraint(g):
    ntypes = np.zeros((g.number_of_nodes(),), dtype=np.int32)
    ntypes[0:int(g.number_of_nodes()/4)] = 1
    ntypes[int(g.number_of_nodes()*3/4):] = 2
559
    subgs = dgl.transforms.metis_partition(g, 4, extra_cached_hops=1, balance_ntypes=ntypes)
560
561
562
563
564
565
566
567
    if subgs is not None:
        for i in subgs:
            subg = subgs[i]
            parent_nids = F.asnumpy(subg.ndata[dgl.NID])
            sub_ntypes = ntypes[parent_nids]
            print('type0:', np.sum(sub_ntypes == 0))
            print('type1:', np.sum(sub_ntypes == 1))
            print('type2:', np.sum(sub_ntypes == 2))
568
    subgs = dgl.transforms.metis_partition(g, 4, extra_cached_hops=1,
569
570
571
572
573
574
575
576
577
                                          balance_ntypes=ntypes, balance_edges=True)
    if subgs is not None:
        for i in subgs:
            subg = subgs[i]
            parent_nids = F.asnumpy(subg.ndata[dgl.NID])
            sub_ntypes = ntypes[parent_nids]
            print('type0:', np.sum(sub_ntypes == 0))
            print('type1:', np.sum(sub_ntypes == 1))
            print('type2:', np.sum(sub_ntypes == 2))
Da Zheng's avatar
Da Zheng committed
578
579

def check_metis_partition(g, extra_hops):
580
    subgs = dgl.transforms.metis_partition(g, 4, extra_cached_hops=extra_hops)
581
582
583
584
    num_inner_nodes = 0
    num_inner_edges = 0
    if subgs is not None:
        for part_id, subg in subgs.items():
Da Zheng's avatar
Da Zheng committed
585
586
587
588
589
            lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
            ledge_ids = np.nonzero(F.asnumpy(subg.edata['inner_edge']))[0]
            num_inner_nodes += len(lnode_ids)
            num_inner_edges += len(ledge_ids)
            assert np.sum(F.asnumpy(subg.ndata['part_id']) == part_id) == len(lnode_ids)
590
591
592
        assert num_inner_nodes == g.number_of_nodes()
        print(g.number_of_edges() - num_inner_edges)

Da Zheng's avatar
Da Zheng committed
593
594
595
    if extra_hops == 0:
        return

596
    # partitions with node reshuffling
597
    subgs = dgl.transforms.metis_partition(g, 4, extra_cached_hops=extra_hops, reshuffle=True)
598
599
    num_inner_nodes = 0
    num_inner_edges = 0
Da Zheng's avatar
Da Zheng committed
600
    edge_cnts = np.zeros((g.number_of_edges(),))
601
602
603
604
605
606
607
    if subgs is not None:
        for part_id, subg in subgs.items():
            lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
            ledge_ids = np.nonzero(F.asnumpy(subg.edata['inner_edge']))[0]
            num_inner_nodes += len(lnode_ids)
            num_inner_edges += len(ledge_ids)
            assert np.sum(F.asnumpy(subg.ndata['part_id']) == part_id) == len(lnode_ids)
Da Zheng's avatar
Da Zheng committed
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
            nids = F.asnumpy(subg.ndata[dgl.NID])

            # ensure the local node Ids are contiguous.
            parent_ids = F.asnumpy(subg.ndata[dgl.NID])
            parent_ids = parent_ids[:len(lnode_ids)]
            assert np.all(parent_ids == np.arange(parent_ids[0], parent_ids[-1] + 1))

            # count the local edges.
            parent_ids = F.asnumpy(subg.edata[dgl.EID])[ledge_ids]
            edge_cnts[parent_ids] += 1

            orig_ids = subg.ndata['orig_id']
            inner_node = F.asnumpy(subg.ndata['inner_node'])
            for nid in range(subg.number_of_nodes()):
                neighs = subg.predecessors(nid)
                old_neighs1 = F.gather_row(orig_ids, neighs)
                old_nid = F.asnumpy(orig_ids[nid])
                old_neighs2 = g.predecessors(old_nid)
                # If this is an inner node, it should have the full neighborhood.
                if inner_node[nid]:
                    assert np.all(np.sort(F.asnumpy(old_neighs1)) == np.sort(F.asnumpy(old_neighs2)))
        # Normally, local edges are only counted once.
        assert np.all(edge_cnts == 1)

632
633
634
        assert num_inner_nodes == g.number_of_nodes()
        print(g.number_of_edges() - num_inner_edges)

Da Zheng's avatar
Da Zheng committed
635
636
@unittest.skipIf(F._default_context_str == 'gpu', reason="It doesn't support GPU")
def test_reorder_nodes():
637
    g = create_large_graph(1000)
Da Zheng's avatar
Da Zheng committed
638
639
    new_nids = np.random.permutation(g.number_of_nodes())
    # TODO(zhengda) we need to test both CSR and COO.
640
    new_g = dgl.partition.reorder_nodes(g, new_nids)
Da Zheng's avatar
Da Zheng committed
641
642
643
644
645
646
647
648
649
    new_in_deg = new_g.in_degrees()
    new_out_deg = new_g.out_degrees()
    in_deg = g.in_degrees()
    out_deg = g.out_degrees()
    new_in_deg1 = F.scatter_row(in_deg, F.tensor(new_nids), in_deg)
    new_out_deg1 = F.scatter_row(out_deg, F.tensor(new_nids), out_deg)
    assert np.all(F.asnumpy(new_in_deg == new_in_deg1))
    assert np.all(F.asnumpy(new_out_deg == new_out_deg1))
    orig_ids = F.asnumpy(new_g.ndata['orig_id'])
650
651
652
653
654
655
656
    for nid in range(g.number_of_nodes()):
        neighs = F.asnumpy(g.successors(nid))
        new_neighs1 = new_nids[neighs]
        new_nid = new_nids[nid]
        new_neighs2 = new_g.successors(new_nid)
        assert np.all(np.sort(new_neighs1) == np.sort(F.asnumpy(new_neighs2)))

Da Zheng's avatar
Da Zheng committed
657
658
659
660
661
662
663
664
665
666
667
668
669
    for nid in range(new_g.number_of_nodes()):
        neighs = F.asnumpy(new_g.successors(nid))
        old_neighs1 = orig_ids[neighs]
        old_nid = orig_ids[nid]
        old_neighs2 = g.successors(old_nid)
        assert np.all(np.sort(old_neighs1) == np.sort(F.asnumpy(old_neighs2)))

        neighs = F.asnumpy(new_g.predecessors(nid))
        old_neighs1 = orig_ids[neighs]
        old_nid = orig_ids[nid]
        old_neighs2 = g.predecessors(old_nid)
        assert np.all(np.sort(old_neighs1) == np.sort(F.asnumpy(old_neighs2)))

nv-dlasalle's avatar
nv-dlasalle committed
670
@parametrize_idtype
671
def test_compact(idtype):
672
    g1 = dgl.heterograph({
673
674
675
        ('user', 'follow', 'user'): ([1, 3], [3, 5]),
        ('user', 'plays', 'game'): ([2, 3, 2], [4, 4, 5]),
        ('game', 'wished-by', 'user'): ([6, 5], [7, 7])},
676
        {'user': 20, 'game': 10}, idtype=idtype, device=F.ctx())
677
678

    g2 = dgl.heterograph({
679
680
        ('game', 'clicked-by', 'user'): ([3], [1]),
        ('user', 'likes', 'user'): ([1, 8], [8, 9])},
681
        {'user': 20, 'game': 10}, idtype=idtype, device=F.ctx())
682

683
    g3 = dgl.heterograph({('user', '_E', 'user'): ((0, 1), (1, 2))},
684
                         {'user': 10}, idtype=idtype, device=F.ctx())
685
    g4 = dgl.heterograph({('user', '_E', 'user'): ((1, 3), (3, 5))},
686
                         {'user': 10}, idtype=idtype, device=F.ctx())
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708

    def _check(g, new_g, induced_nodes):
        assert g.ntypes == new_g.ntypes
        assert g.canonical_etypes == new_g.canonical_etypes

        for ntype in g.ntypes:
            assert -1 not in induced_nodes[ntype]

        for etype in g.canonical_etypes:
            g_src, g_dst = g.all_edges(order='eid', etype=etype)
            g_src = F.asnumpy(g_src)
            g_dst = F.asnumpy(g_dst)
            new_g_src, new_g_dst = new_g.all_edges(order='eid', etype=etype)
            new_g_src_mapped = induced_nodes[etype[0]][F.asnumpy(new_g_src)]
            new_g_dst_mapped = induced_nodes[etype[2]][F.asnumpy(new_g_dst)]
            assert (g_src == new_g_src_mapped).all()
            assert (g_dst == new_g_dst_mapped).all()

    # Test default
    new_g1 = dgl.compact_graphs(g1)
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
709
    assert new_g1.idtype == idtype
710
711
712
713
714
715
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7])
    assert set(induced_nodes['game']) == set([4, 5, 6])
    _check(g1, new_g1, induced_nodes)

    # Test with always_preserve given a dict
    new_g1 = dgl.compact_graphs(
716
717
        g1, always_preserve={'game': F.tensor([4, 7], idtype)})
    assert new_g1.idtype == idtype
718
719
720
721
722
723
724
725
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7])
    assert set(induced_nodes['game']) == set([4, 5, 6, 7])
    _check(g1, new_g1, induced_nodes)

    # Test with always_preserve given a tensor
    new_g3 = dgl.compact_graphs(
726
        g3, always_preserve=F.tensor([1, 7], idtype))
727
728
    induced_nodes = {ntype: new_g3.nodes[ntype].data[dgl.NID] for ntype in new_g3.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
729

730
    assert new_g3.idtype == idtype
731
732
733
734
735
736
737
    assert set(induced_nodes['user']) == set([0, 1, 2, 7])
    _check(g3, new_g3, induced_nodes)

    # Test multiple graphs
    new_g1, new_g2 = dgl.compact_graphs([g1, g2])
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
738
739
    assert new_g1.idtype == idtype
    assert new_g2.idtype == idtype
740
741
742
743
744
745
746
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7, 8, 9])
    assert set(induced_nodes['game']) == set([3, 4, 5, 6])
    _check(g1, new_g1, induced_nodes)
    _check(g2, new_g2, induced_nodes)

    # Test multiple graphs with always_preserve given a dict
    new_g1, new_g2 = dgl.compact_graphs(
747
        [g1, g2], always_preserve={'game': F.tensor([4, 7], dtype=idtype)})
748
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
749
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
750
751
    assert new_g1.idtype == idtype
    assert new_g2.idtype == idtype
752
753
754
755
756
757
758
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7, 8, 9])
    assert set(induced_nodes['game']) == set([3, 4, 5, 6, 7])
    _check(g1, new_g1, induced_nodes)
    _check(g2, new_g2, induced_nodes)

    # Test multiple graphs with always_preserve given a tensor
    new_g3, new_g4 = dgl.compact_graphs(
759
        [g3, g4], always_preserve=F.tensor([1, 7], dtype=idtype))
760
761
    induced_nodes = {ntype: new_g3.nodes[ntype].data[dgl.NID] for ntype in new_g3.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
762

763
764
765
    assert new_g3.idtype == idtype
    assert new_g4.idtype == idtype

766
767
768
769
    assert set(induced_nodes['user']) == set([0, 1, 2, 3, 5, 7])
    _check(g3, new_g3, induced_nodes)
    _check(g4, new_g4, induced_nodes)

770
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU to simple not implemented")
nv-dlasalle's avatar
nv-dlasalle committed
771
@parametrize_idtype
772
def test_to_simple(idtype):
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 2, 1]), F.tensor([1, 2, 0, 2])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
    sg, wb = dgl.to_simple(g, writeback_mapping=True)
    u, v = g.all_edges(form='uv', order='eid')
    u = F.asnumpy(u).tolist()
    v = F.asnumpy(v).tolist()
    uv = list(zip(u, v))
    eid_map = F.asnumpy(wb)

    su, sv = sg.all_edges(form='uv', order='eid')
    su = F.asnumpy(su).tolist()
    sv = F.asnumpy(sv).tolist()
    suv = list(zip(su, sv))
    sc = F.asnumpy(sg.edata['count'])
    assert set(uv) == set(suv)
    for i, e in enumerate(suv):
        assert sc[i] == sum(e == _e for _e in uv)
    for i, e in enumerate(uv):
        assert eid_map[i] == suv.index(e)
    # shared ndata
    assert F.array_equal(sg.ndata['h'], g.ndata['h'])
    assert 'h' not in sg.edata
    # new ndata to sg
    sg.ndata['hh'] = F.tensor([[0.], [1.], [2.]])
    assert 'hh' not in g.ndata

    sg = dgl.to_simple(g, writeback_mapping=False, copy_ndata=False)
    assert 'h' not in sg.ndata
    assert 'h' not in sg.edata

805
806
807
808
809
810
811
812
    # test coalesce edge feature
    sg = dgl.to_simple(g, copy_edata=True, aggregator='arbitrary')
    assert F.allclose(sg.edata['h'][1], F.tensor([4.]))
    sg = dgl.to_simple(g, copy_edata=True, aggregator='sum')
    assert F.allclose(sg.edata['h'][1], F.tensor([10.]))
    sg = dgl.to_simple(g, copy_edata=True, aggregator='mean')
    assert F.allclose(sg.edata['h'][1], F.tensor([5.]))

813
    # heterogeneous graph
814
    g = dgl.heterograph({
815
816
817
        ('user', 'follow', 'user'): ([0, 1, 2, 1, 1, 1],
                                     [1, 3, 2, 3, 4, 4]),
        ('user', 'plays', 'game'): ([3, 2, 1, 1, 3, 2, 2], [5, 3, 4, 4, 5, 3, 3])},
818
        idtype=idtype, device=F.ctx())
819
820
821
822
823
    g.nodes['user'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    g.nodes['user'].data['hh'] = F.tensor([0, 1, 2, 3, 4])
    g.edges['follow'].data['h'] = F.tensor([0, 1, 2, 3, 4, 5])
    sg, wb = dgl.to_simple(g, return_counts='weights', writeback_mapping=True, copy_edata=True)
    g.nodes['game'].data['h'] = F.tensor([0, 1, 2, 3, 4, 5])
824
825
826
827
828
829

    for etype in g.canonical_etypes:
        u, v = g.all_edges(form='uv', order='eid', etype=etype)
        u = F.asnumpy(u).tolist()
        v = F.asnumpy(v).tolist()
        uv = list(zip(u, v))
830
        eid_map = F.asnumpy(wb[etype])
831
832
833
834
835
836
837
838
839
840
841
842

        su, sv = sg.all_edges(form='uv', order='eid', etype=etype)
        su = F.asnumpy(su).tolist()
        sv = F.asnumpy(sv).tolist()
        suv = list(zip(su, sv))
        sw = F.asnumpy(sg.edges[etype].data['weights'])

        assert set(uv) == set(suv)
        for i, e in enumerate(suv):
            assert sw[i] == sum(e == _e for _e in uv)
        for i, e in enumerate(uv):
            assert eid_map[i] == suv.index(e)
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
    # shared ndata
    assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
    assert F.array_equal(sg.nodes['user'].data['hh'], g.nodes['user'].data['hh'])
    assert 'h' not in sg.nodes['game'].data
    # new ndata to sg
    sg.nodes['user'].data['hhh'] = F.tensor([0, 1, 2, 3, 4])
    assert 'hhh' not in g.nodes['user'].data
    # share edata
    feat_idx = F.asnumpy(wb[('user', 'follow', 'user')])
    _, indices = np.unique(feat_idx, return_index=True)
    assert np.array_equal(F.asnumpy(sg.edges['follow'].data['h']),
                          F.asnumpy(g.edges['follow'].data['h'])[indices])

    sg = dgl.to_simple(g, writeback_mapping=False, copy_ndata=False)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)
    assert 'h' not in sg.nodes['user'].data
    assert 'hh' not in sg.nodes['user'].data
861

862
863
864
865
866
867
868
869
870
871
    # verify DGLGraph.edge_ids() after dgl.to_simple()
    # in case ids are not initialized in underlying coo2csr()
    u = F.tensor([0, 1, 2])
    v = F.tensor([1, 2, 3])
    eids = F.tensor([0, 1, 2])
    g = dgl.graph((u, v))
    assert F.array_equal(g.edge_ids(u, v), eids)
    sg = dgl.to_simple(g)
    assert F.array_equal(sg.edge_ids(u, v), eids)

nv-dlasalle's avatar
nv-dlasalle committed
872
@parametrize_idtype
873
def test_to_block(idtype):
874
    def check(g, bg, ntype, etype, dst_nodes, include_dst_in_src=True):
875
876
877
        if dst_nodes is not None:
            assert F.array_equal(bg.dstnodes[ntype].data[dgl.NID], dst_nodes)
        n_dst_nodes = bg.number_of_nodes('DST/' + ntype)
878
879
880
881
        if include_dst_in_src:
            assert F.array_equal(
                bg.srcnodes[ntype].data[dgl.NID][:n_dst_nodes],
                bg.dstnodes[ntype].data[dgl.NID])
882
883
884
885
886
887

        g = g[etype]
        bg = bg[etype]
        induced_src = bg.srcdata[dgl.NID]
        induced_dst = bg.dstdata[dgl.NID]
        induced_eid = bg.edata[dgl.EID]
888

889
890
891
892
893
894
895
896
897
898
899
        bg_src, bg_dst = bg.all_edges(order='eid')
        src_ans, dst_ans = g.all_edges(order='eid')

        induced_src_bg = F.gather_row(induced_src, bg_src)
        induced_dst_bg = F.gather_row(induced_dst, bg_dst)
        induced_src_ans = F.gather_row(src_ans, induced_eid)
        induced_dst_ans = F.gather_row(dst_ans, induced_eid)

        assert F.array_equal(induced_src_bg, induced_src_ans)
        assert F.array_equal(induced_dst_bg, induced_dst_ans)

900
    def checkall(g, bg, dst_nodes, include_dst_in_src=True):
901
902
        for etype in g.etypes:
            ntype = g.to_canonical_etype(etype)[2]
903
            if dst_nodes is not None and ntype in dst_nodes:
904
                check(g, bg, ntype, etype, dst_nodes[ntype], include_dst_in_src)
905
            else:
906
                check(g, bg, ntype, etype, None, include_dst_in_src)
907

908
909
910
911
912
913
914
915
916
917
918
    # homogeneous graph
    g = dgl.graph((F.tensor([1, 2], dtype=idtype), F.tensor([2, 3], dtype=idtype)))
    dst_nodes = F.tensor([3, 2], dtype=idtype)
    bg = dgl.to_block(g, dst_nodes=dst_nodes)
    check(g, bg, '_N', '_E', dst_nodes)

    src_nodes = bg.srcnodes['_N'].data[dgl.NID]
    bg = dgl.to_block(g, dst_nodes=dst_nodes, src_nodes=src_nodes)
    check(g, bg, '_N', '_E', dst_nodes)

    # heterogeneous graph
919
    g = dgl.heterograph({
920
921
        ('A', 'AA', 'A'): ([0, 2, 1, 3], [1, 3, 2, 4]),
        ('A', 'AB', 'B'): ([0, 1, 3, 1], [1, 3, 5, 6]),
922
        ('B', 'BA', 'A'): ([2, 3], [3, 2])}, idtype=idtype, device=F.ctx())
923
924
925
926
927
    g.nodes['A'].data['x'] = F.randn((5, 10))
    g.nodes['B'].data['x'] = F.randn((7, 5))
    g.edges['AA'].data['x'] = F.randn((4, 3))
    g.edges['AB'].data['x'] = F.randn((4, 3))
    g.edges['BA'].data['x'] = F.randn((2, 3))
928
929
    g_a = g['AA']

930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
    def check_features(g, bg):
        for ntype in bg.srctypes:
            for key in g.nodes[ntype].data:
                assert F.array_equal(
                    bg.srcnodes[ntype].data[key],
                    F.gather_row(g.nodes[ntype].data[key], bg.srcnodes[ntype].data[dgl.NID]))
        for ntype in bg.dsttypes:
            for key in g.nodes[ntype].data:
                assert F.array_equal(
                    bg.dstnodes[ntype].data[key],
                    F.gather_row(g.nodes[ntype].data[key], bg.dstnodes[ntype].data[dgl.NID]))
        for etype in bg.canonical_etypes:
            for key in g.edges[etype].data:
                assert F.array_equal(
                    bg.edges[etype].data[key],
                    F.gather_row(g.edges[etype].data[key], bg.edges[etype].data[dgl.EID]))

947
948
    bg = dgl.to_block(g_a)
    check(g_a, bg, 'A', 'AA', None)
949
    check_features(g_a, bg)
950
951
952
953
954
    assert bg.number_of_src_nodes() == 5
    assert bg.number_of_dst_nodes() == 4

    bg = dgl.to_block(g_a, include_dst_in_src=False)
    check(g_a, bg, 'A', 'AA', None, False)
955
    check_features(g_a, bg)
956
957
    assert bg.number_of_src_nodes() == 4
    assert bg.number_of_dst_nodes() == 4
958

959
    dst_nodes = F.tensor([4, 3, 2, 1], dtype=idtype)
960
961
    bg = dgl.to_block(g_a, dst_nodes)
    check(g_a, bg, 'A', 'AA', dst_nodes)
962
    check_features(g_a, bg)
963
964
965
966

    g_ab = g['AB']

    bg = dgl.to_block(g_ab)
967
    assert bg.idtype == idtype
968
969
970
    assert bg.number_of_nodes('SRC/B') == 4
    assert F.array_equal(bg.srcnodes['B'].data[dgl.NID], bg.dstnodes['B'].data[dgl.NID])
    assert bg.number_of_nodes('DST/A') == 0
971
    checkall(g_ab, bg, None)
972
    check_features(g_ab, bg)
973

974
    dst_nodes = {'B': F.tensor([5, 6, 3, 1], dtype=idtype)}
975
    bg = dgl.to_block(g, dst_nodes)
976
    assert bg.number_of_nodes('SRC/B') == 4
977
978
979
    assert F.array_equal(bg.srcnodes['B'].data[dgl.NID], bg.dstnodes['B'].data[dgl.NID])
    assert bg.number_of_nodes('DST/A') == 0
    checkall(g, bg, dst_nodes)
980
    check_features(g, bg)
981

982
    dst_nodes = {'A': F.tensor([4, 3, 2, 1], dtype=idtype), 'B': F.tensor([3, 5, 6, 1], dtype=idtype)}
983
984
    bg = dgl.to_block(g, dst_nodes=dst_nodes)
    checkall(g, bg, dst_nodes)
985
    check_features(g, bg)
986

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
    # test specifying lhs_nodes with include_dst_in_src
    src_nodes = {}
    for ntype in dst_nodes.keys():
        # use the previous run to get the list of source nodes
        src_nodes[ntype] = bg.srcnodes[ntype].data[dgl.NID]
    bg = dgl.to_block(g, dst_nodes=dst_nodes, src_nodes=src_nodes)
    checkall(g, bg, dst_nodes)
    check_features(g, bg)

    # test without include_dst_in_src
    dst_nodes = {'A': F.tensor([4, 3, 2, 1], dtype=idtype), 'B': F.tensor([3, 5, 6, 1], dtype=idtype)}
    bg = dgl.to_block(g, dst_nodes=dst_nodes, include_dst_in_src=False)
    checkall(g, bg, dst_nodes, False)
    check_features(g, bg)

    # test specifying lhs_nodes without include_dst_in_src
    src_nodes = {}
    for ntype in dst_nodes.keys():
        # use the previous run to get the list of source nodes
        src_nodes[ntype] = bg.srcnodes[ntype].data[dgl.NID]
    bg = dgl.to_block(g, dst_nodes=dst_nodes, include_dst_in_src=False,
        src_nodes=src_nodes)
    checkall(g, bg, dst_nodes, False)
    check_features(g, bg)


1013
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
nv-dlasalle's avatar
nv-dlasalle committed
1014
@parametrize_idtype
1015
def test_remove_edges(idtype):
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
    def check(g1, etype, g, edges_removed):
        src, dst, eid = g.edges(etype=etype, form='all')
        src1, dst1 = g1.edges(etype=etype, order='eid')
        if etype is not None:
            eid1 = g1.edges[etype].data[dgl.EID]
        else:
            eid1 = g1.edata[dgl.EID]
        src1 = F.asnumpy(src1)
        dst1 = F.asnumpy(dst1)
        eid1 = F.asnumpy(eid1)
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        eid = F.asnumpy(eid)
        sde_set = set(zip(src, dst, eid))

        for s, d, e in zip(src1, dst1, eid1):
            assert (s, d, e) in sde_set
        assert not np.isin(edges_removed, eid1).any()
1034
        assert g1.idtype == g.idtype
1035
1036
1037

    for fmt in ['coo', 'csr', 'csc']:
        for edges_to_remove in [[2], [2, 2], [3, 2], [1, 3, 1, 2]]:
1038
            g = dgl.graph(([0, 2, 1, 3], [1, 3, 2, 4]), idtype=idtype).formats(fmt)
1039
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove, idtype))
1040
1041
            check(g1, None, g, edges_to_remove)

1042
            g = dgl.from_scipy(
1043
                spsp.csr_matrix(([1, 1, 1, 1], ([0, 2, 1, 3], [1, 3, 2, 4])), shape=(5, 5)),
1044
1045
                idtype=idtype).formats(fmt)
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove, idtype))
1046
1047
1048
            check(g1, None, g, edges_to_remove)

    g = dgl.heterograph({
1049
1050
1051
        ('A', 'AA', 'A'): ([0, 2, 1, 3], [1, 3, 2, 4]),
        ('A', 'AB', 'B'): ([0, 1, 3, 1], [1, 3, 5, 6]),
        ('B', 'BA', 'A'): ([2, 3], [3, 2])}, idtype=idtype)
1052
    g2 = dgl.remove_edges(g, {'AA': F.tensor([2], idtype), 'AB': F.tensor([3], idtype), 'BA': F.tensor([1], idtype)})
1053
1054
1055
    check(g2, 'AA', g, [2])
    check(g2, 'AB', g, [3])
    check(g2, 'BA', g, [1])
1056

1057
    g3 = dgl.remove_edges(g, {'AA': F.tensor([], idtype), 'AB': F.tensor([3], idtype), 'BA': F.tensor([1], idtype)})
1058
1059
1060
1061
    check(g3, 'AA', g, [])
    check(g3, 'AB', g, [3])
    check(g3, 'BA', g, [1])

1062
    g4 = dgl.remove_edges(g, {'AB': F.tensor([3, 1, 2, 0], idtype)})
1063
    check(g4, 'AA', g, [])
1064
    check(g4, 'AB', g, [3, 1, 2, 0])
1065
1066
    check(g4, 'BA', g, [])

nv-dlasalle's avatar
nv-dlasalle committed
1067
@parametrize_idtype
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
def test_add_edges(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = 0
    v = 1
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
1091
1092
1093
1094
1095
1096
1097
1098
1099
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))
    g = dgl.add_edges(g, [], [])
    g = dgl.add_edges(g, 0, [])
    g = dgl.add_edges(g, [], 0)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([0, 0, 2, 2], dtype=idtype))

    # zero data graph
1132
    g = dgl.graph(([], []), num_nodes=0, idtype=idtype, device=F.ctx())
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 2], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 2
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([2, 2], dtype=idtype))

    # bipartite graph
1147
1148
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
    u = 0
    v = 1
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
1175
1176
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
1189
1190
1191
1192
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2, 0], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([0, 0, 2, 2], dtype=idtype))

    # heterogeneous graph
1211
    g = create_test_heterograph3(idtype)
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v, etype='plays')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 2
    assert g.number_of_edges('plays') == 6
    assert g.number_of_edges('develops') == 2
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([0, 1, 1, 2, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0, 1, 1, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 1, 1, 1, 0, 0], dtype=idtype))

    # add with feature
    e_feat = {'h': F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.nodes['game'].data['h'] =  F.copy_to(F.tensor([2, 2, 1, 1], dtype=idtype), ctx=F.ctx())
    g = dgl.add_edges(g, u, v, data=e_feat, etype='develops')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 3
    assert g.number_of_edges('plays') == 6
    assert g.number_of_edges('develops') == 4
    u, v = g.edges(form='uv', order='eid', etype='develops')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['develops'].data['h'], F.tensor([0, 0, 2, 2], dtype=idtype))

nv-dlasalle's avatar
nv-dlasalle committed
1245
@parametrize_idtype
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
def test_add_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1], dtype=idtype), ctx=F.ctx())
    new_g = dgl.add_nodes(g, 1)
    assert g.number_of_nodes() == 3
    assert new_g.number_of_nodes() == 4
    assert F.array_equal(new_g.ndata['h'], F.tensor([1, 1, 1, 0], dtype=idtype))

    # zero node graph
1256
    g = dgl.graph(([], []), num_nodes=3, idtype=idtype, device=F.ctx())
1257
1258
1259
1260
1261
1262
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1], dtype=idtype), ctx=F.ctx())
    g = dgl.add_nodes(g, 1, data={'h' : F.copy_to(F.tensor([2],  dtype=idtype), ctx=F.ctx())})
    assert g.number_of_nodes() == 4
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 2], dtype=idtype))

    # bipartite graph
1263
1264
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1265
1266
1267
1268
1269
1270
1271
1272
1273
    g = dgl.add_nodes(g, 2, data={'h' : F.copy_to(F.tensor([2, 2],  dtype=idtype), ctx=F.ctx())}, ntype='user')
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 3
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([0, 0, 2, 2], dtype=idtype))
    g = dgl.add_nodes(g, 2, ntype='game')
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 5

    # heterogeneous graph
1274
    g = create_test_heterograph3(idtype)
1275
1276
1277
1278
1279
1280
1281
1282
    g = dgl.add_nodes(g, 1, ntype='user')
    g = dgl.add_nodes(g, 2, data={'h' : F.copy_to(F.tensor([2, 2],  dtype=idtype), ctx=F.ctx())}, ntype='game')
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 2
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2, 2], dtype=idtype))

nv-dlasalle's avatar
nv-dlasalle committed
1283
@parametrize_idtype
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
def test_remove_edges(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = 0
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = [0]
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 0

    # has node data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 1)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.ndata['h'], F.tensor([1, 2, 3], dtype=idtype))

    # has edge data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 0)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.edata['h'], F.tensor([2], dtype=idtype))

    # invalid eid
    assert_fail = False
    try:
        g = dgl.remove_edges(g, 1)
    except:
        assert_fail = True
    assert assert_fail

    # bipartite graph
1327
1328
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1329
1330
1331
1332
1333
1334
    e = 0
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
1335
1336
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
    e = [0]
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 0

    # has data
1348
1349
1350
1351
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
1352
1353
1354
1355
1356
1357
1358
1359
    g.edata['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 1)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1], dtype=idtype))

    # heterogeneous graph
1360
    g = create_test_heterograph3(idtype)
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 1, etype='plays')
    assert g.number_of_edges('plays') == 3
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 3, 4], dtype=idtype))
    # remove all edges of 'develops'
    g = dgl.remove_edges(g, [0, 1], etype='develops')
    assert g.number_of_edges('develops') == 0
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3], dtype=idtype))

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
    # batched graph
    ctx = F.ctx()
    g1 = dgl.graph(([0, 1], [1, 2]), num_nodes=5, idtype=idtype, device=ctx)
    g2 = dgl.graph(([], []), idtype=idtype, device=ctx)
    g3 = dgl.graph(([2, 3, 4], [3, 2, 1]), idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_edges(bg, 2)
    assert bg.batch_size == bg_r.batch_size
    assert F.array_equal(bg.batch_num_nodes(), bg_r.batch_num_nodes())
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([2, 0, 2], dtype=F.int64))

    bg_r = dgl.remove_edges(bg, [0, 2])
    assert bg.batch_size == bg_r.batch_size
    assert F.array_equal(bg.batch_num_nodes(), bg_r.batch_num_nodes())
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([1, 0, 2], dtype=F.int64))

    bg_r = dgl.remove_edges(bg, F.tensor([0, 2], dtype=idtype))
    assert bg.batch_size == bg_r.batch_size
    assert F.array_equal(bg.batch_num_nodes(), bg_r.batch_num_nodes())
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([1, 0, 2], dtype=F.int64))

    # batched heterogeneous graph
    g1 = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([1, 3], [0, 1])
    }, num_nodes_dict={'user': 4, 'game': 3}, idtype=idtype, device=ctx)
    g2 = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 2], [3, 4]),
        ('user', 'plays', 'game'): ([], [])
    }, num_nodes_dict={'user': 6, 'game': 2}, idtype=idtype, device=ctx)
    g3 = dgl.heterograph({
        ('user', 'follows', 'user'): ([], []),
        ('user', 'plays', 'game'): ([1, 2], [1, 2])
    }, idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_edges(bg, 1, etype='follows')
    assert bg.batch_size == bg_r.batch_size
    ntypes = bg.ntypes
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([1, 2, 0], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges('plays'), bg.batch_num_edges('plays'))

    bg_r = dgl.remove_edges(bg, 2, etype='plays')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([2, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_edges(bg, [0, 1, 3], etype='follows')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 1, 0], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('plays'), bg_r.batch_num_edges('plays'))

    bg_r = dgl.remove_edges(bg, [1, 2], etype='plays')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_edges(bg, F.tensor([0, 1, 3], dtype=idtype), etype='follows')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 1, 0], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('plays'), bg_r.batch_num_edges('plays'))

    bg_r = dgl.remove_edges(bg, F.tensor([1, 2], dtype=idtype), etype='plays')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

nv-dlasalle's avatar
nv-dlasalle committed
1453
@parametrize_idtype
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
def test_remove_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = 0
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = [1]
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 0
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = F.tensor([2], dtype=idtype)
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))

    # invalid nid
    assert_fail = False
    try:
        g.remove_nodes(3)
    except:
        assert_fail = True
    assert assert_fail

    # has node and edge data
    g = dgl.graph(([0, 0, 2], [0, 1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['hv'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_nodes(g, F.tensor([0], dtype=idtype))
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    assert F.array_equal(g.ndata['hv'], F.tensor([2, 3], dtype=idtype))
    assert F.array_equal(g.edata['he'], F.tensor([3], dtype=idtype))

    # node id larger than current max node id
1500
1501
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1502
1503
1504
1505
1506
1507
1508
1509
    n = 0
    g = dgl.remove_nodes(g, n, ntype='user')
    assert g.number_of_nodes('user') == 1
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
1510
1511
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1512
1513
1514
1515
1516
1517
1518
1519
    n = [1]
    g = dgl.remove_nodes(g, n, ntype='user')
    assert g.number_of_nodes('user') == 1
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
1520
1521
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
    n = F.tensor([0], dtype=idtype)
    g = dgl.remove_nodes(g, n, ntype='game')
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges() == 2
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0 ,1], dtype=idtype))

    # heterogeneous graph
1532
    g = create_test_heterograph3(idtype)
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_nodes(g, 0, ntype='game')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 1
    assert g.number_of_nodes('developer') == 2
    assert g.number_of_edges('plays') == 2
    assert g.number_of_edges('develops') == 1
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3], dtype=idtype))
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([3, 4], dtype=idtype))
    u, v = g.edges(form='uv', order='eid', etype='develops')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0], dtype=idtype))

1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
    # batched graph
    ctx = F.ctx()
    g1 = dgl.graph(([0, 1], [1, 2]), num_nodes=5, idtype=idtype, device=ctx)
    g2 = dgl.graph(([], []), idtype=idtype, device=ctx)
    g3 = dgl.graph(([2, 3, 4], [3, 2, 1]), idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_nodes(bg, 1)
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes(), F.tensor([4, 0, 5], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([0, 0, 3], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, [1, 7])
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes(), F.tensor([4, 0, 4], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([0, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, F.tensor([1, 7], dtype=idtype))
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes(), F.tensor([4, 0, 4], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([0, 0, 1], dtype=F.int64))

    # batched heterogeneous graph
    g1 = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([1, 3], [0, 1])
    }, num_nodes_dict={'user': 4, 'game': 3}, idtype=idtype, device=ctx)
    g2 = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 2], [3, 4]),
        ('user', 'plays', 'game'): ([], [])
    }, num_nodes_dict={'user': 6, 'game': 2}, idtype=idtype, device=ctx)
    g3 = dgl.heterograph({
        ('user', 'follows', 'user'): ([], []),
        ('user', 'plays', 'game'): ([1, 2], [1, 2])
    }, idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_nodes(bg, 1, ntype='user')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes('user'), F.tensor([3, 6, 3], dtype=F.int64))
    assert F.array_equal(bg.batch_num_nodes('game'), bg_r.batch_num_nodes('game'))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 2, 0], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 2], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, 6, ntype='game')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg.batch_num_nodes('user'), bg_r.batch_num_nodes('user'))
    assert F.array_equal(bg_r.batch_num_nodes('game'), F.tensor([3, 2, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([2, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, [1, 5, 6, 11], ntype='user')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes('user'), F.tensor([3, 4, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_nodes('game'), bg_r.batch_num_nodes('game'))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 1, 0], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, [0, 3, 4, 7], ntype='game')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg.batch_num_nodes('user'), bg_r.batch_num_nodes('user'))
    assert F.array_equal(bg_r.batch_num_nodes('game'), F.tensor([2, 0, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, F.tensor([1, 5, 6, 11], dtype=idtype), ntype='user')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes('user'), F.tensor([3, 4, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_nodes('game'), bg_r.batch_num_nodes('game'))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 1, 0], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, F.tensor([0, 3, 4, 7], dtype=idtype), ntype='game')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg.batch_num_nodes('user'), bg_r.batch_num_nodes('user'))
    assert F.array_equal(bg_r.batch_num_nodes('game'), F.tensor([2, 0, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

nv-dlasalle's avatar
nv-dlasalle committed
1628
@parametrize_idtype
1629
1630
def test_add_selfloop(idtype):
    # homogeneous graph
1631
1632

    # test for fill_data is float
1633
1634
    g = dgl.graph(([0, 0, 2], [2, 1, 0]), idtype=idtype, device=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
1635
    g.edata['he1'] = F.copy_to(F.tensor([[0., 1.], [2., 3.], [4., 5.]]), ctx=F.ctx())
1636
1637
1638
1639
1640
1641
1642
    g.ndata['hn'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.add_self_loop(g)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 6
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 0, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 1, 0, 0, 1, 2], dtype=idtype))
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
    assert F.array_equal(g.edata['he'], F.tensor([1, 2, 3, 1, 1, 1], dtype=idtype))
    assert F.array_equal(g.edata['he1'], F.tensor([[0., 1.], [2., 3.], [4., 5.],
                                                   [1., 1.], [1., 1.], [1., 1.]]))

    # test for fill_data is int
    g = dgl.graph(([0, 0, 2], [2, 1, 0]), idtype=idtype, device=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.edata['he1'] = F.copy_to(F.tensor([[0, 1], [2, 3], [4, 5]], dtype=idtype), ctx=F.ctx())
    g.ndata['hn'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.add_self_loop(g, fill_data=1)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 6
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 0, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 1, 0, 0, 1, 2], dtype=idtype))
    assert F.array_equal(g.edata['he'], F.tensor([1, 2, 3, 1, 1, 1], dtype=idtype))
    assert F.array_equal(g.edata['he1'], F.tensor([[0, 1], [2, 3], [4, 5],
                                                   [1, 1], [1, 1], [1, 1]], dtype=idtype))

    # test for fill_data is str
    g = dgl.graph(([0, 0, 2], [2, 1, 0]), idtype=idtype, device=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1., 2., 3.]), ctx=F.ctx())
    g.edata['he1'] = F.copy_to(F.tensor([[0., 1.], [2., 3.], [4., 5.]]), ctx=F.ctx())
    g.ndata['hn'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.add_self_loop(g, fill_data='sum')
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 6
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 0, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 1, 0, 0, 1, 2], dtype=idtype))
    assert F.array_equal(g.edata['he'], F.tensor([1., 2., 3., 3., 2., 1.]))
    assert F.array_equal(g.edata['he1'], F.tensor([[0., 1.], [2., 3.], [4., 5.],
                                                   [4., 5.], [2., 3.], [0., 1.]]))
1676
1677

    # bipartite graph
1678
1679
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1, 2], [1, 2, 2])}, idtype=idtype, device=F.ctx())
1680
1681
1682
1683
1684
1685
1686
1687
    # nothing will happend
    raise_error = False
    try:
        g = dgl.add_self_loop(g)
    except:
        raise_error = True
    assert raise_error

1688
    # test for fill_data is float
1689
    g = create_test_heterograph5(idtype)
1690
    g.edges['follows'].data['h1'] = F.copy_to(F.tensor([[0., 1.], [1., 2.]]), ctx=F.ctx())
1691
1692
1693
1694
1695
1696
1697
1698
    g = dgl.add_self_loop(g, etype='follows')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('follows') == 5
    assert g.number_of_edges('plays') == 2
    u, v = g.edges(form='uv', order='eid', etype='follows')
    assert F.array_equal(u, F.tensor([1, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 0, 1, 2], dtype=idtype))
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
    assert F.array_equal(g.edges['follows'].data['h'], F.tensor([1, 2, 1, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['follows'].data['h1'], F.tensor([[0., 1.], [1., 2.], [1., 1.],
                                                                  [1., 1.], [1., 1.]]))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 2], dtype=idtype))

    # test for fill_data is int
    g = create_test_heterograph5(idtype)
    g.edges['follows'].data['h1'] = F.copy_to(F.tensor([[0, 1], [1, 2]], dtype=idtype), ctx=F.ctx())
    g = dgl.add_self_loop(g, fill_data=1, etype='follows')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('follows') == 5
    assert g.number_of_edges('plays') == 2
    u, v = g.edges(form='uv', order='eid', etype='follows')
    assert F.array_equal(u, F.tensor([1, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 0, 1, 2], dtype=idtype))
    assert F.array_equal(g.edges['follows'].data['h'], F.tensor([1, 2, 1, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['follows'].data['h1'], F.tensor([[0, 1], [1, 2], [1, 1],
                                                                  [1, 1], [1, 1]], dtype=idtype))
1718
1719
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 2], dtype=idtype))

1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
    # test for fill_data is str
    g = dgl.heterograph({
        ('user', 'follows', 'user'): (F.tensor([1, 2], dtype=idtype),
                                      F.tensor([0, 1], dtype=idtype)),
        ('user', 'plays', 'game'): (F.tensor([0, 1], dtype=idtype),
                                    F.tensor([0, 1], dtype=idtype))},
        idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())
    g.edges['follows'].data['h'] = F.copy_to(F.tensor([1., 2.]), ctx=F.ctx())
    g.edges['follows'].data['h1'] = F.copy_to(F.tensor([[0., 1.], [1., 2.]]), ctx=F.ctx())
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1., 2.]), ctx=F.ctx())
    g = dgl.add_self_loop(g, fill_data='mean', etype='follows')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('follows') == 5
    assert g.number_of_edges('plays') == 2
    u, v = g.edges(form='uv', order='eid', etype='follows')
    assert F.array_equal(u, F.tensor([1, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 0, 1, 2], dtype=idtype))
    assert F.array_equal(g.edges['follows'].data['h'], F.tensor([1., 2., 1., 2., 0.]))
    assert F.array_equal(g.edges['follows'].data['h1'], F.tensor([[0., 1.], [1., 2.], [0., 1.],
                                                                  [1., 2.], [0., 0.]]))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1., 2.]))

1745
1746
1747
1748
1749
1750
1751
    raise_error = False
    try:
        g = dgl.add_self_loop(g, etype='plays')
    except:
        raise_error = True
    assert raise_error

nv-dlasalle's avatar
nv-dlasalle committed
1752
@parametrize_idtype
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
def test_remove_selfloop(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 0, 0, 1], [1, 0, 0, 2]), idtype=idtype, device=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_self_loop(g)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 2
    assert F.array_equal(g.edata['he'], F.tensor([1, 4], dtype=idtype))

    # bipartite graph
1763
1764
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1, 2], [1, 2, 2])}, idtype=idtype, device=F.ctx())
1765
1766
1767
1768
1769
1770
1771
1772
    # nothing will happend
    raise_error = False
    try:
        g = dgl.remove_self_loop(g, etype='plays')
    except:
        raise_error = True
    assert raise_error

1773
    g = create_test_heterograph4(idtype)
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
    g = dgl.remove_self_loop(g, etype='follows')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('follows') == 2
    assert g.number_of_edges('plays') == 2
    u, v = g.edges(form='uv', order='eid', etype='follows')
    assert F.array_equal(u, F.tensor([1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(g.edges['follows'].data['h'], F.tensor([2, 4], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 2], dtype=idtype))

    raise_error = False
    try:
        g = dgl.remove_self_loop(g, etype='plays')
    except:
        raise_error = True
    assert raise_error
1791

1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
    # batch information
    g = dgl.graph(([0, 0, 0, 1, 3, 3, 4], [1, 0, 0, 2, 3, 4, 4]), idtype=idtype, device=F.ctx())
    g.set_batch_num_nodes(F.tensor([3, 2], dtype=F.int64))
    g.set_batch_num_edges(F.tensor([4, 3], dtype=F.int64))
    g = dgl.remove_self_loop(g)
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 3
    assert F.array_equal(g.batch_num_nodes(), F.tensor([3, 2], dtype=F.int64))
    assert F.array_equal(g.batch_num_edges(), F.tensor([2, 1], dtype=F.int64))

1802

nv-dlasalle's avatar
nv-dlasalle committed
1803
@parametrize_idtype
1804
def test_reorder_graph(idtype):
1805
1806
1807
1808
1809
    g = dgl.graph(([0, 1, 2, 3, 4], [2, 2, 3, 2, 3]),
                  idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.randn((g.num_nodes(), 3)), ctx=F.ctx())
    g.edata['w'] = F.copy_to(F.randn((g.num_edges(), 2)), ctx=F.ctx())

1810
    # call with default: node_permute_algo=None, edge_permute_algo='src'
1811
    rg = dgl.reorder_graph(g)
1812
1813
1814
1815
1816
1817
    assert dgl.EID in rg.edata.keys()
    src = F.asnumpy(rg.edges()[0])
    assert np.array_equal(src, np.sort(src))

    # call with 'rcmk' node_permute_algo
    rg = dgl.reorder_graph(g, node_permute_algo='rcmk')
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
    assert dgl.NID in rg.ndata.keys()
    assert dgl.EID in rg.edata.keys()
    src = F.asnumpy(rg.edges()[0])
    assert np.array_equal(src, np.sort(src))

    # call with 'dst' edge_permute_algo
    rg = dgl.reorder_graph(g, edge_permute_algo='dst')
    dst = F.asnumpy(rg.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    # call with unknown edge_permute_algo
    raise_error = False
    try:
        dgl.reorder_graph(g, edge_permute_algo='none')
    except:
        raise_error = True
    assert raise_error
1835
1836

    # reorder back to original according to stored ids
1837
    rg = dgl.reorder_graph(g, node_permute_algo='rcmk')
1838
1839
    rg2 = dgl.reorder_graph(rg, 'custom', permute_config={
        'nodes_perm': np.argsort(F.asnumpy(rg.ndata[dgl.NID]))})
1840
1841
1842
1843
    assert F.array_equal(g.ndata['h'], rg2.ndata['h'])
    assert F.array_equal(g.edata['w'], rg2.edata['w'])

    # do not store ids
1844
    rg = dgl.reorder_graph(g, store_ids=False)
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
    assert not dgl.NID in rg.ndata.keys()
    assert not dgl.EID in rg.edata.keys()

    # metis does not work on windows.
    if os.name == 'nt':
        pass
    else:
        # metis_partition may fail for small graph.
        mg = create_large_graph(1000).to(F.ctx())

        # call with metis strategy, but k is not specified
        raise_error = False
        try:
1858
            dgl.reorder_graph(mg, node_permute_algo='metis')
1859
1860
1861
1862
1863
1864
1865
        except:
            raise_error = True
        assert raise_error

        # call with metis strategy, k is specified
        raise_error = False
        try:
1866
1867
            dgl.reorder_graph(mg,
                              node_permute_algo='metis', permute_config={'k': 2})
1868
1869
1870
1871
1872
1873
1874
1875
        except:
            raise_error = True
        assert not raise_error

    # call with qualified nodes_perm specified
    nodes_perm = np.random.permutation(g.num_nodes())
    raise_error = False
    try:
1876
1877
        dgl.reorder_graph(g, node_permute_algo='custom', permute_config={
            'nodes_perm': nodes_perm})
1878
1879
1880
1881
1882
1883
1884
    except:
        raise_error = True
    assert not raise_error

    # call with unqualified nodes_perm specified
    raise_error = False
    try:
1885
1886
        dgl.reorder_graph(g, node_permute_algo='custom', permute_config={
            'nodes_perm':  nodes_perm[:g.num_nodes() - 1]})
1887
1888
1889
1890
1891
1892
1893
    except:
        raise_error = True
    assert raise_error

    # call with unsupported strategy
    raise_error = False
    try:
1894
        dgl.reorder_graph(g, node_permute_algo='cmk')
1895
1896
1897
1898
1899
1900
1901
1902
1903
    except:
        raise_error = True
    assert raise_error

    # heterograph: not supported
    raise_error = False
    try:
        hg = dgl.heterogrpah({('user', 'follow', 'user'): (
            [0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1904
        dgl.reorder_graph(hg)
1905
1906
1907
1908
    except:
        raise_error = True
    assert raise_error

1909
1910
1911
1912
1913
1914
    # TODO: shall we fix them?
    # add 'csc' format if needed
    #fg = g.formats('csr')
    #assert 'csc' not in sum(fg.formats().values(), [])
    #rfg = dgl.reorder_graph(fg)
    #assert 'csc' in sum(rfg.formats().values(), [])
1915

Mufei Li's avatar
Mufei Li committed
1916
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support a slicing operation")
nv-dlasalle's avatar
nv-dlasalle committed
1917
@parametrize_idtype
Mufei Li's avatar
Mufei Li committed
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
def test_norm_by_dst(idtype):
    # Case1: A homogeneous graph
    g = dgl.graph(([0, 1, 1], [1, 1, 2]), idtype=idtype, device=F.ctx())
    eweight = dgl.norm_by_dst(g)
    assert F.allclose(eweight, F.tensor([0.5, 0.5, 1.0]))

    # Case2: A heterogeneous graph
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 1], [1, 1, 2])
    }, idtype=idtype, device=F.ctx())
    eweight = dgl.norm_by_dst(g, etype=('user', 'plays', 'game'))
    assert F.allclose(eweight, F.tensor([0.5, 0.5, 1.0]))

nv-dlasalle's avatar
nv-dlasalle committed
1932
@parametrize_idtype
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
def test_module_add_self_loop(idtype):
    g = dgl.graph(([1, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((g.num_nodes(), 2))
    g.edata['w'] = F.randn((g.num_edges(), 3))

    # Case1: add self-loops with the default setting
    transform = dgl.AddSelfLoop()
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_nodes()
    assert new_g.num_edges() == 4
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (1, 2), (2, 2)}
    assert 'h' in new_g.ndata
    assert 'w' in new_g.edata

    # Case2: Remove self-loops first to avoid duplicate ones
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_nodes()
    assert new_g.num_edges() == 5
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (1, 2), (2, 2)}
    assert 'h' in new_g.ndata
    assert 'w' in new_g.edata

    # Create a heterogeneous graph
    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0], [1]),
        ('user', 'follows', 'user'): ([1], [3])
    }, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h1'] = F.randn((4, 2))
    g.edges['plays'].data['w1'] = F.randn((1, 3))
    g.nodes['game'].data['h2'] = F.randn((2, 4))
    g.edges['follows'].data['w2'] = F.randn((1, 5))

    # Case3: add self-loops for a heterogeneous graph
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
    assert new_g.num_edges('plays') == 1
    assert new_g.num_edges('follows') == 5
    assert 'h1' in new_g.nodes['user'].data
    assert 'h2' in new_g.nodes['game'].data
    assert 'w1' in new_g.edges['plays'].data
    assert 'w2' in new_g.edges['follows'].data

    # Case4: add self-etypes for a heterogeneous graph
    transform = dgl.AddSelfLoop(new_etypes=True)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert set(new_g.canonical_etypes) == {
        ('user', 'plays', 'game'), ('user', 'follows', 'user'),
        ('user', 'self', 'user'), ('game', 'self', 'game')
    }
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
    assert new_g.num_edges('plays') == 1
    assert new_g.num_edges('follows') == 5
    assert new_g.num_edges(('user', 'self', 'user')) == 4
    assert new_g.num_edges(('game', 'self', 'game')) == 2
    assert 'h1' in new_g.nodes['user'].data
    assert 'h2' in new_g.nodes['game'].data
    assert 'w1' in new_g.edges['plays'].data
    assert 'w2' in new_g.edges['follows'].data

nv-dlasalle's avatar
nv-dlasalle committed
2010
@parametrize_idtype
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
def test_module_remove_self_loop(idtype):
    transform = dgl.RemoveSelfLoop()

    # Case1: homogeneous graph
    g = dgl.graph(([1, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((g.num_nodes(), 2))
    g.edata['w'] = F.randn((g.num_edges(), 3))
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_nodes()
    assert new_g.num_edges() == 1
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 2)}
    assert 'h' in new_g.ndata
    assert 'w' in new_g.edata

    # Case2: heterogeneous graph
    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1], [1, 1]),
        ('user', 'follows', 'user'): ([1, 2], [2, 2])
    }, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h1'] = F.randn((3, 2))
    g.edges['plays'].data['w1'] = F.randn((2, 3))
    g.nodes['game'].data['h2'] = F.randn((2, 4))
    g.edges['follows'].data['w2'] = F.randn((2, 5))

    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
    assert new_g.num_edges('plays') == 2
    assert new_g.num_edges('follows') == 1
    assert 'h1' in new_g.nodes['user'].data
    assert 'h2' in new_g.nodes['game'].data
    assert 'w1' in new_g.edges['plays'].data
    assert 'w2' in new_g.edges['follows'].data

nv-dlasalle's avatar
nv-dlasalle committed
2053
@parametrize_idtype
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
def test_module_add_reverse(idtype):
    transform = dgl.AddReverse()

    # Case1: Add reverse edges for a homogeneous graph
    g = dgl.graph(([0], [1]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((g.num_nodes(), 3))
    g.edata['w'] = F.randn((g.num_edges(), 2))
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert g.num_nodes() == new_g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 0)}
    assert F.allclose(g.ndata['h'], new_g.ndata['h'])
    assert F.allclose(g.edata['w'], F.narrow_row(new_g.edata['w'], 0, 1))
    assert F.allclose(F.narrow_row(new_g.edata['w'], 1, 2), F.zeros((1, 2), F.float32, F.ctx()))

    # Case2: Add reverse edges for a homogeneous graph and copy edata
    transform = dgl.AddReverse(copy_edata=True)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert g.num_nodes() == new_g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 0)}
    assert F.allclose(g.ndata['h'], new_g.ndata['h'])
    assert F.allclose(g.edata['w'], F.narrow_row(new_g.edata['w'], 0, 1))
    assert F.allclose(g.edata['w'], F.narrow_row(new_g.edata['w'], 1, 2))

    # Case3: Add reverse edges for a heterogeneous graph
    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1], [1, 1]),
        ('user', 'follows', 'user'): ([1, 2], [2, 2])
    }, device=F.ctx())
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert g.ntypes == new_g.ntypes
    assert set(new_g.canonical_etypes) == {
        ('user', 'plays', 'game'), ('user', 'follows', 'user'), ('game', 'rev_plays', 'user')}
    for nty in g.ntypes:
        assert g.num_nodes(nty) == new_g.num_nodes(nty)

    src, dst = new_g.edges(etype='plays')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

    src, dst = new_g.edges(etype='follows')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 2), (2, 2), (2, 1)}

    src, dst = new_g.edges(etype='rev_plays')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 1), (1, 0)}

    # Case4: Enforce reverse edge types for symmetric canonical edge types
    transform = dgl.AddReverse(sym_new_etype=True)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert g.ntypes == new_g.ntypes
    assert set(new_g.canonical_etypes) == {
        ('user', 'plays', 'game'), ('user', 'follows', 'user'),
        ('game', 'rev_plays', 'user'), ('user', 'rev_follows', 'user')}
    for nty in g.ntypes:
        assert g.num_nodes(nty) == new_g.num_nodes(nty)

    src, dst = new_g.edges(etype='plays')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

    src, dst = new_g.edges(etype='follows')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 2), (2, 2)}

    src, dst = new_g.edges(etype='rev_plays')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 1), (1, 0)}

    src, dst = new_g.edges(etype='rev_follows')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(2, 1), (2, 2)}

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not supported for to_simple")
nv-dlasalle's avatar
nv-dlasalle committed
2140
@parametrize_idtype
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
def test_module_to_simple(idtype):
    transform = dgl.ToSimple()
    g = dgl.graph(([0, 1, 1], [1, 2, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((g.num_nodes(), 2))
    g.edata['w'] = F.tensor([[0.1], [0.2], [0.3]])
    sg = transform(g)
    assert sg.device == g.device
    assert sg.idtype == g.idtype
    assert sg.num_nodes() == g.num_nodes()
    assert sg.num_edges() == 2
    src, dst = sg.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 2)}
    assert F.allclose(sg.edata['count'], F.tensor([1, 2]))
    assert F.allclose(sg.ndata['h'], g.ndata['h'])

    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 1], [1, 2, 2]),
        ('user', 'plays', 'game'): ([0, 1, 0], [1, 1, 1])
    })
    sg = transform(g)
    assert sg.device == g.device
    assert sg.idtype == g.idtype
    assert sg.ntypes == g.ntypes
    assert sg.canonical_etypes == g.canonical_etypes
    for nty in sg.ntypes:
        assert sg.num_nodes(nty) == g.num_nodes(nty)
    for ety in sg.canonical_etypes:
        assert sg.num_edges(ety) == 2

    src, dst = sg.edges(etype='follows')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 2)}

    src, dst = sg.edges(etype='plays')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

nv-dlasalle's avatar
nv-dlasalle committed
2179
@parametrize_idtype
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
def test_module_line_graph(idtype):
    transform = dgl.LineGraph()
    g = dgl.graph(([0, 1, 1], [1, 0, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['w'] = F.tensor([[0.], [0.1], [0.2]])
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_edges()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (0, 2), (1, 0)}

    transform = dgl.LineGraph(backtracking=False)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_edges()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 2)}

nv-dlasalle's avatar
nv-dlasalle committed
2202
@parametrize_idtype
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
def test_module_khop_graph(idtype):
    transform = dgl.KHopGraph(2)
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((g.num_nodes(), 2))
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_nodes()
    assert F.allclose(g.ndata['h'], new_g.ndata['h'])
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 2)}

nv-dlasalle's avatar
nv-dlasalle committed
2216
@parametrize_idtype
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
def test_module_add_metapaths(idtype):
    g = dgl.heterograph({
        ('person', 'author', 'paper'): ([0, 0, 1], [1, 2, 2]),
        ('paper', 'accepted', 'venue'): ([1], [0]),
        ('paper', 'rejected', 'venue'): ([2], [1])
    }, idtype=idtype, device=F.ctx())
    g.nodes['venue'].data['h'] = F.randn((g.num_nodes('venue'), 2))
    g.edges['author'].data['h'] = F.randn((g.num_edges('author'), 3))

    # Case1: keep_orig_edges is True
    metapaths = {
        'accepted': [('person', 'author', 'paper'), ('paper', 'accepted', 'venue')],
        'rejected': [('person', 'author', 'paper'), ('paper', 'rejected', 'venue')]
    }
    transform = dgl.AddMetaPaths(metapaths)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert set(new_g.canonical_etypes) == {
        ('person', 'author', 'paper'), ('paper', 'accepted', 'venue'),
        ('paper', 'rejected', 'venue'), ('person', 'accepted', 'venue'),
        ('person', 'rejected', 'venue')
    }
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
    for ety in g.canonical_etypes:
        assert new_g.num_edges(ety) == g.num_edges(ety)
    assert F.allclose(g.nodes['venue'].data['h'], new_g.nodes['venue'].data['h'])
    assert F.allclose(g.edges['author'].data['h'], new_g.edges['author'].data['h'])

    src, dst = new_g.edges(etype=('person', 'accepted', 'venue'))
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0)}

    src, dst = new_g.edges(etype=('person', 'rejected', 'venue'))
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

    # Case2: keep_orig_edges is False
    transform = dgl.AddMetaPaths(metapaths, keep_orig_edges=False)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert len(new_g.canonical_etypes) == 2
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
    assert F.allclose(g.nodes['venue'].data['h'], new_g.nodes['venue'].data['h'])

    src, dst = new_g.edges(etype=('person', 'accepted', 'venue'))
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0)}

    src, dst = new_g.edges(etype=('person', 'rejected', 'venue'))
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

nv-dlasalle's avatar
nv-dlasalle committed
2275
@parametrize_idtype
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
def test_module_compose(idtype):
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    transform = dgl.Compose([dgl.AddReverse(), dgl.AddSelfLoop()])
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_edges() == 7

    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 2), (1, 0), (2, 1), (0, 0), (1, 1), (2, 2)}

nv-dlasalle's avatar
nv-dlasalle committed
2288
@parametrize_idtype
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
def test_module_gcnnorm(idtype):
    g = dgl.heterograph({
        ('A', 'r1', 'A'): ([0, 1, 2], [0, 0, 1]),
        ('A', 'r2', 'B'): ([0, 0], [1, 1]),
        ('B', 'r3', 'B'): ([0, 1, 2], [0, 0, 1])
    }, idtype=idtype, device=F.ctx())
    g.edges['r3'].data['w'] = F.tensor([0.1, 0.2, 0.3])
    transform = dgl.GCNNorm()
    new_g = transform(g)
    assert 'w' not in new_g.edges[('A', 'r2', 'B')].data
    assert F.allclose(new_g.edges[('A', 'r1', 'A')].data['w'],
                      F.tensor([1./2, 1./math.sqrt(2), 0.]))
    assert F.allclose(new_g.edges[('B', 'r3', 'B')].data['w'], F.tensor([1./3, 2./3, 0.]))

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
nv-dlasalle's avatar
nv-dlasalle committed
2304
@parametrize_idtype
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
def test_module_ppr(idtype):
    g = dgl.graph(([0, 1, 2, 3, 4], [2, 3, 4, 5, 3]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((6, 2))
    transform = dgl.PPR(avg_degree=2)
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.num_nodes() == g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (0, 2), (0, 4), (1, 1), (1, 3), (1, 5), (2, 2),
                    (2, 3), (2, 4), (3, 3), (3, 5), (4, 3), (4, 4), (4, 5), (5, 5)}
    assert F.allclose(g.ndata['h'], new_g.ndata['h'])
    assert 'w' in new_g.edata

    # Prior edge weights
    g.edata['w'] = F.tensor([0.1, 0.2, 0.3, 0.4, 0.5])
    new_g = transform(g)
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (1, 3), (2, 2), (2, 3), (2, 4),
                    (3, 3), (3, 5), (4, 3), (4, 4), (4, 5), (5, 5)}

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
nv-dlasalle's avatar
nv-dlasalle committed
2329
@parametrize_idtype
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
def test_module_heat_kernel(idtype):
    # Case1: directed graph
    g = dgl.graph(([0, 1, 2, 3, 4], [2, 3, 4, 5, 3]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((6, 2))
    transform = dgl.HeatKernel(avg_degree=1)
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.num_nodes() == g.num_nodes()
    assert F.allclose(g.ndata['h'], new_g.ndata['h'])
    assert 'w' in new_g.edata

    # Case2: weighted undirected graph
    g = dgl.graph(([0, 1, 2, 3], [1, 0, 3, 2]), idtype=idtype, device=F.ctx())
    g.edata['w'] = F.tensor([0.1, 0.2, 0.3, 0.4])
    new_g = transform(g)
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (2, 2), (3, 3)}

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
nv-dlasalle's avatar
nv-dlasalle committed
2351
@parametrize_idtype
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
def test_module_gdc(idtype):
    transform = dgl.GDC([0.1, 0.2, 0.1], avg_degree=1)
    g = dgl.graph(([0, 1, 2, 3, 4], [2, 3, 4, 5, 3]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((6, 2))
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.num_nodes() == g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (0, 2), (0, 4), (1, 1), (1, 3), (1, 5), (2, 2), (2, 3),
                    (2, 4), (3, 3), (3, 5), (4, 3), (4, 4), (4, 5), (5, 5)}
    assert F.allclose(g.ndata['h'], new_g.ndata['h'])
    assert 'w' in new_g.edata

    # Prior edge weights
    g.edata['w'] = F.tensor([0.1, 0.2, 0.3, 0.4, 0.5])
    new_g = transform(g)
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (2, 2), (3, 3), (4, 3), (4, 4), (5, 5)}

2374
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support a slicing operation")
nv-dlasalle's avatar
nv-dlasalle committed
2375
@parametrize_idtype
2376
2377
2378
2379
2380
def test_module_node_shuffle(idtype):
    transform = dgl.NodeShuffle()
    g = dgl.heterograph({
        ('A', 'r', 'B'): ([0, 1], [1, 2]),
    }, idtype=idtype, device=F.ctx())
2381
2382
    g.nodes['B'].data['h'] = F.randn((g.num_nodes('B'), 2))
    old_nfeat = g.nodes['B'].data['h']
2383
    new_g = transform(g)
2384
2385
    new_nfeat = g.nodes['B'].data['h']
    assert F.allclose(old_nfeat, new_nfeat)
2386
2387

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
nv-dlasalle's avatar
nv-dlasalle committed
2388
@parametrize_idtype
2389
2390
2391
2392
2393
def test_module_drop_node(idtype):
    transform = dgl.DropNode()
    g = dgl.heterograph({
        ('A', 'r', 'B'): ([0, 1], [1, 2]),
    }, idtype=idtype, device=F.ctx())
2394
    num_nodes_old = g.num_nodes()
2395
2396
2397
2398
2399
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes
2400
2401
2402
    num_nodes_new = g.num_nodes()
    # Ensure that the original graph is not corrupted
    assert num_nodes_old == num_nodes_new
2403
2404

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
nv-dlasalle's avatar
nv-dlasalle committed
2405
@parametrize_idtype
2406
2407
2408
2409
2410
2411
def test_module_drop_edge(idtype):
    transform = dgl.DropEdge()
    g = dgl.heterograph({
        ('A', 'r1', 'B'): ([0, 1], [1, 2]),
        ('C', 'r2', 'C'): ([3, 4, 5], [6, 7, 8])
    }, idtype=idtype, device=F.ctx())
2412
    num_edges_old = g.num_edges()
2413
2414
2415
2416
2417
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes
2418
2419
2420
    num_edges_new = g.num_edges()
    # Ensure that the original graph is not corrupted
    assert num_edges_old == num_edges_new
2421

nv-dlasalle's avatar
nv-dlasalle committed
2422
@parametrize_idtype
2423
2424
2425
2426
2427
2428
def test_module_add_edge(idtype):
    transform = dgl.AddEdge()
    g = dgl.heterograph({
        ('A', 'r1', 'B'): ([0, 1, 2, 3, 4], [1, 2, 3, 4, 5]),
        ('C', 'r2', 'C'): ([0, 1, 2, 3, 4], [1, 2, 3, 4, 5])
    }, idtype=idtype, device=F.ctx())
2429
    num_edges_old = g.num_edges()
2430
2431
2432
2433
2434
2435
2436
    new_g = transform(g)
    assert new_g.num_edges(('A', 'r1', 'B')) == 6
    assert new_g.num_edges(('C', 'r2', 'C')) == 6
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes
2437
2438
2439
    num_edges_new = g.num_edges()
    # Ensure that the original graph is not corrupted
    assert num_edges_old == num_edges_new
2440

nv-dlasalle's avatar
nv-dlasalle committed
2441
@parametrize_idtype
2442
2443
2444
2445
2446
2447
2448
def test_module_random_walk_pe(idtype):
    transform = dgl.RandomWalkPE(2, 'rwpe')
    g = dgl.graph(([0, 1, 1], [1, 1, 0]), idtype=idtype, device=F.ctx())
    new_g = transform(g)
    tgt = F.copy_to(F.tensor([[0., 0.5],[0.5, 0.75]]), g.device)
    assert F.allclose(new_g.ndata['rwpe'], tgt)

nv-dlasalle's avatar
nv-dlasalle committed
2449
@parametrize_idtype
2450
def test_module_laplacian_pe(idtype):
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
    g = dgl.graph(([2, 1, 0, 3, 1, 1],[3, 1, 1, 2, 1, 0]), idtype=idtype, device=F.ctx())
    tgt_eigval = F.copy_to(F.repeat(F.tensor([[1.1534e-17, 1.3333e+00, 2., np.nan, np.nan]]),
        g.num_nodes(), dim=0), g.device)
    tgt_pe = F.copy_to(F.tensor([[0.5, 0.86602539, 0., 0., 0.],
        [0.86602539, 0.5, 0., 0., 0.],
        [0., 0., 0.70710677, 0., 0.],
        [0., 0., 0.70710677, 0., 0.]]), g.device)

    # without padding (k<n)
    transform = dgl.LaplacianPE(2, feat_name='lappe')
2461
2462
2463
    new_g = transform(g)
    # tensorflow has no abs() api
    if dgl.backend.backend_name == 'tensorflow':
2464
        assert F.allclose(new_g.ndata['lappe'].__abs__(), tgt_pe[:,:2])
2465
2466
    # pytorch & mxnet
    else:
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
        assert F.allclose(new_g.ndata['lappe'].abs(), tgt_pe[:,:2])

    # with padding (k>=n)
    transform = dgl.LaplacianPE(5, feat_name='lappe', padding=True)
    new_g = transform(g)
    # tensorflow has no abs() api
    if dgl.backend.backend_name == 'tensorflow':
        assert F.allclose(new_g.ndata['lappe'].__abs__(), tgt_pe)
    # pytorch & mxnet
    else:
        assert F.allclose(new_g.ndata['lappe'].abs(), tgt_pe)

    # with eigenvalues
    transform = dgl.LaplacianPE(5, feat_name='lappe', eigval_name='eigval', padding=True)
    new_g = transform(g)
    # tensorflow has no abs() api
    if dgl.backend.backend_name == 'tensorflow':
        assert F.allclose(new_g.ndata['eigval'][:,:3], tgt_eigval[:,:3])
        assert F.allclose(new_g.ndata['lappe'].__abs__(), tgt_pe)
    # pytorch & mxnet
    else:
        assert F.allclose(new_g.ndata['eigval'][:,:3], tgt_eigval[:,:3])
        assert F.allclose(new_g.ndata['lappe'].abs(), tgt_pe)
2490

2491
2492
2493
2494
@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
@pytest.mark.parametrize('g', get_cases(['has_scalar_e_feature']))
def test_module_sign(g):
    import torch
2495

Mufei Li's avatar
Mufei Li committed
2496
    atol = 1e-06
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510

    ctx = F.ctx()
    g = g.to(ctx)
    adj = g.adj(transpose=True, scipy_fmt='coo').todense()
    adj = torch.tensor(adj).float().to(ctx)

    weight_adj = g.adj(transpose=True, scipy_fmt='coo').astype(float).todense()
    weight_adj = torch.tensor(weight_adj).float().to(ctx)
    src, dst = g.edges()
    src, dst = src.long(), dst.long()
    weight_adj[dst, src] = g.edata['scalar_w']

    # raw
    transform = dgl.SIGNDiffusion(k=1, in_feat_name='h', diffuse_op='raw')
2511
    g = transform(g)
Mufei Li's avatar
Mufei Li committed
2512
    target = torch.matmul(adj, g.ndata['h'])
Mufei Li's avatar
Mufei Li committed
2513
    assert torch.allclose(g.ndata['out_feat_1'], target, atol=atol)
2514
2515

    transform = dgl.SIGNDiffusion(k=1, in_feat_name='h', eweight_name='scalar_w', diffuse_op='raw')
2516
    g = transform(g)
Mufei Li's avatar
Mufei Li committed
2517
    target = torch.matmul(weight_adj, g.ndata['h'])
Mufei Li's avatar
Mufei Li committed
2518
    assert torch.allclose(g.ndata['out_feat_1'], target, atol=atol)
2519
2520
2521
2522

    # rw
    adj_rw = torch.matmul(torch.diag(1 / adj.sum(dim=1)), adj)
    transform = dgl.SIGNDiffusion(k=1, in_feat_name='h', diffuse_op='rw')
2523
    g = transform(g)
Mufei Li's avatar
Mufei Li committed
2524
    target = torch.matmul(adj_rw, g.ndata['h'])
Mufei Li's avatar
Mufei Li committed
2525
    assert torch.allclose(g.ndata['out_feat_1'], target, atol=atol)
2526
2527
2528

    weight_adj_rw = torch.matmul(torch.diag(1 / weight_adj.sum(dim=1)), weight_adj)
    transform = dgl.SIGNDiffusion(k=1, in_feat_name='h', eweight_name='scalar_w', diffuse_op='rw')
2529
    g = transform(g)
Mufei Li's avatar
Mufei Li committed
2530
    target = torch.matmul(weight_adj_rw, g.ndata['h'])
Mufei Li's avatar
Mufei Li committed
2531
    assert torch.allclose(g.ndata['out_feat_1'], target, atol=atol)
2532
2533
2534
2535

    # gcn
    raw_eweight = g.edata['scalar_w']
    gcn_norm = dgl.GCNNorm()
2536
    g = gcn_norm(g)
2537
2538
2539
    adj_gcn = adj.clone()
    adj_gcn[dst, src] = g.edata.pop('w')
    transform = dgl.SIGNDiffusion(k=1, in_feat_name='h', diffuse_op='gcn')
2540
2541
    g = transform(g)
    target = torch.matmul(adj_gcn, g.ndata['h'])
Mufei Li's avatar
Mufei Li committed
2542
    assert torch.allclose(g.ndata['out_feat_1'], target, atol=atol)
2543
2544

    gcn_norm = dgl.GCNNorm('scalar_w')
2545
    g = gcn_norm(g)
2546
2547
2548
2549
2550
    weight_adj_gcn = weight_adj.clone()
    weight_adj_gcn[dst, src] = g.edata['scalar_w']
    g.edata['scalar_w'] = raw_eweight
    transform = dgl.SIGNDiffusion(k=1, in_feat_name='h',
                                  eweight_name='scalar_w', diffuse_op='gcn')
2551
2552
    g = transform(g)
    target = torch.matmul(weight_adj_gcn, g.ndata['h'])
Mufei Li's avatar
Mufei Li committed
2553
    assert torch.allclose(g.ndata['out_feat_1'], target, atol=atol)
2554
2555
2556
2557

    # ppr
    alpha = 0.2
    transform = dgl.SIGNDiffusion(k=1, in_feat_name='h', diffuse_op='ppr', alpha=alpha)
2558
    g = transform(g)
2559
    target = (1 - alpha) * torch.matmul(adj_gcn, g.ndata['h']) + alpha * g.ndata['h']
Mufei Li's avatar
Mufei Li committed
2560
    assert torch.allclose(g.ndata['out_feat_1'], target, atol=atol)
2561
2562
2563

    transform = dgl.SIGNDiffusion(k=1, in_feat_name='h', eweight_name='scalar_w',
                                  diffuse_op='ppr', alpha=alpha)
2564
    g = transform(g)
2565
    target = (1 - alpha) * torch.matmul(weight_adj_gcn, g.ndata['h']) + alpha * g.ndata['h']
Mufei Li's avatar
Mufei Li committed
2566
    assert torch.allclose(g.ndata['out_feat_1'], target, atol=atol)
2567

2568
@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
nv-dlasalle's avatar
nv-dlasalle committed
2569
@parametrize_idtype
2570
2571
def test_module_row_feat_normalizer(idtype):
    # Case1: Normalize features of a homogeneous graph.
2572
2573
    transform = dgl.RowFeatNormalizer(subtract_min=True,
                                      node_feat_names=['h'], edge_feat_names=['w'])
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
    g = dgl.rand_graph(5, 5, idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((g.num_nodes(), 128))
    g.edata['w'] = F.randn((g.num_edges(), 128))
    g = transform(g)
    assert g.ndata['h'].shape == (g.num_nodes(), 128)
    assert g.edata['w'].shape == (g.num_edges(), 128)
    assert F.allclose(g.ndata['h'].sum(1), F.tensor([1.0, 1.0, 1.0, 1.0, 1.0]))
    assert F.allclose(g.edata['w'].sum(1), F.tensor([1.0, 1.0, 1.0, 1.0, 1.0]))

    # Case2: Normalize features of a heterogeneous graph.
2584
2585
    transform = dgl.RowFeatNormalizer(subtract_min=True,
                                      node_feat_names=['h', 'h2'], edge_feat_names=['w'])
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
    g = dgl.heterograph({
        ('user', 'follows', 'user'): (F.tensor([1, 2]), F.tensor([3, 4])),
        ('player', 'plays', 'game'): (F.tensor([2, 2]), F.tensor([1, 1]))
    }, idtype=idtype, device=F.ctx())
    g.ndata['h'] = {'game': F.randn((2, 128)), 'player': F.randn((3, 128))}
    g.ndata['h2'] = {'user': F.randn((5, 128))}
    g.edata['w'] = {('user', 'follows', 'user'): F.randn((2, 128)), ('player', 'plays', 'game'): F.randn((2, 128))}
    g = transform(g)
    assert g.ndata['h']['game'].shape == (2, 128)
    assert g.ndata['h']['player'].shape == (3, 128)
    assert g.ndata['h2']['user'].shape == (5, 128)
    assert g.edata['w'][('user', 'follows', 'user')].shape == (2, 128)
    assert g.edata['w'][('player', 'plays', 'game')].shape == (2, 128)
    assert F.allclose(g.ndata['h']['game'].sum(1), F.tensor([1.0, 1.0]))
    assert F.allclose(g.ndata['h']['player'].sum(1), F.tensor([1.0, 1.0, 1.0]))
    assert F.allclose(g.ndata['h2']['user'].sum(1), F.tensor([1.0, 1.0, 1.0, 1.0, 1.0]))
    assert F.allclose(g.edata['w'][('user', 'follows', 'user')].sum(1), F.tensor([1.0, 1.0]))
    assert F.allclose(g.edata['w'][('player', 'plays', 'game')].sum(1), F.tensor([1.0, 1.0]))

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
nv-dlasalle's avatar
nv-dlasalle committed
2606
@parametrize_idtype
2607
2608
def test_module_feat_mask(idtype):
    # Case1: Mask node and edge feature tensors of a homogeneous graph.
2609
    transform = dgl.FeatMask(node_feat_names=['h'], edge_feat_names=['w'])
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
    g = dgl.rand_graph(5, 20, idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.ones((g.num_nodes(), 10))
    g.edata['w'] = F.ones((g.num_edges(), 20))
    g = transform(g)
    assert g.device == g.device
    assert g.idtype == g.idtype
    assert g.ndata['h'].shape == (g.num_nodes(), 10)
    assert g.edata['w'].shape == (g.num_edges(), 20)

    # Case2: Mask node and edge feature tensors of a heterogeneous graph.
    g = dgl.heterograph({
        ('user', 'follows', 'user'): (F.tensor([1, 2]), F.tensor([3, 4])),
        ('player', 'plays', 'game'): (F.tensor([2, 2]), F.tensor([1, 1]))
    }, idtype=idtype, device=F.ctx())
    g.ndata['h'] = {'game': F.randn((2, 5)), 'player': F.randn((3, 5))}
    g.edata['w'] = {('user', 'follows', 'user'): F.randn((2, 5)),
                    ('player', 'plays', 'game'): F.randn((2, 5))}
    g = transform(g)
    assert g.device == g.device
    assert g.idtype == g.idtype
    assert g.ndata['h']['game'].shape == (2, 5)
    assert g.ndata['h']['player'].shape == (3, 5)
    assert g.edata['w'][('user', 'follows', 'user')].shape == (2, 5)
    assert g.edata['w'][('player', 'plays', 'game')].shape == (2, 5)

2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
@parametrize_idtype
def test_shortest_dist(idtype):
    g = dgl.graph(([0, 1, 1, 2], [2, 0, 3, 3]), idtype=idtype, device=F.ctx())

    # case 1: directed single source
    dist = dgl.shortest_dist(g, root=0)
    tgt = F.copy_to(F.tensor([0, -1, 1, 2], dtype=F.int64), g.device)
    assert F.array_equal(dist, tgt)

    # case 2: undirected all pairs
    dist, paths = dgl.shortest_dist(g, root=None, return_paths=True)
    tgt_dist = F.copy_to(
        F.tensor([
            [0, -1, 1, 2],
            [1, 0, 2, 1],
            [-1, -1, 0, 1],
            [-1, -1, -1, 0]
        ], dtype=F.int64),
        g.device
    )
    tgt_paths = F.copy_to(
        F.tensor([
            [[-1, -1], [-1, -1], [0, -1], [0, 3]],
            [[1, -1], [-1, -1], [1, 0], [2, -1]],
            [[-1, -1], [-1, -1], [-1, -1], [3, -1]],
            [[-1, -1], [-1, -1], [-1, -1], [-1, -1]]
        ], dtype=F.int64),
        g.device
    )
    assert F.array_equal(dist, tgt_dist)
    assert F.array_equal(paths, tgt_paths)

2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
@parametrize_idtype
def test_module_to_levi(idtype):
    transform = dgl.ToLevi()
    g = dgl.graph(([0, 1, 2, 3], [1, 2, 3, 0]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((g.num_nodes(), 2))
    g.edata['w'] = F.randn((g.num_edges(), 2))
    lg = transform(g)
    assert lg.device == g.device
    assert lg.idtype == g.idtype
    assert lg.ntypes == ['edge', 'node']
    assert lg.canonical_etypes == [('edge', 'e2n', 'node'),
                                   ('node', 'n2e', 'edge')]
    assert lg.num_nodes('node') == g.num_nodes()
    assert lg.num_nodes('edge') == g.num_edges()
    assert lg.num_edges('n2e') == g.num_edges()
    assert lg.num_edges('e2n') == g.num_edges()

    src, dst = lg.edges(etype='n2e')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (2, 2), (3, 3)}

    src, dst = lg.edges(etype='e2n')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 2), (2, 3), (3, 0)}

    assert F.allclose(lg.nodes['node'].data['h'], g.ndata['h'])
    assert F.allclose(lg.nodes['edge'].data['w'], g.edata['w'])

2695
if __name__ == '__main__':
2696
    test_partition_with_halo()
2697
    test_module_heat_kernel(F.int32)