test_transform.py 73.3 KB
Newer Older
1
from scipy import sparse as spsp
2
3
import networkx as nx
import numpy as np
4
import os
5
6
import dgl
import dgl.function as fn
7
import dgl.partition
8
import backend as F
9
import unittest
10
from utils import parametrize_dtype
11

12
from test_heterograph import create_test_heterograph3, create_test_heterograph4, create_test_heterograph5
13

14
15
16
D = 5

# line graph related
17

18
def test_line_graph1():
19
    N = 5
20
    G = dgl.DGLGraph(nx.star_graph(N)).to(F.ctx())
21
    G.edata['h'] = F.randn((2 * N, D))
22
23
    L = G.line_graph(shared=True)
    assert L.number_of_nodes() == 2 * N
24
    assert F.allclose(L.ndata['h'], G.edata['h'])
25
    assert G.device == F.ctx()
26

27
@parametrize_dtype
28
def test_line_graph2(idtype):
29
30
31
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 1, 2, 2],[2, 0, 2, 0, 1])
    }, idtype=idtype)
32
    lg = dgl.line_graph(g)
33
34
35
36
37
38
39
40
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))

41
    lg = dgl.line_graph(g, backtracking=False)
42
43
44
45
46
47
48
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 4
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 1, 2, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([4, 0, 3, 1]))
49
50
51
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 1, 2, 2],[2, 0, 2, 0, 1])
    }, idtype=idtype).formats('csr')
52
    lg = dgl.line_graph(g)
53
54
55
56
57
58
59
60
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))

61
62
63
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 1, 2, 2],[2, 0, 2, 0, 1])
    }, idtype=idtype).formats('csc')
64
    lg = dgl.line_graph(g)
65
66
67
68
69
70
71
72
73
74
75
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col, eid = lg.edges('all')
    row = F.asnumpy(row)
    col = F.asnumpy(col)
    eid = F.asnumpy(eid).astype(int)
    order = np.argsort(eid)
    assert np.array_equal(row[order],
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(col[order],
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))
76

77
78
79
80
81
82
83
84
85
86
87
88
def test_no_backtracking():
    N = 5
    G = dgl.DGLGraph(nx.star_graph(N))
    L = G.line_graph(backtracking=False)
    assert L.number_of_nodes() == 2 * N
    for i in range(1, N):
        e1 = G.edge_id(0, i)
        e2 = G.edge_id(i, 0)
        assert not L.has_edge_between(e1, e2)
        assert not L.has_edge_between(e2, e1)

# reverse graph related
89
90
@parametrize_dtype
def test_reverse(idtype):
91
    g = dgl.DGLGraph()
92
    g = g.astype(idtype).to(F.ctx())
93
94
95
    g.add_nodes(5)
    # The graph need not to be completely connected.
    g.add_edges([0, 1, 2], [1, 2, 1])
96
97
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [3.], [4.]])
    g.edata['h'] = F.tensor([[5.], [6.], [7.]])
98
99
100
101
102
103
    rg = g.reverse()

    assert g.is_multigraph == rg.is_multigraph

    assert g.number_of_nodes() == rg.number_of_nodes()
    assert g.number_of_edges() == rg.number_of_edges()
104
105
    assert F.allclose(F.astype(rg.has_edges_between(
        [1, 2, 1], [0, 1, 2]), F.float32), F.ones((3,)))
106
107
108
109
    assert g.edge_id(0, 1) == rg.edge_id(1, 0)
    assert g.edge_id(1, 2) == rg.edge_id(2, 1)
    assert g.edge_id(2, 1) == rg.edge_id(1, 2)

110
    # test dgl.reverse
111
112
113
114
    # test homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 2]), F.tensor([1, 2, 0])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.]])
115
    g_r = dgl.reverse(g)
116
117
118
119
120
121
122
123
124
125
126
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    u_g, v_g, eids_g = g.all_edges(form='all')
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all')
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    assert F.array_equal(g.ndata['h'], g_r.ndata['h'])
    assert len(g_r.edata) == 0

    # without share ndata
127
    g_r = dgl.reverse(g, copy_ndata=False)
128
129
130
131
132
133
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    assert len(g_r.ndata) == 0
    assert len(g_r.edata) == 0

    # with share ndata and edata
134
    g_r = dgl.reverse(g, copy_ndata=True, copy_edata=True)
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    assert F.array_equal(g.ndata['h'], g_r.ndata['h'])
    assert F.array_equal(g.edata['h'], g_r.edata['h'])

    # add new node feature to g_r
    g_r.ndata['hh'] = F.tensor([0, 1, 2])
    assert ('hh' in g.ndata) is False
    assert ('hh' in g_r.ndata) is True

    # add new edge feature to g_r
    g_r.edata['hh'] = F.tensor([0, 1, 2])
    assert ('hh' in g.edata) is False
    assert ('hh' in g_r.edata) is True

    # test heterogeneous graph
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2, 4, 3 ,1, 3], [1, 2, 3, 2, 0, 0, 1]),
        ('user', 'plays', 'game'): ([0, 0, 2, 3, 3, 4, 1], [1, 0, 1, 0, 1, 0, 0]),
154
155
        ('developer', 'develops', 'game'): ([0, 1, 1, 2], [0, 0, 1, 1])},
        idtype=idtype, device=F.ctx())
156
157
158
159
160
    g.nodes['user'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    g.nodes['user'].data['hh'] = F.tensor([1, 1, 1, 1, 1])
    g.nodes['game'].data['h'] = F.tensor([0, 1])
    g.edges['follows'].data['h'] = F.tensor([0, 1, 2, 4, 3 ,1, 3])
    g.edges['follows'].data['hh'] = F.tensor([1, 2, 3, 2, 0, 0, 1])
161
    g_r = dgl.reverse(g)
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g_r.number_of_nodes(ntype)
    assert F.array_equal(g.nodes['user'].data['h'], g_r.nodes['user'].data['h'])
    assert F.array_equal(g.nodes['user'].data['hh'], g_r.nodes['user'].data['hh'])
    assert F.array_equal(g.nodes['game'].data['h'], g_r.nodes['game'].data['h'])
    assert len(g_r.edges['follows'].data) == 0
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('user', 'follows', 'user'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('user', 'follows', 'user'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('user', 'plays', 'game'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('game', 'plays', 'user'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('developer', 'develops', 'game'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('game', 'develops', 'developer'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)

    # withour share ndata
191
    g_r = dgl.reverse(g, copy_ndata=False)
192
193
194
195
196
197
198
199
200
201
    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g_r.number_of_nodes(ntype)
    assert len(g_r.nodes['user'].data) == 0
    assert len(g_r.nodes['game'].data) == 0

202
    g_r = dgl.reverse(g, copy_ndata=True, copy_edata=True)
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    print(g_r)
    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    assert F.array_equal(g.edges['follows'].data['h'], g_r.edges['follows'].data['h'])
    assert F.array_equal(g.edges['follows'].data['hh'], g_r.edges['follows'].data['hh'])

    # add new node feature to g_r
    g_r.nodes['user'].data['hhh'] = F.tensor([0, 1, 2, 3, 4])
    assert ('hhh' in g.nodes['user'].data) is False
    assert ('hhh' in g_r.nodes['user'].data) is True

    # add new edge feature to g_r
    g_r.edges['follows'].data['hhh'] = F.tensor([1, 2, 3, 2, 0, 0, 1])
    assert ('hhh' in g.edges['follows'].data) is False
    assert ('hhh' in g_r.edges['follows'].data) is True

222

223
224
@parametrize_dtype
def test_reverse_shared_frames(idtype):
225
    g = dgl.DGLGraph()
226
    g = g.astype(idtype).to(F.ctx())
227
228
    g.add_nodes(3)
    g.add_edges([0, 1, 2], [1, 2, 1])
229
230
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.]])
231
232

    rg = g.reverse(share_ndata=True, share_edata=True)
233
234
235
    assert F.allclose(g.ndata['h'], rg.ndata['h'])
    assert F.allclose(g.edata['h'], rg.edata['h'])
    assert F.allclose(g.edges[[0, 2], [1, 1]].data['h'],
236
237
                      rg.edges[[1, 1], [0, 2]].data['h'])

238
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
239
def test_to_bidirected():
240
241
    # homogeneous graph
    elist = [(0, 0), (0, 1), (1, 0),
242
             (1, 1), (2, 1), (2, 2)]
243
    num_edges = 7
244
    g = dgl.graph(tuple(zip(*elist)))
245
246
247
248
249
250
251
252
253
254
255
256
257
    elist.append((1, 2))
    elist = set(elist)
    big = dgl.to_bidirected(g)
    assert big.number_of_edges() == num_edges
    src, dst = big.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist)

    # heterogeneous graph
    elist1 = [(0, 0), (0, 1), (1, 0),
                (1, 1), (2, 1), (2, 2)]
    elist2 = [(0, 0), (0, 1)]
    g = dgl.heterograph({
258
259
        ('user', 'wins', 'user'): tuple(zip(*elist1)),
        ('user', 'follows', 'user'): tuple(zip(*elist2))
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    })
    g.nodes['user'].data['h'] = F.ones((3, 1))
    elist1.append((1, 2))
    elist1 = set(elist1)
    elist2.append((1, 0))
    elist2 = set(elist2)
    big = dgl.to_bidirected(g)
    assert big.number_of_edges('wins') == 7
    assert big.number_of_edges('follows') == 3
    src, dst = big.edges(etype='wins')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist1)
    src, dst = big.edges(etype='follows')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist2)

    big = dgl.to_bidirected(g, copy_ndata=True)
    assert F.array_equal(g.nodes['user'].data['h'], big.nodes['user'].data['h'])

def test_add_reverse_edges():
280
281
282
283
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 3, 1]), F.tensor([1, 2, 0, 2])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [1.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
284
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True)
285
286
287
288
289
290
291
292
293
294
295
296
    u, v = g.edges()
    ub, vb = bg.edges()
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert F.array_equal(g.ndata['h'], bg.ndata['h'])
    assert F.array_equal(F.cat([g.edata['h'], g.edata['h']], dim=0), bg.edata['h'])
    bg.ndata['hh'] = F.tensor([[0.], [1.], [2.], [1.]])
    assert ('hh' in g.ndata) is False
    bg.edata['hh'] = F.tensor([[0.], [1.], [2.], [1.], [0.], [1.], [2.], [1.]])
    assert ('hh' in g.edata) is False

    # donot share ndata and edata
297
    bg = dgl.add_reverse_edges(g, copy_ndata=False, copy_edata=False)
298
299
300
301
302
303
304
    ub, vb = bg.edges()
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert ('h' in bg.ndata) is False
    assert ('h' in bg.edata) is False

    # zero edge graph
305
    g = dgl.graph(([], []))
306
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True)
307
308
309
310
311
312
313
314
315
316

    # heterogeneous graph
    g = dgl.heterograph({
        ('user', 'wins', 'user'): (F.tensor([0, 2, 0, 2, 2]), F.tensor([1, 1, 2, 1, 0])),
        ('user', 'plays', 'game'): (F.tensor([1, 2, 1]), F.tensor([2, 1, 1])),
        ('user', 'follows', 'user'): (F.tensor([1, 2, 1]), F.tensor([0, 0, 0]))
    })
    g.nodes['game'].data['hv'] = F.ones((3, 1))
    g.nodes['user'].data['hv'] = F.ones((3, 1))
    g.edges['wins'].data['h'] = F.tensor([0, 1, 2, 3, 4])
317
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True, ignore_bipartite=True)
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    assert F.array_equal(g.nodes['game'].data['hv'], bg.nodes['game'].data['hv'])
    assert F.array_equal(g.nodes['user'].data['hv'], bg.nodes['user'].data['hv'])
    u, v = g.all_edges(order='eid', etype=('user', 'wins', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'wins', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert F.array_equal(F.cat([g.edges['wins'].data['h'], g.edges['wins'].data['h']], dim=0),
                         bg.edges['wins'].data['h'])
    u, v = g.all_edges(order='eid', etype=('user', 'follows', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'follows', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'plays', 'game'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'plays', 'game'))
    assert F.array_equal(u, ub)
    assert F.array_equal(v, vb)
334
335
    assert set(bg.edges['plays'].data.keys()) == {dgl.EID}
    assert set(bg.edges['follows'].data.keys()) == {dgl.EID}
336
337

    # donot share ndata and edata
338
    bg = dgl.add_reverse_edges(g, copy_ndata=False, copy_edata=False, ignore_bipartite=True)
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
    assert len(bg.edges['wins'].data) == 0
    assert len(bg.edges['plays'].data) == 0
    assert len(bg.edges['follows'].data) == 0
    assert len(bg.nodes['game'].data) == 0
    assert len(bg.nodes['user'].data) == 0
    u, v = g.all_edges(order='eid', etype=('user', 'wins', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'wins', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'follows', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'follows', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'plays', 'game'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'plays', 'game'))
    assert F.array_equal(u, ub)
    assert F.array_equal(v, vb)

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
    # test the case when some nodes have zero degree
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 3, 1]), F.tensor([1, 2, 0, 2])), num_nodes=6)
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [1.], [1.], [1.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True)
    assert g.number_of_nodes() == bg.number_of_nodes()
    assert F.array_equal(g.ndata['h'], bg.ndata['h'])
    assert F.array_equal(F.cat([g.edata['h'], g.edata['h']], dim=0), bg.edata['h'])

    # heterogeneous graph
    g = dgl.heterograph({
        ('user', 'wins', 'user'): (F.tensor([0, 2, 0, 2, 2]), F.tensor([1, 1, 2, 1, 0])),
        ('user', 'plays', 'game'): (F.tensor([1, 2, 1]), F.tensor([2, 1, 1])),
        ('user', 'follows', 'user'): (F.tensor([1, 2, 1]), F.tensor([0, 0, 0]))},
        num_nodes_dict={
            'user': 5,
            'game': 3
        })
    g.nodes['game'].data['hv'] = F.ones((3, 1))
    g.nodes['user'].data['hv'] = F.ones((5, 1))
    g.edges['wins'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True, ignore_bipartite=True)
    assert g.number_of_nodes('user') == bg.number_of_nodes('user')
    assert g.number_of_nodes('game') == bg.number_of_nodes('game')
    assert F.array_equal(g.nodes['game'].data['hv'], bg.nodes['game'].data['hv'])
    assert F.array_equal(g.nodes['user'].data['hv'], bg.nodes['user'].data['hv'])
    assert F.array_equal(F.cat([g.edges['wins'].data['h'], g.edges['wins'].data['h']], dim=0),
                         bg.edges['wins'].data['h'])

387

388
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
389
390
391
392
393
394
395
396
397
398
def test_simple_graph():
    elist = [(0, 1), (0, 2), (1, 2), (0, 1)]
    g = dgl.DGLGraph(elist, readonly=True)
    assert g.is_multigraph
    sg = dgl.to_simple_graph(g)
    assert not sg.is_multigraph
    assert sg.number_of_edges() == 3
    src, dst = sg.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist)
399

400
401
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
def _test_bidirected_graph():
402
    def _test(in_readonly, out_readonly):
403
404
405
        elist = [(0, 0), (0, 1), (1, 0),
                (1, 1), (2, 1), (2, 2)]
        num_edges = 7
406
407
408
        g = dgl.DGLGraph(elist, readonly=in_readonly)
        elist.append((1, 2))
        elist = set(elist)
409
        big = dgl.to_bidirected_stale(g, out_readonly)
410
        assert big.number_of_edges() == num_edges
411
412
413
414
415
416
417
418
419
        src, dst = big.edges()
        eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
        assert eset == set(elist)

    _test(True, True)
    _test(True, False)
    _test(False, True)
    _test(False, False)

420

421
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
422
423
424
425
def test_khop_graph():
    N = 20
    feat = F.randn((N, 5))

Mufei Li's avatar
Mufei Li committed
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
    def _test(g):
        for k in range(4):
            g_k = dgl.khop_graph(g, k)
            # use original graph to do message passing for k times.
            g.ndata['h'] = feat
            for _ in range(k):
                g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            h_0 = g.ndata.pop('h')
            # use k-hop graph to do message passing for one time.
            g_k.ndata['h'] = feat
            g_k.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            h_1 = g_k.ndata.pop('h')
            assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

    # Test for random undirected graphs
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    _test(g)
    # Test for random directed graphs
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3, directed=True))
    _test(g)
446

447
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
448
449
450
451
452
def test_khop_adj():
    N = 20
    feat = F.randn((N, 5))
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    for k in range(3):
453
        adj = F.tensor(F.swapaxes(dgl.khop_adj(g, k), 0, 1))
454
455
456
457
458
459
460
461
462
        # use original graph to do message passing for k times.
        g.ndata['h'] = feat
        for _ in range(k):
            g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
        h_0 = g.ndata.pop('h')
        # use k-hop adj to do message passing for one time.
        h_1 = F.matmul(adj, feat)
        assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

463

464
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
465
466
467
468
469
470
471
def test_laplacian_lambda_max():
    N = 20
    eps = 1e-6
    # test DGLGraph
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    l_max = dgl.laplacian_lambda_max(g)
    assert (l_max[0] < 2 + eps)
Zihao Ye's avatar
Zihao Ye committed
472
    # test batched DGLGraph
473
    '''
474
475
476
477
478
479
480
481
482
    N_arr = [20, 30, 10, 12]
    bg = dgl.batch([
        dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
        for N in N_arr
    ])
    l_max_arr = dgl.laplacian_lambda_max(bg)
    assert len(l_max_arr) == len(N_arr)
    for l_max in l_max_arr:
        assert l_max < 2 + eps
483
    '''
484

485
def create_large_graph(num_nodes):
486
487
488
    row = np.random.choice(num_nodes, num_nodes * 10)
    col = np.random.choice(num_nodes, num_nodes * 10)
    spm = spsp.coo_matrix((np.ones(len(row)), (row, col)))
489
    spm.sum_duplicates()
490

491
    return dgl.from_scipy(spm)
492
493
494
495
496
497
498
499
500

def get_nodeflow(g, node_ids, num_layers):
    batch_size = len(node_ids)
    expand_factor = g.number_of_nodes()
    sampler = dgl.contrib.sampling.NeighborSampler(g, batch_size,
            expand_factor=expand_factor, num_hops=num_layers,
            seed_nodes=node_ids)
    return next(iter(sampler))

501
# Disabled since everything will be on heterogeneous graphs
502
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
503
def test_partition_with_halo():
504
    g = create_large_graph(1000)
505
    node_part = np.random.choice(4, g.number_of_nodes())
506
    subgs, _, _ = dgl.transform.partition_graph_with_halo(g, node_part, 2, reshuffle=True)
507
508
509
    for part_id, subg in subgs.items():
        node_ids = np.nonzero(node_part == part_id)[0]
        lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
510
511
512
513
        orig_nids = F.asnumpy(subg.ndata['orig_id'])[lnode_ids]
        assert np.all(np.sort(orig_nids) == node_ids)
        assert np.all(F.asnumpy(subg.in_degrees(lnode_ids)) == F.asnumpy(g.in_degrees(orig_nids)))
        assert np.all(F.asnumpy(subg.out_degrees(lnode_ids)) == F.asnumpy(g.out_degrees(orig_nids)))
514

515
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
516
517
@unittest.skipIf(F._default_context_str == 'gpu', reason="METIS doesn't support GPU")
def test_metis_partition():
Da Zheng's avatar
Da Zheng committed
518
    # TODO(zhengda) Metis fails to partition a small graph.
519
    g = create_large_graph(1000)
520
521
522
523
524
525
    check_metis_partition(g, 0)
    check_metis_partition(g, 1)
    check_metis_partition(g, 2)
    check_metis_partition_with_constraint(g)


526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
def check_metis_partition_with_constraint(g):
    ntypes = np.zeros((g.number_of_nodes(),), dtype=np.int32)
    ntypes[0:int(g.number_of_nodes()/4)] = 1
    ntypes[int(g.number_of_nodes()*3/4):] = 2
    subgs = dgl.transform.metis_partition(g, 4, extra_cached_hops=1, balance_ntypes=ntypes)
    if subgs is not None:
        for i in subgs:
            subg = subgs[i]
            parent_nids = F.asnumpy(subg.ndata[dgl.NID])
            sub_ntypes = ntypes[parent_nids]
            print('type0:', np.sum(sub_ntypes == 0))
            print('type1:', np.sum(sub_ntypes == 1))
            print('type2:', np.sum(sub_ntypes == 2))
    subgs = dgl.transform.metis_partition(g, 4, extra_cached_hops=1,
                                          balance_ntypes=ntypes, balance_edges=True)
    if subgs is not None:
        for i in subgs:
            subg = subgs[i]
            parent_nids = F.asnumpy(subg.ndata[dgl.NID])
            sub_ntypes = ntypes[parent_nids]
            print('type0:', np.sum(sub_ntypes == 0))
            print('type1:', np.sum(sub_ntypes == 1))
            print('type2:', np.sum(sub_ntypes == 2))
Da Zheng's avatar
Da Zheng committed
549
550
551

def check_metis_partition(g, extra_hops):
    subgs = dgl.transform.metis_partition(g, 4, extra_cached_hops=extra_hops)
552
553
554
555
    num_inner_nodes = 0
    num_inner_edges = 0
    if subgs is not None:
        for part_id, subg in subgs.items():
Da Zheng's avatar
Da Zheng committed
556
557
558
559
560
            lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
            ledge_ids = np.nonzero(F.asnumpy(subg.edata['inner_edge']))[0]
            num_inner_nodes += len(lnode_ids)
            num_inner_edges += len(ledge_ids)
            assert np.sum(F.asnumpy(subg.ndata['part_id']) == part_id) == len(lnode_ids)
561
562
563
        assert num_inner_nodes == g.number_of_nodes()
        print(g.number_of_edges() - num_inner_edges)

Da Zheng's avatar
Da Zheng committed
564
565
566
    if extra_hops == 0:
        return

567
    # partitions with node reshuffling
Da Zheng's avatar
Da Zheng committed
568
    subgs = dgl.transform.metis_partition(g, 4, extra_cached_hops=extra_hops, reshuffle=True)
569
570
    num_inner_nodes = 0
    num_inner_edges = 0
Da Zheng's avatar
Da Zheng committed
571
    edge_cnts = np.zeros((g.number_of_edges(),))
572
573
574
575
576
577
578
    if subgs is not None:
        for part_id, subg in subgs.items():
            lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
            ledge_ids = np.nonzero(F.asnumpy(subg.edata['inner_edge']))[0]
            num_inner_nodes += len(lnode_ids)
            num_inner_edges += len(ledge_ids)
            assert np.sum(F.asnumpy(subg.ndata['part_id']) == part_id) == len(lnode_ids)
Da Zheng's avatar
Da Zheng committed
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
            nids = F.asnumpy(subg.ndata[dgl.NID])

            # ensure the local node Ids are contiguous.
            parent_ids = F.asnumpy(subg.ndata[dgl.NID])
            parent_ids = parent_ids[:len(lnode_ids)]
            assert np.all(parent_ids == np.arange(parent_ids[0], parent_ids[-1] + 1))

            # count the local edges.
            parent_ids = F.asnumpy(subg.edata[dgl.EID])[ledge_ids]
            edge_cnts[parent_ids] += 1

            orig_ids = subg.ndata['orig_id']
            inner_node = F.asnumpy(subg.ndata['inner_node'])
            for nid in range(subg.number_of_nodes()):
                neighs = subg.predecessors(nid)
                old_neighs1 = F.gather_row(orig_ids, neighs)
                old_nid = F.asnumpy(orig_ids[nid])
                old_neighs2 = g.predecessors(old_nid)
                # If this is an inner node, it should have the full neighborhood.
                if inner_node[nid]:
                    assert np.all(np.sort(F.asnumpy(old_neighs1)) == np.sort(F.asnumpy(old_neighs2)))
        # Normally, local edges are only counted once.
        assert np.all(edge_cnts == 1)

603
604
605
        assert num_inner_nodes == g.number_of_nodes()
        print(g.number_of_edges() - num_inner_edges)

Da Zheng's avatar
Da Zheng committed
606
607
@unittest.skipIf(F._default_context_str == 'gpu', reason="It doesn't support GPU")
def test_reorder_nodes():
608
    g = create_large_graph(1000)
Da Zheng's avatar
Da Zheng committed
609
610
    new_nids = np.random.permutation(g.number_of_nodes())
    # TODO(zhengda) we need to test both CSR and COO.
611
    new_g = dgl.partition.reorder_nodes(g, new_nids)
Da Zheng's avatar
Da Zheng committed
612
613
614
615
616
617
618
619
620
    new_in_deg = new_g.in_degrees()
    new_out_deg = new_g.out_degrees()
    in_deg = g.in_degrees()
    out_deg = g.out_degrees()
    new_in_deg1 = F.scatter_row(in_deg, F.tensor(new_nids), in_deg)
    new_out_deg1 = F.scatter_row(out_deg, F.tensor(new_nids), out_deg)
    assert np.all(F.asnumpy(new_in_deg == new_in_deg1))
    assert np.all(F.asnumpy(new_out_deg == new_out_deg1))
    orig_ids = F.asnumpy(new_g.ndata['orig_id'])
621
622
623
624
625
626
627
    for nid in range(g.number_of_nodes()):
        neighs = F.asnumpy(g.successors(nid))
        new_neighs1 = new_nids[neighs]
        new_nid = new_nids[nid]
        new_neighs2 = new_g.successors(new_nid)
        assert np.all(np.sort(new_neighs1) == np.sort(F.asnumpy(new_neighs2)))

Da Zheng's avatar
Da Zheng committed
628
629
630
631
632
633
634
635
636
637
638
639
640
    for nid in range(new_g.number_of_nodes()):
        neighs = F.asnumpy(new_g.successors(nid))
        old_neighs1 = orig_ids[neighs]
        old_nid = orig_ids[nid]
        old_neighs2 = g.successors(old_nid)
        assert np.all(np.sort(old_neighs1) == np.sort(F.asnumpy(old_neighs2)))

        neighs = F.asnumpy(new_g.predecessors(nid))
        old_neighs1 = orig_ids[neighs]
        old_nid = orig_ids[nid]
        old_neighs2 = g.predecessors(old_nid)
        assert np.all(np.sort(old_neighs1) == np.sort(F.asnumpy(old_neighs2)))

641
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU compaction not implemented")
642
@parametrize_dtype
643
def test_compact(idtype):
644
    g1 = dgl.heterograph({
645
646
647
        ('user', 'follow', 'user'): ([1, 3], [3, 5]),
        ('user', 'plays', 'game'): ([2, 3, 2], [4, 4, 5]),
        ('game', 'wished-by', 'user'): ([6, 5], [7, 7])},
648
        {'user': 20, 'game': 10}, idtype=idtype)
649
650

    g2 = dgl.heterograph({
651
652
        ('game', 'clicked-by', 'user'): ([3], [1]),
        ('user', 'likes', 'user'): ([1, 8], [8, 9])},
653
        {'user': 20, 'game': 10}, idtype=idtype)
654

655
656
657
658
    g3 = dgl.heterograph({('user', '_E', 'user'): ((0, 1), (1, 2))},
                         {'user': 10}, idtype=idtype)
    g4 = dgl.heterograph({('user', '_E', 'user'): ((1, 3), (3, 5))},
                         {'user': 10}, idtype=idtype)
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680

    def _check(g, new_g, induced_nodes):
        assert g.ntypes == new_g.ntypes
        assert g.canonical_etypes == new_g.canonical_etypes

        for ntype in g.ntypes:
            assert -1 not in induced_nodes[ntype]

        for etype in g.canonical_etypes:
            g_src, g_dst = g.all_edges(order='eid', etype=etype)
            g_src = F.asnumpy(g_src)
            g_dst = F.asnumpy(g_dst)
            new_g_src, new_g_dst = new_g.all_edges(order='eid', etype=etype)
            new_g_src_mapped = induced_nodes[etype[0]][F.asnumpy(new_g_src)]
            new_g_dst_mapped = induced_nodes[etype[2]][F.asnumpy(new_g_dst)]
            assert (g_src == new_g_src_mapped).all()
            assert (g_dst == new_g_dst_mapped).all()

    # Test default
    new_g1 = dgl.compact_graphs(g1)
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
681
    assert new_g1.idtype == idtype
682
683
684
685
686
687
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7])
    assert set(induced_nodes['game']) == set([4, 5, 6])
    _check(g1, new_g1, induced_nodes)

    # Test with always_preserve given a dict
    new_g1 = dgl.compact_graphs(
688
689
        g1, always_preserve={'game': F.tensor([4, 7], idtype)})
    assert new_g1.idtype == idtype
690
691
692
693
694
695
696
697
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7])
    assert set(induced_nodes['game']) == set([4, 5, 6, 7])
    _check(g1, new_g1, induced_nodes)

    # Test with always_preserve given a tensor
    new_g3 = dgl.compact_graphs(
698
        g3, always_preserve=F.tensor([1, 7], idtype))
699
700
    induced_nodes = {ntype: new_g3.nodes[ntype].data[dgl.NID] for ntype in new_g3.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
701

702
    assert new_g3.idtype == idtype
703
704
705
706
707
708
709
    assert set(induced_nodes['user']) == set([0, 1, 2, 7])
    _check(g3, new_g3, induced_nodes)

    # Test multiple graphs
    new_g1, new_g2 = dgl.compact_graphs([g1, g2])
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
710
711
    assert new_g1.idtype == idtype
    assert new_g2.idtype == idtype
712
713
714
715
716
717
718
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7, 8, 9])
    assert set(induced_nodes['game']) == set([3, 4, 5, 6])
    _check(g1, new_g1, induced_nodes)
    _check(g2, new_g2, induced_nodes)

    # Test multiple graphs with always_preserve given a dict
    new_g1, new_g2 = dgl.compact_graphs(
719
        [g1, g2], always_preserve={'game': F.tensor([4, 7], dtype=idtype)})
720
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
721
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
722
723
    assert new_g1.idtype == idtype
    assert new_g2.idtype == idtype
724
725
726
727
728
729
730
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7, 8, 9])
    assert set(induced_nodes['game']) == set([3, 4, 5, 6, 7])
    _check(g1, new_g1, induced_nodes)
    _check(g2, new_g2, induced_nodes)

    # Test multiple graphs with always_preserve given a tensor
    new_g3, new_g4 = dgl.compact_graphs(
731
        [g3, g4], always_preserve=F.tensor([1, 7], dtype=idtype))
732
733
    induced_nodes = {ntype: new_g3.nodes[ntype].data[dgl.NID] for ntype in new_g3.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
734

735
736
737
    assert new_g3.idtype == idtype
    assert new_g4.idtype == idtype

738
739
740
741
    assert set(induced_nodes['user']) == set([0, 1, 2, 3, 5, 7])
    _check(g3, new_g3, induced_nodes)
    _check(g4, new_g4, induced_nodes)

742
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU to simple not implemented")
743
@parametrize_dtype
744
def test_to_simple(idtype):
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 2, 1]), F.tensor([1, 2, 0, 2])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
    sg, wb = dgl.to_simple(g, writeback_mapping=True)
    u, v = g.all_edges(form='uv', order='eid')
    u = F.asnumpy(u).tolist()
    v = F.asnumpy(v).tolist()
    uv = list(zip(u, v))
    eid_map = F.asnumpy(wb)

    su, sv = sg.all_edges(form='uv', order='eid')
    su = F.asnumpy(su).tolist()
    sv = F.asnumpy(sv).tolist()
    suv = list(zip(su, sv))
    sc = F.asnumpy(sg.edata['count'])
    assert set(uv) == set(suv)
    for i, e in enumerate(suv):
        assert sc[i] == sum(e == _e for _e in uv)
    for i, e in enumerate(uv):
        assert eid_map[i] == suv.index(e)
    # shared ndata
    assert F.array_equal(sg.ndata['h'], g.ndata['h'])
    assert 'h' not in sg.edata
    # new ndata to sg
    sg.ndata['hh'] = F.tensor([[0.], [1.], [2.]])
    assert 'hh' not in g.ndata

    sg = dgl.to_simple(g, writeback_mapping=False, copy_ndata=False)
    assert 'h' not in sg.ndata
    assert 'h' not in sg.edata

777
778
779
780
781
782
783
784
    # test coalesce edge feature
    sg = dgl.to_simple(g, copy_edata=True, aggregator='arbitrary')
    assert F.allclose(sg.edata['h'][1], F.tensor([4.]))
    sg = dgl.to_simple(g, copy_edata=True, aggregator='sum')
    assert F.allclose(sg.edata['h'][1], F.tensor([10.]))
    sg = dgl.to_simple(g, copy_edata=True, aggregator='mean')
    assert F.allclose(sg.edata['h'][1], F.tensor([5.]))

785
    # heterogeneous graph
786
    g = dgl.heterograph({
787
788
789
        ('user', 'follow', 'user'): ([0, 1, 2, 1, 1, 1],
                                     [1, 3, 2, 3, 4, 4]),
        ('user', 'plays', 'game'): ([3, 2, 1, 1, 3, 2, 2], [5, 3, 4, 4, 5, 3, 3])},
790
        idtype=idtype, device=F.ctx())
791
792
793
794
795
    g.nodes['user'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    g.nodes['user'].data['hh'] = F.tensor([0, 1, 2, 3, 4])
    g.edges['follow'].data['h'] = F.tensor([0, 1, 2, 3, 4, 5])
    sg, wb = dgl.to_simple(g, return_counts='weights', writeback_mapping=True, copy_edata=True)
    g.nodes['game'].data['h'] = F.tensor([0, 1, 2, 3, 4, 5])
796
797
798
799
800
801

    for etype in g.canonical_etypes:
        u, v = g.all_edges(form='uv', order='eid', etype=etype)
        u = F.asnumpy(u).tolist()
        v = F.asnumpy(v).tolist()
        uv = list(zip(u, v))
802
        eid_map = F.asnumpy(wb[etype])
803
804
805
806
807
808
809
810
811
812
813
814

        su, sv = sg.all_edges(form='uv', order='eid', etype=etype)
        su = F.asnumpy(su).tolist()
        sv = F.asnumpy(sv).tolist()
        suv = list(zip(su, sv))
        sw = F.asnumpy(sg.edges[etype].data['weights'])

        assert set(uv) == set(suv)
        for i, e in enumerate(suv):
            assert sw[i] == sum(e == _e for _e in uv)
        for i, e in enumerate(uv):
            assert eid_map[i] == suv.index(e)
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
    # shared ndata
    assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
    assert F.array_equal(sg.nodes['user'].data['hh'], g.nodes['user'].data['hh'])
    assert 'h' not in sg.nodes['game'].data
    # new ndata to sg
    sg.nodes['user'].data['hhh'] = F.tensor([0, 1, 2, 3, 4])
    assert 'hhh' not in g.nodes['user'].data
    # share edata
    feat_idx = F.asnumpy(wb[('user', 'follow', 'user')])
    _, indices = np.unique(feat_idx, return_index=True)
    assert np.array_equal(F.asnumpy(sg.edges['follow'].data['h']),
                          F.asnumpy(g.edges['follow'].data['h'])[indices])

    sg = dgl.to_simple(g, writeback_mapping=False, copy_ndata=False)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)
    assert 'h' not in sg.nodes['user'].data
    assert 'hh' not in sg.nodes['user'].data
833

834
@parametrize_dtype
835
def test_to_block(idtype):
836
    def check(g, bg, ntype, etype, dst_nodes, include_dst_in_src=True):
837
838
839
        if dst_nodes is not None:
            assert F.array_equal(bg.dstnodes[ntype].data[dgl.NID], dst_nodes)
        n_dst_nodes = bg.number_of_nodes('DST/' + ntype)
840
841
842
843
        if include_dst_in_src:
            assert F.array_equal(
                bg.srcnodes[ntype].data[dgl.NID][:n_dst_nodes],
                bg.dstnodes[ntype].data[dgl.NID])
844
845
846
847
848
849

        g = g[etype]
        bg = bg[etype]
        induced_src = bg.srcdata[dgl.NID]
        induced_dst = bg.dstdata[dgl.NID]
        induced_eid = bg.edata[dgl.EID]
850

851
852
853
854
855
856
857
858
859
860
861
        bg_src, bg_dst = bg.all_edges(order='eid')
        src_ans, dst_ans = g.all_edges(order='eid')

        induced_src_bg = F.gather_row(induced_src, bg_src)
        induced_dst_bg = F.gather_row(induced_dst, bg_dst)
        induced_src_ans = F.gather_row(src_ans, induced_eid)
        induced_dst_ans = F.gather_row(dst_ans, induced_eid)

        assert F.array_equal(induced_src_bg, induced_src_ans)
        assert F.array_equal(induced_dst_bg, induced_dst_ans)

862
    def checkall(g, bg, dst_nodes, include_dst_in_src=True):
863
864
        for etype in g.etypes:
            ntype = g.to_canonical_etype(etype)[2]
865
            if dst_nodes is not None and ntype in dst_nodes:
866
                check(g, bg, ntype, etype, dst_nodes[ntype], include_dst_in_src)
867
            else:
868
                check(g, bg, ntype, etype, None, include_dst_in_src)
869
870

    g = dgl.heterograph({
871
872
        ('A', 'AA', 'A'): ([0, 2, 1, 3], [1, 3, 2, 4]),
        ('A', 'AB', 'B'): ([0, 1, 3, 1], [1, 3, 5, 6]),
873
        ('B', 'BA', 'A'): ([2, 3], [3, 2])}, idtype=idtype, device=F.ctx())
874
875
876
877
878
    g.nodes['A'].data['x'] = F.randn((5, 10))
    g.nodes['B'].data['x'] = F.randn((7, 5))
    g.edges['AA'].data['x'] = F.randn((4, 3))
    g.edges['AB'].data['x'] = F.randn((4, 3))
    g.edges['BA'].data['x'] = F.randn((2, 3))
879
880
    g_a = g['AA']

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
    def check_features(g, bg):
        for ntype in bg.srctypes:
            for key in g.nodes[ntype].data:
                assert F.array_equal(
                    bg.srcnodes[ntype].data[key],
                    F.gather_row(g.nodes[ntype].data[key], bg.srcnodes[ntype].data[dgl.NID]))
        for ntype in bg.dsttypes:
            for key in g.nodes[ntype].data:
                assert F.array_equal(
                    bg.dstnodes[ntype].data[key],
                    F.gather_row(g.nodes[ntype].data[key], bg.dstnodes[ntype].data[dgl.NID]))
        for etype in bg.canonical_etypes:
            for key in g.edges[etype].data:
                assert F.array_equal(
                    bg.edges[etype].data[key],
                    F.gather_row(g.edges[etype].data[key], bg.edges[etype].data[dgl.EID]))

898
899
    bg = dgl.to_block(g_a)
    check(g_a, bg, 'A', 'AA', None)
900
    check_features(g_a, bg)
901
902
903
904
905
    assert bg.number_of_src_nodes() == 5
    assert bg.number_of_dst_nodes() == 4

    bg = dgl.to_block(g_a, include_dst_in_src=False)
    check(g_a, bg, 'A', 'AA', None, False)
906
    check_features(g_a, bg)
907
908
    assert bg.number_of_src_nodes() == 4
    assert bg.number_of_dst_nodes() == 4
909

910
    dst_nodes = F.tensor([4, 3, 2, 1], dtype=idtype)
911
912
    bg = dgl.to_block(g_a, dst_nodes)
    check(g_a, bg, 'A', 'AA', dst_nodes)
913
    check_features(g_a, bg)
914
915
916
917

    g_ab = g['AB']

    bg = dgl.to_block(g_ab)
918
    assert bg.idtype == idtype
919
920
921
    assert bg.number_of_nodes('SRC/B') == 4
    assert F.array_equal(bg.srcnodes['B'].data[dgl.NID], bg.dstnodes['B'].data[dgl.NID])
    assert bg.number_of_nodes('DST/A') == 0
922
    checkall(g_ab, bg, None)
923
    check_features(g_ab, bg)
924

925
    dst_nodes = {'B': F.tensor([5, 6, 3, 1], dtype=idtype)}
926
    bg = dgl.to_block(g, dst_nodes)
927
    assert bg.number_of_nodes('SRC/B') == 4
928
929
930
    assert F.array_equal(bg.srcnodes['B'].data[dgl.NID], bg.dstnodes['B'].data[dgl.NID])
    assert bg.number_of_nodes('DST/A') == 0
    checkall(g, bg, dst_nodes)
931
    check_features(g, bg)
932

933
    dst_nodes = {'A': F.tensor([4, 3, 2, 1], dtype=idtype), 'B': F.tensor([3, 5, 6, 1], dtype=idtype)}
934
935
    bg = dgl.to_block(g, dst_nodes=dst_nodes)
    checkall(g, bg, dst_nodes)
936
    check_features(g, bg)
937
938

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
939
@parametrize_dtype
940
def test_remove_edges(idtype):
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
    def check(g1, etype, g, edges_removed):
        src, dst, eid = g.edges(etype=etype, form='all')
        src1, dst1 = g1.edges(etype=etype, order='eid')
        if etype is not None:
            eid1 = g1.edges[etype].data[dgl.EID]
        else:
            eid1 = g1.edata[dgl.EID]
        src1 = F.asnumpy(src1)
        dst1 = F.asnumpy(dst1)
        eid1 = F.asnumpy(eid1)
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        eid = F.asnumpy(eid)
        sde_set = set(zip(src, dst, eid))

        for s, d, e in zip(src1, dst1, eid1):
            assert (s, d, e) in sde_set
        assert not np.isin(edges_removed, eid1).any()
959
        assert g1.idtype == g.idtype
960
961
962

    for fmt in ['coo', 'csr', 'csc']:
        for edges_to_remove in [[2], [2, 2], [3, 2], [1, 3, 1, 2]]:
963
            g = dgl.graph(([0, 2, 1, 3], [1, 3, 2, 4]), idtype=idtype).formats(fmt)
964
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove, idtype))
965
966
            check(g1, None, g, edges_to_remove)

967
            g = dgl.from_scipy(
968
                spsp.csr_matrix(([1, 1, 1, 1], ([0, 2, 1, 3], [1, 3, 2, 4])), shape=(5, 5)),
969
970
                idtype=idtype).formats(fmt)
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove, idtype))
971
972
973
            check(g1, None, g, edges_to_remove)

    g = dgl.heterograph({
974
975
976
        ('A', 'AA', 'A'): ([0, 2, 1, 3], [1, 3, 2, 4]),
        ('A', 'AB', 'B'): ([0, 1, 3, 1], [1, 3, 5, 6]),
        ('B', 'BA', 'A'): ([2, 3], [3, 2])}, idtype=idtype)
977
    g2 = dgl.remove_edges(g, {'AA': F.tensor([2], idtype), 'AB': F.tensor([3], idtype), 'BA': F.tensor([1], idtype)})
978
979
980
    check(g2, 'AA', g, [2])
    check(g2, 'AB', g, [3])
    check(g2, 'BA', g, [1])
981

982
    g3 = dgl.remove_edges(g, {'AA': F.tensor([], idtype), 'AB': F.tensor([3], idtype), 'BA': F.tensor([1], idtype)})
983
984
985
986
    check(g3, 'AA', g, [])
    check(g3, 'AB', g, [3])
    check(g3, 'BA', g, [1])

987
    g4 = dgl.remove_edges(g, {'AB': F.tensor([3, 1, 2, 0], idtype)})
988
    check(g4, 'AA', g, [])
989
    check(g4, 'AB', g, [3, 1, 2, 0])
990
991
    check(g4, 'BA', g, [])

992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
@parametrize_dtype
def test_add_edges(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = 0
    v = 1
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
1016
1017
1018
1019
1020
1021
1022
1023
1024
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))
    g = dgl.add_edges(g, [], [])
    g = dgl.add_edges(g, 0, [])
    g = dgl.add_edges(g, [], 0)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([0, 0, 2, 2], dtype=idtype))

    # zero data graph
1057
    g = dgl.graph(([], []), num_nodes=0, idtype=idtype, device=F.ctx())
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 2], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 2
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([2, 2], dtype=idtype))

    # bipartite graph
1072
1073
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
    u = 0
    v = 1
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
1100
1101
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
1114
1115
1116
1117
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2, 0], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([0, 0, 2, 2], dtype=idtype))

    # heterogeneous graph
1136
    g = create_test_heterograph3(idtype)
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v, etype='plays')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 2
    assert g.number_of_edges('plays') == 6
    assert g.number_of_edges('develops') == 2
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([0, 1, 1, 2, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0, 1, 1, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 1, 1, 1, 0, 0], dtype=idtype))

    # add with feature
    e_feat = {'h': F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.nodes['game'].data['h'] =  F.copy_to(F.tensor([2, 2, 1, 1], dtype=idtype), ctx=F.ctx())
    g = dgl.add_edges(g, u, v, data=e_feat, etype='develops')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 3
    assert g.number_of_edges('plays') == 6
    assert g.number_of_edges('develops') == 4
    u, v = g.edges(form='uv', order='eid', etype='develops')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['develops'].data['h'], F.tensor([0, 0, 2, 2], dtype=idtype))

@parametrize_dtype
def test_add_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1], dtype=idtype), ctx=F.ctx())
    new_g = dgl.add_nodes(g, 1)
    assert g.number_of_nodes() == 3
    assert new_g.number_of_nodes() == 4
    assert F.array_equal(new_g.ndata['h'], F.tensor([1, 1, 1, 0], dtype=idtype))

    # zero node graph
1181
    g = dgl.graph(([], []), num_nodes=3, idtype=idtype, device=F.ctx())
1182
1183
1184
1185
1186
1187
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1], dtype=idtype), ctx=F.ctx())
    g = dgl.add_nodes(g, 1, data={'h' : F.copy_to(F.tensor([2],  dtype=idtype), ctx=F.ctx())})
    assert g.number_of_nodes() == 4
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 2], dtype=idtype))

    # bipartite graph
1188
1189
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1190
1191
1192
1193
1194
1195
1196
1197
1198
    g = dgl.add_nodes(g, 2, data={'h' : F.copy_to(F.tensor([2, 2],  dtype=idtype), ctx=F.ctx())}, ntype='user')
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 3
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([0, 0, 2, 2], dtype=idtype))
    g = dgl.add_nodes(g, 2, ntype='game')
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 5

    # heterogeneous graph
1199
    g = create_test_heterograph3(idtype)
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
    g = dgl.add_nodes(g, 1, ntype='user')
    g = dgl.add_nodes(g, 2, data={'h' : F.copy_to(F.tensor([2, 2],  dtype=idtype), ctx=F.ctx())}, ntype='game')
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 2
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2, 2], dtype=idtype))

@parametrize_dtype
def test_remove_edges(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = 0
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = [0]
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 0

    # has node data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 1)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.ndata['h'], F.tensor([1, 2, 3], dtype=idtype))

    # has edge data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 0)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.edata['h'], F.tensor([2], dtype=idtype))

    # invalid eid
    assert_fail = False
    try:
        g = dgl.remove_edges(g, 1)
    except:
        assert_fail = True
    assert assert_fail

    # bipartite graph
1252
1253
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1254
1255
1256
1257
1258
1259
    e = 0
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
1260
1261
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
    e = [0]
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 0

    # has data
1273
1274
1275
1276
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
1277
1278
1279
1280
1281
1282
1283
1284
    g.edata['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 1)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1], dtype=idtype))

    # heterogeneous graph
1285
    g = create_test_heterograph3(idtype)
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 1, etype='plays')
    assert g.number_of_edges('plays') == 3
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 3, 4], dtype=idtype))
    # remove all edges of 'develops'
    g = dgl.remove_edges(g, [0, 1], etype='develops')
    assert g.number_of_edges('develops') == 0
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3], dtype=idtype))

1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
    # batched graph
    ctx = F.ctx()
    g1 = dgl.graph(([0, 1], [1, 2]), num_nodes=5, idtype=idtype, device=ctx)
    g2 = dgl.graph(([], []), idtype=idtype, device=ctx)
    g3 = dgl.graph(([2, 3, 4], [3, 2, 1]), idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_edges(bg, 2)
    assert bg.batch_size == bg_r.batch_size
    assert F.array_equal(bg.batch_num_nodes(), bg_r.batch_num_nodes())
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([2, 0, 2], dtype=F.int64))

    bg_r = dgl.remove_edges(bg, [0, 2])
    assert bg.batch_size == bg_r.batch_size
    assert F.array_equal(bg.batch_num_nodes(), bg_r.batch_num_nodes())
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([1, 0, 2], dtype=F.int64))

    bg_r = dgl.remove_edges(bg, F.tensor([0, 2], dtype=idtype))
    assert bg.batch_size == bg_r.batch_size
    assert F.array_equal(bg.batch_num_nodes(), bg_r.batch_num_nodes())
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([1, 0, 2], dtype=F.int64))

    # batched heterogeneous graph
    g1 = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([1, 3], [0, 1])
    }, num_nodes_dict={'user': 4, 'game': 3}, idtype=idtype, device=ctx)
    g2 = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 2], [3, 4]),
        ('user', 'plays', 'game'): ([], [])
    }, num_nodes_dict={'user': 6, 'game': 2}, idtype=idtype, device=ctx)
    g3 = dgl.heterograph({
        ('user', 'follows', 'user'): ([], []),
        ('user', 'plays', 'game'): ([1, 2], [1, 2])
    }, idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_edges(bg, 1, etype='follows')
    assert bg.batch_size == bg_r.batch_size
    ntypes = bg.ntypes
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([1, 2, 0], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges('plays'), bg.batch_num_edges('plays'))

    bg_r = dgl.remove_edges(bg, 2, etype='plays')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([2, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_edges(bg, [0, 1, 3], etype='follows')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 1, 0], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('plays'), bg_r.batch_num_edges('plays'))

    bg_r = dgl.remove_edges(bg, [1, 2], etype='plays')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_edges(bg, F.tensor([0, 1, 3], dtype=idtype), etype='follows')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 1, 0], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('plays'), bg_r.batch_num_edges('plays'))

    bg_r = dgl.remove_edges(bg, F.tensor([1, 2], dtype=idtype), etype='plays')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
@parametrize_dtype
def test_remove_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = 0
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = [1]
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 0
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = F.tensor([2], dtype=idtype)
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))

    # invalid nid
    assert_fail = False
    try:
        g.remove_nodes(3)
    except:
        assert_fail = True
    assert assert_fail

    # has node and edge data
    g = dgl.graph(([0, 0, 2], [0, 1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['hv'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_nodes(g, F.tensor([0], dtype=idtype))
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    assert F.array_equal(g.ndata['hv'], F.tensor([2, 3], dtype=idtype))
    assert F.array_equal(g.edata['he'], F.tensor([3], dtype=idtype))

    # node id larger than current max node id
1425
1426
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1427
1428
1429
1430
1431
1432
1433
1434
    n = 0
    g = dgl.remove_nodes(g, n, ntype='user')
    assert g.number_of_nodes('user') == 1
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
1435
1436
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1437
1438
1439
1440
1441
1442
1443
1444
    n = [1]
    g = dgl.remove_nodes(g, n, ntype='user')
    assert g.number_of_nodes('user') == 1
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
1445
1446
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
    n = F.tensor([0], dtype=idtype)
    g = dgl.remove_nodes(g, n, ntype='game')
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges() == 2
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0 ,1], dtype=idtype))

    # heterogeneous graph
1457
    g = create_test_heterograph3(idtype)
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_nodes(g, 0, ntype='game')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 1
    assert g.number_of_nodes('developer') == 2
    assert g.number_of_edges('plays') == 2
    assert g.number_of_edges('develops') == 1
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3], dtype=idtype))
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([3, 4], dtype=idtype))
    u, v = g.edges(form='uv', order='eid', etype='develops')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0], dtype=idtype))

1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
    # batched graph
    ctx = F.ctx()
    g1 = dgl.graph(([0, 1], [1, 2]), num_nodes=5, idtype=idtype, device=ctx)
    g2 = dgl.graph(([], []), idtype=idtype, device=ctx)
    g3 = dgl.graph(([2, 3, 4], [3, 2, 1]), idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_nodes(bg, 1)
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes(), F.tensor([4, 0, 5], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([0, 0, 3], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, [1, 7])
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes(), F.tensor([4, 0, 4], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([0, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, F.tensor([1, 7], dtype=idtype))
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes(), F.tensor([4, 0, 4], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([0, 0, 1], dtype=F.int64))

    # batched heterogeneous graph
    g1 = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([1, 3], [0, 1])
    }, num_nodes_dict={'user': 4, 'game': 3}, idtype=idtype, device=ctx)
    g2 = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 2], [3, 4]),
        ('user', 'plays', 'game'): ([], [])
    }, num_nodes_dict={'user': 6, 'game': 2}, idtype=idtype, device=ctx)
    g3 = dgl.heterograph({
        ('user', 'follows', 'user'): ([], []),
        ('user', 'plays', 'game'): ([1, 2], [1, 2])
    }, idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_nodes(bg, 1, ntype='user')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes('user'), F.tensor([3, 6, 3], dtype=F.int64))
    assert F.array_equal(bg.batch_num_nodes('game'), bg_r.batch_num_nodes('game'))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 2, 0], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 2], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, 6, ntype='game')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg.batch_num_nodes('user'), bg_r.batch_num_nodes('user'))
    assert F.array_equal(bg_r.batch_num_nodes('game'), F.tensor([3, 2, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([2, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, [1, 5, 6, 11], ntype='user')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes('user'), F.tensor([3, 4, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_nodes('game'), bg_r.batch_num_nodes('game'))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 1, 0], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, [0, 3, 4, 7], ntype='game')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg.batch_num_nodes('user'), bg_r.batch_num_nodes('user'))
    assert F.array_equal(bg_r.batch_num_nodes('game'), F.tensor([2, 0, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, F.tensor([1, 5, 6, 11], dtype=idtype), ntype='user')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes('user'), F.tensor([3, 4, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_nodes('game'), bg_r.batch_num_nodes('game'))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 1, 0], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, F.tensor([0, 3, 4, 7], dtype=idtype), ntype='game')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg.batch_num_nodes('user'), bg_r.batch_num_nodes('user'))
    assert F.array_equal(bg_r.batch_num_nodes('game'), F.tensor([2, 0, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
@parametrize_dtype
def test_add_selfloop(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 0, 2], [2, 1, 0]), idtype=idtype, device=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.ndata['hn'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.add_self_loop(g)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 6
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 0, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 1, 0, 0, 1, 2], dtype=idtype))
    assert F.array_equal(g.edata['he'], F.tensor([1, 2, 3, 0, 0, 0], dtype=idtype))

    # bipartite graph
1568
1569
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1, 2], [1, 2, 2])}, idtype=idtype, device=F.ctx())
1570
1571
1572
1573
1574
1575
1576
1577
    # nothing will happend
    raise_error = False
    try:
        g = dgl.add_self_loop(g)
    except:
        raise_error = True
    assert raise_error

1578
    g = create_test_heterograph5(idtype)
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
    g = dgl.add_self_loop(g, etype='follows')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('follows') == 5
    assert g.number_of_edges('plays') == 2
    u, v = g.edges(form='uv', order='eid', etype='follows')
    assert F.array_equal(u, F.tensor([1, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 0, 1, 2], dtype=idtype))
    assert F.array_equal(g.edges['follows'].data['h'], F.tensor([1, 2, 0, 0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 2], dtype=idtype))

    raise_error = False
    try:
        g = dgl.add_self_loop(g, etype='plays')
    except:
        raise_error = True
    assert raise_error

@parametrize_dtype
def test_remove_selfloop(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 0, 0, 1], [1, 0, 0, 2]), idtype=idtype, device=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_self_loop(g)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 2
    assert F.array_equal(g.edata['he'], F.tensor([1, 4], dtype=idtype))

    # bipartite graph
1608
1609
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1, 2], [1, 2, 2])}, idtype=idtype, device=F.ctx())
1610
1611
1612
1613
1614
1615
1616
1617
    # nothing will happend
    raise_error = False
    try:
        g = dgl.remove_self_loop(g, etype='plays')
    except:
        raise_error = True
    assert raise_error

1618
    g = create_test_heterograph4(idtype)
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
    g = dgl.remove_self_loop(g, etype='follows')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('follows') == 2
    assert g.number_of_edges('plays') == 2
    u, v = g.edges(form='uv', order='eid', etype='follows')
    assert F.array_equal(u, F.tensor([1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(g.edges['follows'].data['h'], F.tensor([2, 4], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 2], dtype=idtype))

    raise_error = False
    try:
        g = dgl.remove_self_loop(g, etype='plays')
    except:
        raise_error = True
    assert raise_error
1636

1637
1638

@parametrize_dtype
1639
def test_reorder_graph(idtype):
1640
1641
1642
1643
1644
    g = dgl.graph(([0, 1, 2, 3, 4], [2, 2, 3, 2, 3]),
                  idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.randn((g.num_nodes(), 3)), ctx=F.ctx())
    g.edata['w'] = F.copy_to(F.randn((g.num_edges(), 2)), ctx=F.ctx())

1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
    # call with default args: node_permute_algo='rcmk', edge_permute_algo='src', store_ids=True
    rg = dgl.reorder_graph(g)
    assert dgl.NID in rg.ndata.keys()
    assert dgl.EID in rg.edata.keys()
    src = F.asnumpy(rg.edges()[0])
    assert np.array_equal(src, np.sort(src))

    # call with 'dst' edge_permute_algo
    rg = dgl.reorder_graph(g, edge_permute_algo='dst')
    dst = F.asnumpy(rg.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    # call with unknown edge_permute_algo
    raise_error = False
    try:
        dgl.reorder_graph(g, edge_permute_algo='none')
    except:
        raise_error = True
    assert raise_error
1664
1665

    # reorder back to original according to stored ids
1666
1667
1668
    rg = dgl.reorder_graph(g)
    rg2 = dgl.reorder_graph(rg, 'custom', permute_config={
        'nodes_perm': np.argsort(F.asnumpy(rg.ndata[dgl.NID]))})
1669
1670
1671
1672
    assert F.array_equal(g.ndata['h'], rg2.ndata['h'])
    assert F.array_equal(g.edata['w'], rg2.edata['w'])

    # do not store ids
1673
    rg = dgl.reorder_graph(g, store_ids=False)
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
    assert not dgl.NID in rg.ndata.keys()
    assert not dgl.EID in rg.edata.keys()

    # metis does not work on windows.
    if os.name == 'nt':
        pass
    else:
        # metis_partition may fail for small graph.
        mg = create_large_graph(1000).to(F.ctx())

        # call with metis strategy, but k is not specified
        raise_error = False
        try:
1687
            dgl.reorder_graph(mg, node_permute_algo='metis')
1688
1689
1690
1691
1692
1693
1694
        except:
            raise_error = True
        assert raise_error

        # call with metis strategy, k is specified
        raise_error = False
        try:
1695
1696
            dgl.reorder_graph(mg,
                              node_permute_algo='metis', permute_config={'k': 2})
1697
1698
1699
1700
1701
1702
1703
1704
        except:
            raise_error = True
        assert not raise_error

    # call with qualified nodes_perm specified
    nodes_perm = np.random.permutation(g.num_nodes())
    raise_error = False
    try:
1705
1706
        dgl.reorder_graph(g, node_permute_algo='custom', permute_config={
            'nodes_perm': nodes_perm})
1707
1708
1709
1710
1711
1712
1713
    except:
        raise_error = True
    assert not raise_error

    # call with unqualified nodes_perm specified
    raise_error = False
    try:
1714
1715
        dgl.reorder_graph(g, node_permute_algo='custom', permute_config={
            'nodes_perm':  nodes_perm[:g.num_nodes() - 1]})
1716
1717
1718
1719
1720
1721
1722
    except:
        raise_error = True
    assert raise_error

    # call with unsupported strategy
    raise_error = False
    try:
1723
        dgl.reorder_graph(g, node_permute_algo='cmk')
1724
1725
1726
1727
1728
1729
1730
1731
1732
    except:
        raise_error = True
    assert raise_error

    # heterograph: not supported
    raise_error = False
    try:
        hg = dgl.heterogrpah({('user', 'follow', 'user'): (
            [0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1733
        dgl.reorder_graph(hg)
1734
1735
1736
1737
1738
1739
1740
    except:
        raise_error = True
    assert raise_error

    # add 'csr' format if needed
    fg = g.formats('csc')
    assert 'csr' not in sum(fg.formats().values(), [])
1741
    rfg = dgl.reorder_graph(fg)
1742
1743
    assert 'csr' in sum(rfg.formats().values(), [])

1744
if __name__ == '__main__':
1745
    test_partition_with_halo()