test_transform.py 74.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
##
#   Copyright 2019-2021 Contributors
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.
#

17
from scipy import sparse as spsp
18
19
import networkx as nx
import numpy as np
20
import os
21
22
import dgl
import dgl.function as fn
23
import dgl.partition
24
import backend as F
25
import unittest
26
from utils import parametrize_dtype
27

28
from test_heterograph import create_test_heterograph3, create_test_heterograph4, create_test_heterograph5
29

30
31
32
D = 5

# line graph related
33

34
def test_line_graph1():
35
    N = 5
36
    G = dgl.DGLGraph(nx.star_graph(N)).to(F.ctx())
37
    G.edata['h'] = F.randn((2 * N, D))
38
39
    L = G.line_graph(shared=True)
    assert L.number_of_nodes() == 2 * N
40
    assert F.allclose(L.ndata['h'], G.edata['h'])
41
    assert G.device == F.ctx()
42

43
@parametrize_dtype
44
def test_line_graph2(idtype):
45
46
47
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 1, 2, 2],[2, 0, 2, 0, 1])
    }, idtype=idtype)
48
    lg = dgl.line_graph(g)
49
50
51
52
53
54
55
56
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))

57
    lg = dgl.line_graph(g, backtracking=False)
58
59
60
61
62
63
64
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 4
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 1, 2, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([4, 0, 3, 1]))
65
66
67
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 1, 2, 2],[2, 0, 2, 0, 1])
    }, idtype=idtype).formats('csr')
68
    lg = dgl.line_graph(g)
69
70
71
72
73
74
75
76
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))

77
78
79
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 1, 2, 2],[2, 0, 2, 0, 1])
    }, idtype=idtype).formats('csc')
80
    lg = dgl.line_graph(g)
81
82
83
84
85
86
87
88
89
90
91
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col, eid = lg.edges('all')
    row = F.asnumpy(row)
    col = F.asnumpy(col)
    eid = F.asnumpy(eid).astype(int)
    order = np.argsort(eid)
    assert np.array_equal(row[order],
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(col[order],
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))
92

93
94
95
96
97
98
99
100
101
102
103
104
def test_no_backtracking():
    N = 5
    G = dgl.DGLGraph(nx.star_graph(N))
    L = G.line_graph(backtracking=False)
    assert L.number_of_nodes() == 2 * N
    for i in range(1, N):
        e1 = G.edge_id(0, i)
        e2 = G.edge_id(i, 0)
        assert not L.has_edge_between(e1, e2)
        assert not L.has_edge_between(e2, e1)

# reverse graph related
105
106
@parametrize_dtype
def test_reverse(idtype):
107
    g = dgl.DGLGraph()
108
    g = g.astype(idtype).to(F.ctx())
109
110
111
    g.add_nodes(5)
    # The graph need not to be completely connected.
    g.add_edges([0, 1, 2], [1, 2, 1])
112
113
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [3.], [4.]])
    g.edata['h'] = F.tensor([[5.], [6.], [7.]])
114
115
116
117
118
119
    rg = g.reverse()

    assert g.is_multigraph == rg.is_multigraph

    assert g.number_of_nodes() == rg.number_of_nodes()
    assert g.number_of_edges() == rg.number_of_edges()
120
121
    assert F.allclose(F.astype(rg.has_edges_between(
        [1, 2, 1], [0, 1, 2]), F.float32), F.ones((3,)))
122
123
124
125
    assert g.edge_id(0, 1) == rg.edge_id(1, 0)
    assert g.edge_id(1, 2) == rg.edge_id(2, 1)
    assert g.edge_id(2, 1) == rg.edge_id(1, 2)

126
    # test dgl.reverse
127
128
129
130
    # test homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 2]), F.tensor([1, 2, 0])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.]])
131
    g_r = dgl.reverse(g)
132
133
134
135
136
137
138
139
140
141
142
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    u_g, v_g, eids_g = g.all_edges(form='all')
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all')
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    assert F.array_equal(g.ndata['h'], g_r.ndata['h'])
    assert len(g_r.edata) == 0

    # without share ndata
143
    g_r = dgl.reverse(g, copy_ndata=False)
144
145
146
147
148
149
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    assert len(g_r.ndata) == 0
    assert len(g_r.edata) == 0

    # with share ndata and edata
150
    g_r = dgl.reverse(g, copy_ndata=True, copy_edata=True)
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    assert F.array_equal(g.ndata['h'], g_r.ndata['h'])
    assert F.array_equal(g.edata['h'], g_r.edata['h'])

    # add new node feature to g_r
    g_r.ndata['hh'] = F.tensor([0, 1, 2])
    assert ('hh' in g.ndata) is False
    assert ('hh' in g_r.ndata) is True

    # add new edge feature to g_r
    g_r.edata['hh'] = F.tensor([0, 1, 2])
    assert ('hh' in g.edata) is False
    assert ('hh' in g_r.edata) is True

    # test heterogeneous graph
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2, 4, 3 ,1, 3], [1, 2, 3, 2, 0, 0, 1]),
        ('user', 'plays', 'game'): ([0, 0, 2, 3, 3, 4, 1], [1, 0, 1, 0, 1, 0, 0]),
170
171
        ('developer', 'develops', 'game'): ([0, 1, 1, 2], [0, 0, 1, 1])},
        idtype=idtype, device=F.ctx())
172
173
174
175
176
    g.nodes['user'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    g.nodes['user'].data['hh'] = F.tensor([1, 1, 1, 1, 1])
    g.nodes['game'].data['h'] = F.tensor([0, 1])
    g.edges['follows'].data['h'] = F.tensor([0, 1, 2, 4, 3 ,1, 3])
    g.edges['follows'].data['hh'] = F.tensor([1, 2, 3, 2, 0, 0, 1])
177
    g_r = dgl.reverse(g)
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g_r.number_of_nodes(ntype)
    assert F.array_equal(g.nodes['user'].data['h'], g_r.nodes['user'].data['h'])
    assert F.array_equal(g.nodes['user'].data['hh'], g_r.nodes['user'].data['hh'])
    assert F.array_equal(g.nodes['game'].data['h'], g_r.nodes['game'].data['h'])
    assert len(g_r.edges['follows'].data) == 0
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('user', 'follows', 'user'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('user', 'follows', 'user'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('user', 'plays', 'game'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('game', 'plays', 'user'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('developer', 'develops', 'game'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('game', 'develops', 'developer'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)

    # withour share ndata
207
    g_r = dgl.reverse(g, copy_ndata=False)
208
209
210
211
212
213
214
215
216
217
    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g_r.number_of_nodes(ntype)
    assert len(g_r.nodes['user'].data) == 0
    assert len(g_r.nodes['game'].data) == 0

218
    g_r = dgl.reverse(g, copy_ndata=True, copy_edata=True)
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    print(g_r)
    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    assert F.array_equal(g.edges['follows'].data['h'], g_r.edges['follows'].data['h'])
    assert F.array_equal(g.edges['follows'].data['hh'], g_r.edges['follows'].data['hh'])

    # add new node feature to g_r
    g_r.nodes['user'].data['hhh'] = F.tensor([0, 1, 2, 3, 4])
    assert ('hhh' in g.nodes['user'].data) is False
    assert ('hhh' in g_r.nodes['user'].data) is True

    # add new edge feature to g_r
    g_r.edges['follows'].data['hhh'] = F.tensor([1, 2, 3, 2, 0, 0, 1])
    assert ('hhh' in g.edges['follows'].data) is False
    assert ('hhh' in g_r.edges['follows'].data) is True

238

239
240
@parametrize_dtype
def test_reverse_shared_frames(idtype):
241
    g = dgl.DGLGraph()
242
    g = g.astype(idtype).to(F.ctx())
243
244
    g.add_nodes(3)
    g.add_edges([0, 1, 2], [1, 2, 1])
245
246
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.]])
247
248

    rg = g.reverse(share_ndata=True, share_edata=True)
249
250
251
    assert F.allclose(g.ndata['h'], rg.ndata['h'])
    assert F.allclose(g.edata['h'], rg.edata['h'])
    assert F.allclose(g.edges[[0, 2], [1, 1]].data['h'],
252
253
                      rg.edges[[1, 1], [0, 2]].data['h'])

254
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
255
def test_to_bidirected():
256
257
    # homogeneous graph
    elist = [(0, 0), (0, 1), (1, 0),
258
             (1, 1), (2, 1), (2, 2)]
259
    num_edges = 7
260
    g = dgl.graph(tuple(zip(*elist)))
261
262
263
264
265
266
267
268
269
270
271
272
273
    elist.append((1, 2))
    elist = set(elist)
    big = dgl.to_bidirected(g)
    assert big.number_of_edges() == num_edges
    src, dst = big.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist)

    # heterogeneous graph
    elist1 = [(0, 0), (0, 1), (1, 0),
                (1, 1), (2, 1), (2, 2)]
    elist2 = [(0, 0), (0, 1)]
    g = dgl.heterograph({
274
275
        ('user', 'wins', 'user'): tuple(zip(*elist1)),
        ('user', 'follows', 'user'): tuple(zip(*elist2))
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
    })
    g.nodes['user'].data['h'] = F.ones((3, 1))
    elist1.append((1, 2))
    elist1 = set(elist1)
    elist2.append((1, 0))
    elist2 = set(elist2)
    big = dgl.to_bidirected(g)
    assert big.number_of_edges('wins') == 7
    assert big.number_of_edges('follows') == 3
    src, dst = big.edges(etype='wins')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist1)
    src, dst = big.edges(etype='follows')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist2)

    big = dgl.to_bidirected(g, copy_ndata=True)
    assert F.array_equal(g.nodes['user'].data['h'], big.nodes['user'].data['h'])

def test_add_reverse_edges():
296
297
298
299
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 3, 1]), F.tensor([1, 2, 0, 2])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [1.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
300
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True)
301
302
303
304
305
306
307
308
309
310
311
312
    u, v = g.edges()
    ub, vb = bg.edges()
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert F.array_equal(g.ndata['h'], bg.ndata['h'])
    assert F.array_equal(F.cat([g.edata['h'], g.edata['h']], dim=0), bg.edata['h'])
    bg.ndata['hh'] = F.tensor([[0.], [1.], [2.], [1.]])
    assert ('hh' in g.ndata) is False
    bg.edata['hh'] = F.tensor([[0.], [1.], [2.], [1.], [0.], [1.], [2.], [1.]])
    assert ('hh' in g.edata) is False

    # donot share ndata and edata
313
    bg = dgl.add_reverse_edges(g, copy_ndata=False, copy_edata=False)
314
315
316
317
318
319
320
    ub, vb = bg.edges()
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert ('h' in bg.ndata) is False
    assert ('h' in bg.edata) is False

    # zero edge graph
321
    g = dgl.graph(([], []))
322
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True)
323
324
325
326
327
328
329
330
331
332

    # heterogeneous graph
    g = dgl.heterograph({
        ('user', 'wins', 'user'): (F.tensor([0, 2, 0, 2, 2]), F.tensor([1, 1, 2, 1, 0])),
        ('user', 'plays', 'game'): (F.tensor([1, 2, 1]), F.tensor([2, 1, 1])),
        ('user', 'follows', 'user'): (F.tensor([1, 2, 1]), F.tensor([0, 0, 0]))
    })
    g.nodes['game'].data['hv'] = F.ones((3, 1))
    g.nodes['user'].data['hv'] = F.ones((3, 1))
    g.edges['wins'].data['h'] = F.tensor([0, 1, 2, 3, 4])
333
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True, ignore_bipartite=True)
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
    assert F.array_equal(g.nodes['game'].data['hv'], bg.nodes['game'].data['hv'])
    assert F.array_equal(g.nodes['user'].data['hv'], bg.nodes['user'].data['hv'])
    u, v = g.all_edges(order='eid', etype=('user', 'wins', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'wins', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert F.array_equal(F.cat([g.edges['wins'].data['h'], g.edges['wins'].data['h']], dim=0),
                         bg.edges['wins'].data['h'])
    u, v = g.all_edges(order='eid', etype=('user', 'follows', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'follows', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'plays', 'game'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'plays', 'game'))
    assert F.array_equal(u, ub)
    assert F.array_equal(v, vb)
350
351
    assert set(bg.edges['plays'].data.keys()) == {dgl.EID}
    assert set(bg.edges['follows'].data.keys()) == {dgl.EID}
352
353

    # donot share ndata and edata
354
    bg = dgl.add_reverse_edges(g, copy_ndata=False, copy_edata=False, ignore_bipartite=True)
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
    assert len(bg.edges['wins'].data) == 0
    assert len(bg.edges['plays'].data) == 0
    assert len(bg.edges['follows'].data) == 0
    assert len(bg.nodes['game'].data) == 0
    assert len(bg.nodes['user'].data) == 0
    u, v = g.all_edges(order='eid', etype=('user', 'wins', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'wins', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'follows', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'follows', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'plays', 'game'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'plays', 'game'))
    assert F.array_equal(u, ub)
    assert F.array_equal(v, vb)

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
    # test the case when some nodes have zero degree
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 3, 1]), F.tensor([1, 2, 0, 2])), num_nodes=6)
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [1.], [1.], [1.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True)
    assert g.number_of_nodes() == bg.number_of_nodes()
    assert F.array_equal(g.ndata['h'], bg.ndata['h'])
    assert F.array_equal(F.cat([g.edata['h'], g.edata['h']], dim=0), bg.edata['h'])

    # heterogeneous graph
    g = dgl.heterograph({
        ('user', 'wins', 'user'): (F.tensor([0, 2, 0, 2, 2]), F.tensor([1, 1, 2, 1, 0])),
        ('user', 'plays', 'game'): (F.tensor([1, 2, 1]), F.tensor([2, 1, 1])),
        ('user', 'follows', 'user'): (F.tensor([1, 2, 1]), F.tensor([0, 0, 0]))},
        num_nodes_dict={
            'user': 5,
            'game': 3
        })
    g.nodes['game'].data['hv'] = F.ones((3, 1))
    g.nodes['user'].data['hv'] = F.ones((5, 1))
    g.edges['wins'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True, ignore_bipartite=True)
    assert g.number_of_nodes('user') == bg.number_of_nodes('user')
    assert g.number_of_nodes('game') == bg.number_of_nodes('game')
    assert F.array_equal(g.nodes['game'].data['hv'], bg.nodes['game'].data['hv'])
    assert F.array_equal(g.nodes['user'].data['hv'], bg.nodes['user'].data['hv'])
    assert F.array_equal(F.cat([g.edges['wins'].data['h'], g.edges['wins'].data['h']], dim=0),
                         bg.edges['wins'].data['h'])

403

404
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
405
406
407
408
409
410
411
412
413
414
def test_simple_graph():
    elist = [(0, 1), (0, 2), (1, 2), (0, 1)]
    g = dgl.DGLGraph(elist, readonly=True)
    assert g.is_multigraph
    sg = dgl.to_simple_graph(g)
    assert not sg.is_multigraph
    assert sg.number_of_edges() == 3
    src, dst = sg.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist)
415

416
417
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
def _test_bidirected_graph():
418
    def _test(in_readonly, out_readonly):
419
420
421
        elist = [(0, 0), (0, 1), (1, 0),
                (1, 1), (2, 1), (2, 2)]
        num_edges = 7
422
423
424
        g = dgl.DGLGraph(elist, readonly=in_readonly)
        elist.append((1, 2))
        elist = set(elist)
425
        big = dgl.to_bidirected_stale(g, out_readonly)
426
        assert big.number_of_edges() == num_edges
427
428
429
430
431
432
433
434
435
        src, dst = big.edges()
        eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
        assert eset == set(elist)

    _test(True, True)
    _test(True, False)
    _test(False, True)
    _test(False, False)

436

437
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
438
439
440
441
def test_khop_graph():
    N = 20
    feat = F.randn((N, 5))

Mufei Li's avatar
Mufei Li committed
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
    def _test(g):
        for k in range(4):
            g_k = dgl.khop_graph(g, k)
            # use original graph to do message passing for k times.
            g.ndata['h'] = feat
            for _ in range(k):
                g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            h_0 = g.ndata.pop('h')
            # use k-hop graph to do message passing for one time.
            g_k.ndata['h'] = feat
            g_k.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            h_1 = g_k.ndata.pop('h')
            assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

    # Test for random undirected graphs
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    _test(g)
    # Test for random directed graphs
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3, directed=True))
    _test(g)
462

463
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
464
465
466
467
468
def test_khop_adj():
    N = 20
    feat = F.randn((N, 5))
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    for k in range(3):
469
        adj = F.tensor(F.swapaxes(dgl.khop_adj(g, k), 0, 1))
470
471
472
473
474
475
476
477
478
        # use original graph to do message passing for k times.
        g.ndata['h'] = feat
        for _ in range(k):
            g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
        h_0 = g.ndata.pop('h')
        # use k-hop adj to do message passing for one time.
        h_1 = F.matmul(adj, feat)
        assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

479

480
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
481
482
483
484
485
486
487
def test_laplacian_lambda_max():
    N = 20
    eps = 1e-6
    # test DGLGraph
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    l_max = dgl.laplacian_lambda_max(g)
    assert (l_max[0] < 2 + eps)
Zihao Ye's avatar
Zihao Ye committed
488
    # test batched DGLGraph
489
    '''
490
491
492
493
494
495
496
497
498
    N_arr = [20, 30, 10, 12]
    bg = dgl.batch([
        dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
        for N in N_arr
    ])
    l_max_arr = dgl.laplacian_lambda_max(bg)
    assert len(l_max_arr) == len(N_arr)
    for l_max in l_max_arr:
        assert l_max < 2 + eps
499
    '''
500

501
def create_large_graph(num_nodes):
502
503
504
    row = np.random.choice(num_nodes, num_nodes * 10)
    col = np.random.choice(num_nodes, num_nodes * 10)
    spm = spsp.coo_matrix((np.ones(len(row)), (row, col)))
505
    spm.sum_duplicates()
506

507
    return dgl.from_scipy(spm)
508
509
510
511
512
513
514
515
516

def get_nodeflow(g, node_ids, num_layers):
    batch_size = len(node_ids)
    expand_factor = g.number_of_nodes()
    sampler = dgl.contrib.sampling.NeighborSampler(g, batch_size,
            expand_factor=expand_factor, num_hops=num_layers,
            seed_nodes=node_ids)
    return next(iter(sampler))

517
# Disabled since everything will be on heterogeneous graphs
518
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
519
def test_partition_with_halo():
520
    g = create_large_graph(1000)
521
    node_part = np.random.choice(4, g.number_of_nodes())
522
    subgs, _, _ = dgl.transform.partition_graph_with_halo(g, node_part, 2, reshuffle=True)
523
524
525
    for part_id, subg in subgs.items():
        node_ids = np.nonzero(node_part == part_id)[0]
        lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
526
527
528
529
        orig_nids = F.asnumpy(subg.ndata['orig_id'])[lnode_ids]
        assert np.all(np.sort(orig_nids) == node_ids)
        assert np.all(F.asnumpy(subg.in_degrees(lnode_ids)) == F.asnumpy(g.in_degrees(orig_nids)))
        assert np.all(F.asnumpy(subg.out_degrees(lnode_ids)) == F.asnumpy(g.out_degrees(orig_nids)))
530

531
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
532
533
@unittest.skipIf(F._default_context_str == 'gpu', reason="METIS doesn't support GPU")
def test_metis_partition():
Da Zheng's avatar
Da Zheng committed
534
    # TODO(zhengda) Metis fails to partition a small graph.
535
    g = create_large_graph(1000)
536
537
538
539
540
541
    check_metis_partition(g, 0)
    check_metis_partition(g, 1)
    check_metis_partition(g, 2)
    check_metis_partition_with_constraint(g)


542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
def check_metis_partition_with_constraint(g):
    ntypes = np.zeros((g.number_of_nodes(),), dtype=np.int32)
    ntypes[0:int(g.number_of_nodes()/4)] = 1
    ntypes[int(g.number_of_nodes()*3/4):] = 2
    subgs = dgl.transform.metis_partition(g, 4, extra_cached_hops=1, balance_ntypes=ntypes)
    if subgs is not None:
        for i in subgs:
            subg = subgs[i]
            parent_nids = F.asnumpy(subg.ndata[dgl.NID])
            sub_ntypes = ntypes[parent_nids]
            print('type0:', np.sum(sub_ntypes == 0))
            print('type1:', np.sum(sub_ntypes == 1))
            print('type2:', np.sum(sub_ntypes == 2))
    subgs = dgl.transform.metis_partition(g, 4, extra_cached_hops=1,
                                          balance_ntypes=ntypes, balance_edges=True)
    if subgs is not None:
        for i in subgs:
            subg = subgs[i]
            parent_nids = F.asnumpy(subg.ndata[dgl.NID])
            sub_ntypes = ntypes[parent_nids]
            print('type0:', np.sum(sub_ntypes == 0))
            print('type1:', np.sum(sub_ntypes == 1))
            print('type2:', np.sum(sub_ntypes == 2))
Da Zheng's avatar
Da Zheng committed
565
566
567

def check_metis_partition(g, extra_hops):
    subgs = dgl.transform.metis_partition(g, 4, extra_cached_hops=extra_hops)
568
569
570
571
    num_inner_nodes = 0
    num_inner_edges = 0
    if subgs is not None:
        for part_id, subg in subgs.items():
Da Zheng's avatar
Da Zheng committed
572
573
574
575
576
            lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
            ledge_ids = np.nonzero(F.asnumpy(subg.edata['inner_edge']))[0]
            num_inner_nodes += len(lnode_ids)
            num_inner_edges += len(ledge_ids)
            assert np.sum(F.asnumpy(subg.ndata['part_id']) == part_id) == len(lnode_ids)
577
578
579
        assert num_inner_nodes == g.number_of_nodes()
        print(g.number_of_edges() - num_inner_edges)

Da Zheng's avatar
Da Zheng committed
580
581
582
    if extra_hops == 0:
        return

583
    # partitions with node reshuffling
Da Zheng's avatar
Da Zheng committed
584
    subgs = dgl.transform.metis_partition(g, 4, extra_cached_hops=extra_hops, reshuffle=True)
585
586
    num_inner_nodes = 0
    num_inner_edges = 0
Da Zheng's avatar
Da Zheng committed
587
    edge_cnts = np.zeros((g.number_of_edges(),))
588
589
590
591
592
593
594
    if subgs is not None:
        for part_id, subg in subgs.items():
            lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
            ledge_ids = np.nonzero(F.asnumpy(subg.edata['inner_edge']))[0]
            num_inner_nodes += len(lnode_ids)
            num_inner_edges += len(ledge_ids)
            assert np.sum(F.asnumpy(subg.ndata['part_id']) == part_id) == len(lnode_ids)
Da Zheng's avatar
Da Zheng committed
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
            nids = F.asnumpy(subg.ndata[dgl.NID])

            # ensure the local node Ids are contiguous.
            parent_ids = F.asnumpy(subg.ndata[dgl.NID])
            parent_ids = parent_ids[:len(lnode_ids)]
            assert np.all(parent_ids == np.arange(parent_ids[0], parent_ids[-1] + 1))

            # count the local edges.
            parent_ids = F.asnumpy(subg.edata[dgl.EID])[ledge_ids]
            edge_cnts[parent_ids] += 1

            orig_ids = subg.ndata['orig_id']
            inner_node = F.asnumpy(subg.ndata['inner_node'])
            for nid in range(subg.number_of_nodes()):
                neighs = subg.predecessors(nid)
                old_neighs1 = F.gather_row(orig_ids, neighs)
                old_nid = F.asnumpy(orig_ids[nid])
                old_neighs2 = g.predecessors(old_nid)
                # If this is an inner node, it should have the full neighborhood.
                if inner_node[nid]:
                    assert np.all(np.sort(F.asnumpy(old_neighs1)) == np.sort(F.asnumpy(old_neighs2)))
        # Normally, local edges are only counted once.
        assert np.all(edge_cnts == 1)

619
620
621
        assert num_inner_nodes == g.number_of_nodes()
        print(g.number_of_edges() - num_inner_edges)

Da Zheng's avatar
Da Zheng committed
622
623
@unittest.skipIf(F._default_context_str == 'gpu', reason="It doesn't support GPU")
def test_reorder_nodes():
624
    g = create_large_graph(1000)
Da Zheng's avatar
Da Zheng committed
625
626
    new_nids = np.random.permutation(g.number_of_nodes())
    # TODO(zhengda) we need to test both CSR and COO.
627
    new_g = dgl.partition.reorder_nodes(g, new_nids)
Da Zheng's avatar
Da Zheng committed
628
629
630
631
632
633
634
635
636
    new_in_deg = new_g.in_degrees()
    new_out_deg = new_g.out_degrees()
    in_deg = g.in_degrees()
    out_deg = g.out_degrees()
    new_in_deg1 = F.scatter_row(in_deg, F.tensor(new_nids), in_deg)
    new_out_deg1 = F.scatter_row(out_deg, F.tensor(new_nids), out_deg)
    assert np.all(F.asnumpy(new_in_deg == new_in_deg1))
    assert np.all(F.asnumpy(new_out_deg == new_out_deg1))
    orig_ids = F.asnumpy(new_g.ndata['orig_id'])
637
638
639
640
641
642
643
    for nid in range(g.number_of_nodes()):
        neighs = F.asnumpy(g.successors(nid))
        new_neighs1 = new_nids[neighs]
        new_nid = new_nids[nid]
        new_neighs2 = new_g.successors(new_nid)
        assert np.all(np.sort(new_neighs1) == np.sort(F.asnumpy(new_neighs2)))

Da Zheng's avatar
Da Zheng committed
644
645
646
647
648
649
650
651
652
653
654
655
656
    for nid in range(new_g.number_of_nodes()):
        neighs = F.asnumpy(new_g.successors(nid))
        old_neighs1 = orig_ids[neighs]
        old_nid = orig_ids[nid]
        old_neighs2 = g.successors(old_nid)
        assert np.all(np.sort(old_neighs1) == np.sort(F.asnumpy(old_neighs2)))

        neighs = F.asnumpy(new_g.predecessors(nid))
        old_neighs1 = orig_ids[neighs]
        old_nid = orig_ids[nid]
        old_neighs2 = g.predecessors(old_nid)
        assert np.all(np.sort(old_neighs1) == np.sort(F.asnumpy(old_neighs2)))

657
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU compaction not implemented")
658
@parametrize_dtype
659
def test_compact(idtype):
660
    g1 = dgl.heterograph({
661
662
663
        ('user', 'follow', 'user'): ([1, 3], [3, 5]),
        ('user', 'plays', 'game'): ([2, 3, 2], [4, 4, 5]),
        ('game', 'wished-by', 'user'): ([6, 5], [7, 7])},
664
        {'user': 20, 'game': 10}, idtype=idtype)
665
666

    g2 = dgl.heterograph({
667
668
        ('game', 'clicked-by', 'user'): ([3], [1]),
        ('user', 'likes', 'user'): ([1, 8], [8, 9])},
669
        {'user': 20, 'game': 10}, idtype=idtype)
670

671
672
673
674
    g3 = dgl.heterograph({('user', '_E', 'user'): ((0, 1), (1, 2))},
                         {'user': 10}, idtype=idtype)
    g4 = dgl.heterograph({('user', '_E', 'user'): ((1, 3), (3, 5))},
                         {'user': 10}, idtype=idtype)
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

    def _check(g, new_g, induced_nodes):
        assert g.ntypes == new_g.ntypes
        assert g.canonical_etypes == new_g.canonical_etypes

        for ntype in g.ntypes:
            assert -1 not in induced_nodes[ntype]

        for etype in g.canonical_etypes:
            g_src, g_dst = g.all_edges(order='eid', etype=etype)
            g_src = F.asnumpy(g_src)
            g_dst = F.asnumpy(g_dst)
            new_g_src, new_g_dst = new_g.all_edges(order='eid', etype=etype)
            new_g_src_mapped = induced_nodes[etype[0]][F.asnumpy(new_g_src)]
            new_g_dst_mapped = induced_nodes[etype[2]][F.asnumpy(new_g_dst)]
            assert (g_src == new_g_src_mapped).all()
            assert (g_dst == new_g_dst_mapped).all()

    # Test default
    new_g1 = dgl.compact_graphs(g1)
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
697
    assert new_g1.idtype == idtype
698
699
700
701
702
703
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7])
    assert set(induced_nodes['game']) == set([4, 5, 6])
    _check(g1, new_g1, induced_nodes)

    # Test with always_preserve given a dict
    new_g1 = dgl.compact_graphs(
704
705
        g1, always_preserve={'game': F.tensor([4, 7], idtype)})
    assert new_g1.idtype == idtype
706
707
708
709
710
711
712
713
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7])
    assert set(induced_nodes['game']) == set([4, 5, 6, 7])
    _check(g1, new_g1, induced_nodes)

    # Test with always_preserve given a tensor
    new_g3 = dgl.compact_graphs(
714
        g3, always_preserve=F.tensor([1, 7], idtype))
715
716
    induced_nodes = {ntype: new_g3.nodes[ntype].data[dgl.NID] for ntype in new_g3.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
717

718
    assert new_g3.idtype == idtype
719
720
721
722
723
724
725
    assert set(induced_nodes['user']) == set([0, 1, 2, 7])
    _check(g3, new_g3, induced_nodes)

    # Test multiple graphs
    new_g1, new_g2 = dgl.compact_graphs([g1, g2])
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
726
727
    assert new_g1.idtype == idtype
    assert new_g2.idtype == idtype
728
729
730
731
732
733
734
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7, 8, 9])
    assert set(induced_nodes['game']) == set([3, 4, 5, 6])
    _check(g1, new_g1, induced_nodes)
    _check(g2, new_g2, induced_nodes)

    # Test multiple graphs with always_preserve given a dict
    new_g1, new_g2 = dgl.compact_graphs(
735
        [g1, g2], always_preserve={'game': F.tensor([4, 7], dtype=idtype)})
736
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
737
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
738
739
    assert new_g1.idtype == idtype
    assert new_g2.idtype == idtype
740
741
742
743
744
745
746
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7, 8, 9])
    assert set(induced_nodes['game']) == set([3, 4, 5, 6, 7])
    _check(g1, new_g1, induced_nodes)
    _check(g2, new_g2, induced_nodes)

    # Test multiple graphs with always_preserve given a tensor
    new_g3, new_g4 = dgl.compact_graphs(
747
        [g3, g4], always_preserve=F.tensor([1, 7], dtype=idtype))
748
749
    induced_nodes = {ntype: new_g3.nodes[ntype].data[dgl.NID] for ntype in new_g3.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
750

751
752
753
    assert new_g3.idtype == idtype
    assert new_g4.idtype == idtype

754
755
756
757
    assert set(induced_nodes['user']) == set([0, 1, 2, 3, 5, 7])
    _check(g3, new_g3, induced_nodes)
    _check(g4, new_g4, induced_nodes)

758
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU to simple not implemented")
759
@parametrize_dtype
760
def test_to_simple(idtype):
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 2, 1]), F.tensor([1, 2, 0, 2])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
    sg, wb = dgl.to_simple(g, writeback_mapping=True)
    u, v = g.all_edges(form='uv', order='eid')
    u = F.asnumpy(u).tolist()
    v = F.asnumpy(v).tolist()
    uv = list(zip(u, v))
    eid_map = F.asnumpy(wb)

    su, sv = sg.all_edges(form='uv', order='eid')
    su = F.asnumpy(su).tolist()
    sv = F.asnumpy(sv).tolist()
    suv = list(zip(su, sv))
    sc = F.asnumpy(sg.edata['count'])
    assert set(uv) == set(suv)
    for i, e in enumerate(suv):
        assert sc[i] == sum(e == _e for _e in uv)
    for i, e in enumerate(uv):
        assert eid_map[i] == suv.index(e)
    # shared ndata
    assert F.array_equal(sg.ndata['h'], g.ndata['h'])
    assert 'h' not in sg.edata
    # new ndata to sg
    sg.ndata['hh'] = F.tensor([[0.], [1.], [2.]])
    assert 'hh' not in g.ndata

    sg = dgl.to_simple(g, writeback_mapping=False, copy_ndata=False)
    assert 'h' not in sg.ndata
    assert 'h' not in sg.edata

793
794
795
796
797
798
799
800
    # test coalesce edge feature
    sg = dgl.to_simple(g, copy_edata=True, aggregator='arbitrary')
    assert F.allclose(sg.edata['h'][1], F.tensor([4.]))
    sg = dgl.to_simple(g, copy_edata=True, aggregator='sum')
    assert F.allclose(sg.edata['h'][1], F.tensor([10.]))
    sg = dgl.to_simple(g, copy_edata=True, aggregator='mean')
    assert F.allclose(sg.edata['h'][1], F.tensor([5.]))

801
    # heterogeneous graph
802
    g = dgl.heterograph({
803
804
805
        ('user', 'follow', 'user'): ([0, 1, 2, 1, 1, 1],
                                     [1, 3, 2, 3, 4, 4]),
        ('user', 'plays', 'game'): ([3, 2, 1, 1, 3, 2, 2], [5, 3, 4, 4, 5, 3, 3])},
806
        idtype=idtype, device=F.ctx())
807
808
809
810
811
    g.nodes['user'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    g.nodes['user'].data['hh'] = F.tensor([0, 1, 2, 3, 4])
    g.edges['follow'].data['h'] = F.tensor([0, 1, 2, 3, 4, 5])
    sg, wb = dgl.to_simple(g, return_counts='weights', writeback_mapping=True, copy_edata=True)
    g.nodes['game'].data['h'] = F.tensor([0, 1, 2, 3, 4, 5])
812
813
814
815
816
817

    for etype in g.canonical_etypes:
        u, v = g.all_edges(form='uv', order='eid', etype=etype)
        u = F.asnumpy(u).tolist()
        v = F.asnumpy(v).tolist()
        uv = list(zip(u, v))
818
        eid_map = F.asnumpy(wb[etype])
819
820
821
822
823
824
825
826
827
828
829
830

        su, sv = sg.all_edges(form='uv', order='eid', etype=etype)
        su = F.asnumpy(su).tolist()
        sv = F.asnumpy(sv).tolist()
        suv = list(zip(su, sv))
        sw = F.asnumpy(sg.edges[etype].data['weights'])

        assert set(uv) == set(suv)
        for i, e in enumerate(suv):
            assert sw[i] == sum(e == _e for _e in uv)
        for i, e in enumerate(uv):
            assert eid_map[i] == suv.index(e)
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
    # shared ndata
    assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
    assert F.array_equal(sg.nodes['user'].data['hh'], g.nodes['user'].data['hh'])
    assert 'h' not in sg.nodes['game'].data
    # new ndata to sg
    sg.nodes['user'].data['hhh'] = F.tensor([0, 1, 2, 3, 4])
    assert 'hhh' not in g.nodes['user'].data
    # share edata
    feat_idx = F.asnumpy(wb[('user', 'follow', 'user')])
    _, indices = np.unique(feat_idx, return_index=True)
    assert np.array_equal(F.asnumpy(sg.edges['follow'].data['h']),
                          F.asnumpy(g.edges['follow'].data['h'])[indices])

    sg = dgl.to_simple(g, writeback_mapping=False, copy_ndata=False)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)
    assert 'h' not in sg.nodes['user'].data
    assert 'hh' not in sg.nodes['user'].data
849

850
@parametrize_dtype
851
def test_to_block(idtype):
852
    def check(g, bg, ntype, etype, dst_nodes, include_dst_in_src=True):
853
854
855
        if dst_nodes is not None:
            assert F.array_equal(bg.dstnodes[ntype].data[dgl.NID], dst_nodes)
        n_dst_nodes = bg.number_of_nodes('DST/' + ntype)
856
857
858
859
        if include_dst_in_src:
            assert F.array_equal(
                bg.srcnodes[ntype].data[dgl.NID][:n_dst_nodes],
                bg.dstnodes[ntype].data[dgl.NID])
860
861
862
863
864
865

        g = g[etype]
        bg = bg[etype]
        induced_src = bg.srcdata[dgl.NID]
        induced_dst = bg.dstdata[dgl.NID]
        induced_eid = bg.edata[dgl.EID]
866

867
868
869
870
871
872
873
874
875
876
877
        bg_src, bg_dst = bg.all_edges(order='eid')
        src_ans, dst_ans = g.all_edges(order='eid')

        induced_src_bg = F.gather_row(induced_src, bg_src)
        induced_dst_bg = F.gather_row(induced_dst, bg_dst)
        induced_src_ans = F.gather_row(src_ans, induced_eid)
        induced_dst_ans = F.gather_row(dst_ans, induced_eid)

        assert F.array_equal(induced_src_bg, induced_src_ans)
        assert F.array_equal(induced_dst_bg, induced_dst_ans)

878
    def checkall(g, bg, dst_nodes, include_dst_in_src=True):
879
880
        for etype in g.etypes:
            ntype = g.to_canonical_etype(etype)[2]
881
            if dst_nodes is not None and ntype in dst_nodes:
882
                check(g, bg, ntype, etype, dst_nodes[ntype], include_dst_in_src)
883
            else:
884
                check(g, bg, ntype, etype, None, include_dst_in_src)
885
886

    g = dgl.heterograph({
887
888
        ('A', 'AA', 'A'): ([0, 2, 1, 3], [1, 3, 2, 4]),
        ('A', 'AB', 'B'): ([0, 1, 3, 1], [1, 3, 5, 6]),
889
        ('B', 'BA', 'A'): ([2, 3], [3, 2])}, idtype=idtype, device=F.ctx())
890
891
892
893
894
    g.nodes['A'].data['x'] = F.randn((5, 10))
    g.nodes['B'].data['x'] = F.randn((7, 5))
    g.edges['AA'].data['x'] = F.randn((4, 3))
    g.edges['AB'].data['x'] = F.randn((4, 3))
    g.edges['BA'].data['x'] = F.randn((2, 3))
895
896
    g_a = g['AA']

897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
    def check_features(g, bg):
        for ntype in bg.srctypes:
            for key in g.nodes[ntype].data:
                assert F.array_equal(
                    bg.srcnodes[ntype].data[key],
                    F.gather_row(g.nodes[ntype].data[key], bg.srcnodes[ntype].data[dgl.NID]))
        for ntype in bg.dsttypes:
            for key in g.nodes[ntype].data:
                assert F.array_equal(
                    bg.dstnodes[ntype].data[key],
                    F.gather_row(g.nodes[ntype].data[key], bg.dstnodes[ntype].data[dgl.NID]))
        for etype in bg.canonical_etypes:
            for key in g.edges[etype].data:
                assert F.array_equal(
                    bg.edges[etype].data[key],
                    F.gather_row(g.edges[etype].data[key], bg.edges[etype].data[dgl.EID]))

914
915
    bg = dgl.to_block(g_a)
    check(g_a, bg, 'A', 'AA', None)
916
    check_features(g_a, bg)
917
918
919
920
921
    assert bg.number_of_src_nodes() == 5
    assert bg.number_of_dst_nodes() == 4

    bg = dgl.to_block(g_a, include_dst_in_src=False)
    check(g_a, bg, 'A', 'AA', None, False)
922
    check_features(g_a, bg)
923
924
    assert bg.number_of_src_nodes() == 4
    assert bg.number_of_dst_nodes() == 4
925

926
    dst_nodes = F.tensor([4, 3, 2, 1], dtype=idtype)
927
928
    bg = dgl.to_block(g_a, dst_nodes)
    check(g_a, bg, 'A', 'AA', dst_nodes)
929
    check_features(g_a, bg)
930
931
932
933

    g_ab = g['AB']

    bg = dgl.to_block(g_ab)
934
    assert bg.idtype == idtype
935
936
937
    assert bg.number_of_nodes('SRC/B') == 4
    assert F.array_equal(bg.srcnodes['B'].data[dgl.NID], bg.dstnodes['B'].data[dgl.NID])
    assert bg.number_of_nodes('DST/A') == 0
938
    checkall(g_ab, bg, None)
939
    check_features(g_ab, bg)
940

941
    dst_nodes = {'B': F.tensor([5, 6, 3, 1], dtype=idtype)}
942
    bg = dgl.to_block(g, dst_nodes)
943
    assert bg.number_of_nodes('SRC/B') == 4
944
945
946
    assert F.array_equal(bg.srcnodes['B'].data[dgl.NID], bg.dstnodes['B'].data[dgl.NID])
    assert bg.number_of_nodes('DST/A') == 0
    checkall(g, bg, dst_nodes)
947
    check_features(g, bg)
948

949
    dst_nodes = {'A': F.tensor([4, 3, 2, 1], dtype=idtype), 'B': F.tensor([3, 5, 6, 1], dtype=idtype)}
950
951
    bg = dgl.to_block(g, dst_nodes=dst_nodes)
    checkall(g, bg, dst_nodes)
952
    check_features(g, bg)
953

954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
    # test specifying lhs_nodes with include_dst_in_src
    src_nodes = {}
    for ntype in dst_nodes.keys():
        # use the previous run to get the list of source nodes
        src_nodes[ntype] = bg.srcnodes[ntype].data[dgl.NID]
    bg = dgl.to_block(g, dst_nodes=dst_nodes, src_nodes=src_nodes)
    checkall(g, bg, dst_nodes)
    check_features(g, bg)

    # test without include_dst_in_src
    dst_nodes = {'A': F.tensor([4, 3, 2, 1], dtype=idtype), 'B': F.tensor([3, 5, 6, 1], dtype=idtype)}
    bg = dgl.to_block(g, dst_nodes=dst_nodes, include_dst_in_src=False)
    checkall(g, bg, dst_nodes, False)
    check_features(g, bg)

    # test specifying lhs_nodes without include_dst_in_src
    src_nodes = {}
    for ntype in dst_nodes.keys():
        # use the previous run to get the list of source nodes
        src_nodes[ntype] = bg.srcnodes[ntype].data[dgl.NID]
    bg = dgl.to_block(g, dst_nodes=dst_nodes, include_dst_in_src=False,
        src_nodes=src_nodes)
    checkall(g, bg, dst_nodes, False)
    check_features(g, bg)


980
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
981
@parametrize_dtype
982
def test_remove_edges(idtype):
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
    def check(g1, etype, g, edges_removed):
        src, dst, eid = g.edges(etype=etype, form='all')
        src1, dst1 = g1.edges(etype=etype, order='eid')
        if etype is not None:
            eid1 = g1.edges[etype].data[dgl.EID]
        else:
            eid1 = g1.edata[dgl.EID]
        src1 = F.asnumpy(src1)
        dst1 = F.asnumpy(dst1)
        eid1 = F.asnumpy(eid1)
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        eid = F.asnumpy(eid)
        sde_set = set(zip(src, dst, eid))

        for s, d, e in zip(src1, dst1, eid1):
            assert (s, d, e) in sde_set
        assert not np.isin(edges_removed, eid1).any()
1001
        assert g1.idtype == g.idtype
1002
1003
1004

    for fmt in ['coo', 'csr', 'csc']:
        for edges_to_remove in [[2], [2, 2], [3, 2], [1, 3, 1, 2]]:
1005
            g = dgl.graph(([0, 2, 1, 3], [1, 3, 2, 4]), idtype=idtype).formats(fmt)
1006
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove, idtype))
1007
1008
            check(g1, None, g, edges_to_remove)

1009
            g = dgl.from_scipy(
1010
                spsp.csr_matrix(([1, 1, 1, 1], ([0, 2, 1, 3], [1, 3, 2, 4])), shape=(5, 5)),
1011
1012
                idtype=idtype).formats(fmt)
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove, idtype))
1013
1014
1015
            check(g1, None, g, edges_to_remove)

    g = dgl.heterograph({
1016
1017
1018
        ('A', 'AA', 'A'): ([0, 2, 1, 3], [1, 3, 2, 4]),
        ('A', 'AB', 'B'): ([0, 1, 3, 1], [1, 3, 5, 6]),
        ('B', 'BA', 'A'): ([2, 3], [3, 2])}, idtype=idtype)
1019
    g2 = dgl.remove_edges(g, {'AA': F.tensor([2], idtype), 'AB': F.tensor([3], idtype), 'BA': F.tensor([1], idtype)})
1020
1021
1022
    check(g2, 'AA', g, [2])
    check(g2, 'AB', g, [3])
    check(g2, 'BA', g, [1])
1023

1024
    g3 = dgl.remove_edges(g, {'AA': F.tensor([], idtype), 'AB': F.tensor([3], idtype), 'BA': F.tensor([1], idtype)})
1025
1026
1027
1028
    check(g3, 'AA', g, [])
    check(g3, 'AB', g, [3])
    check(g3, 'BA', g, [1])

1029
    g4 = dgl.remove_edges(g, {'AB': F.tensor([3, 1, 2, 0], idtype)})
1030
    check(g4, 'AA', g, [])
1031
    check(g4, 'AB', g, [3, 1, 2, 0])
1032
1033
    check(g4, 'BA', g, [])

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
@parametrize_dtype
def test_add_edges(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = 0
    v = 1
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
1058
1059
1060
1061
1062
1063
1064
1065
1066
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))
    g = dgl.add_edges(g, [], [])
    g = dgl.add_edges(g, 0, [])
    g = dgl.add_edges(g, [], 0)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([0, 0, 2, 2], dtype=idtype))

    # zero data graph
1099
    g = dgl.graph(([], []), num_nodes=0, idtype=idtype, device=F.ctx())
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 2], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 2
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([2, 2], dtype=idtype))

    # bipartite graph
1114
1115
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
    u = 0
    v = 1
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
1142
1143
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
1156
1157
1158
1159
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2, 0], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([0, 0, 2, 2], dtype=idtype))

    # heterogeneous graph
1178
    g = create_test_heterograph3(idtype)
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v, etype='plays')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 2
    assert g.number_of_edges('plays') == 6
    assert g.number_of_edges('develops') == 2
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([0, 1, 1, 2, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0, 1, 1, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 1, 1, 1, 0, 0], dtype=idtype))

    # add with feature
    e_feat = {'h': F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.nodes['game'].data['h'] =  F.copy_to(F.tensor([2, 2, 1, 1], dtype=idtype), ctx=F.ctx())
    g = dgl.add_edges(g, u, v, data=e_feat, etype='develops')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 3
    assert g.number_of_edges('plays') == 6
    assert g.number_of_edges('develops') == 4
    u, v = g.edges(form='uv', order='eid', etype='develops')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['develops'].data['h'], F.tensor([0, 0, 2, 2], dtype=idtype))

@parametrize_dtype
def test_add_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1], dtype=idtype), ctx=F.ctx())
    new_g = dgl.add_nodes(g, 1)
    assert g.number_of_nodes() == 3
    assert new_g.number_of_nodes() == 4
    assert F.array_equal(new_g.ndata['h'], F.tensor([1, 1, 1, 0], dtype=idtype))

    # zero node graph
1223
    g = dgl.graph(([], []), num_nodes=3, idtype=idtype, device=F.ctx())
1224
1225
1226
1227
1228
1229
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1], dtype=idtype), ctx=F.ctx())
    g = dgl.add_nodes(g, 1, data={'h' : F.copy_to(F.tensor([2],  dtype=idtype), ctx=F.ctx())})
    assert g.number_of_nodes() == 4
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 2], dtype=idtype))

    # bipartite graph
1230
1231
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1232
1233
1234
1235
1236
1237
1238
1239
1240
    g = dgl.add_nodes(g, 2, data={'h' : F.copy_to(F.tensor([2, 2],  dtype=idtype), ctx=F.ctx())}, ntype='user')
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 3
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([0, 0, 2, 2], dtype=idtype))
    g = dgl.add_nodes(g, 2, ntype='game')
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 5

    # heterogeneous graph
1241
    g = create_test_heterograph3(idtype)
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
    g = dgl.add_nodes(g, 1, ntype='user')
    g = dgl.add_nodes(g, 2, data={'h' : F.copy_to(F.tensor([2, 2],  dtype=idtype), ctx=F.ctx())}, ntype='game')
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 2
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2, 2], dtype=idtype))

@parametrize_dtype
def test_remove_edges(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = 0
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = [0]
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 0

    # has node data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 1)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.ndata['h'], F.tensor([1, 2, 3], dtype=idtype))

    # has edge data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 0)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.edata['h'], F.tensor([2], dtype=idtype))

    # invalid eid
    assert_fail = False
    try:
        g = dgl.remove_edges(g, 1)
    except:
        assert_fail = True
    assert assert_fail

    # bipartite graph
1294
1295
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1296
1297
1298
1299
1300
1301
    e = 0
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
1302
1303
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
    e = [0]
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 0

    # has data
1315
1316
1317
1318
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
1319
1320
1321
1322
1323
1324
1325
1326
    g.edata['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 1)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1], dtype=idtype))

    # heterogeneous graph
1327
    g = create_test_heterograph3(idtype)
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 1, etype='plays')
    assert g.number_of_edges('plays') == 3
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 3, 4], dtype=idtype))
    # remove all edges of 'develops'
    g = dgl.remove_edges(g, [0, 1], etype='develops')
    assert g.number_of_edges('develops') == 0
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3], dtype=idtype))

1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
    # batched graph
    ctx = F.ctx()
    g1 = dgl.graph(([0, 1], [1, 2]), num_nodes=5, idtype=idtype, device=ctx)
    g2 = dgl.graph(([], []), idtype=idtype, device=ctx)
    g3 = dgl.graph(([2, 3, 4], [3, 2, 1]), idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_edges(bg, 2)
    assert bg.batch_size == bg_r.batch_size
    assert F.array_equal(bg.batch_num_nodes(), bg_r.batch_num_nodes())
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([2, 0, 2], dtype=F.int64))

    bg_r = dgl.remove_edges(bg, [0, 2])
    assert bg.batch_size == bg_r.batch_size
    assert F.array_equal(bg.batch_num_nodes(), bg_r.batch_num_nodes())
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([1, 0, 2], dtype=F.int64))

    bg_r = dgl.remove_edges(bg, F.tensor([0, 2], dtype=idtype))
    assert bg.batch_size == bg_r.batch_size
    assert F.array_equal(bg.batch_num_nodes(), bg_r.batch_num_nodes())
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([1, 0, 2], dtype=F.int64))

    # batched heterogeneous graph
    g1 = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([1, 3], [0, 1])
    }, num_nodes_dict={'user': 4, 'game': 3}, idtype=idtype, device=ctx)
    g2 = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 2], [3, 4]),
        ('user', 'plays', 'game'): ([], [])
    }, num_nodes_dict={'user': 6, 'game': 2}, idtype=idtype, device=ctx)
    g3 = dgl.heterograph({
        ('user', 'follows', 'user'): ([], []),
        ('user', 'plays', 'game'): ([1, 2], [1, 2])
    }, idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_edges(bg, 1, etype='follows')
    assert bg.batch_size == bg_r.batch_size
    ntypes = bg.ntypes
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([1, 2, 0], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges('plays'), bg.batch_num_edges('plays'))

    bg_r = dgl.remove_edges(bg, 2, etype='plays')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([2, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_edges(bg, [0, 1, 3], etype='follows')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 1, 0], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('plays'), bg_r.batch_num_edges('plays'))

    bg_r = dgl.remove_edges(bg, [1, 2], etype='plays')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_edges(bg, F.tensor([0, 1, 3], dtype=idtype), etype='follows')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 1, 0], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('plays'), bg_r.batch_num_edges('plays'))

    bg_r = dgl.remove_edges(bg, F.tensor([1, 2], dtype=idtype), etype='plays')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
@parametrize_dtype
def test_remove_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = 0
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = [1]
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 0
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = F.tensor([2], dtype=idtype)
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))

    # invalid nid
    assert_fail = False
    try:
        g.remove_nodes(3)
    except:
        assert_fail = True
    assert assert_fail

    # has node and edge data
    g = dgl.graph(([0, 0, 2], [0, 1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['hv'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_nodes(g, F.tensor([0], dtype=idtype))
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    assert F.array_equal(g.ndata['hv'], F.tensor([2, 3], dtype=idtype))
    assert F.array_equal(g.edata['he'], F.tensor([3], dtype=idtype))

    # node id larger than current max node id
1467
1468
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1469
1470
1471
1472
1473
1474
1475
1476
    n = 0
    g = dgl.remove_nodes(g, n, ntype='user')
    assert g.number_of_nodes('user') == 1
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
1477
1478
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1479
1480
1481
1482
1483
1484
1485
1486
    n = [1]
    g = dgl.remove_nodes(g, n, ntype='user')
    assert g.number_of_nodes('user') == 1
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
1487
1488
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
    n = F.tensor([0], dtype=idtype)
    g = dgl.remove_nodes(g, n, ntype='game')
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges() == 2
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0 ,1], dtype=idtype))

    # heterogeneous graph
1499
    g = create_test_heterograph3(idtype)
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_nodes(g, 0, ntype='game')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 1
    assert g.number_of_nodes('developer') == 2
    assert g.number_of_edges('plays') == 2
    assert g.number_of_edges('develops') == 1
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3], dtype=idtype))
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([3, 4], dtype=idtype))
    u, v = g.edges(form='uv', order='eid', etype='develops')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0], dtype=idtype))

1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
    # batched graph
    ctx = F.ctx()
    g1 = dgl.graph(([0, 1], [1, 2]), num_nodes=5, idtype=idtype, device=ctx)
    g2 = dgl.graph(([], []), idtype=idtype, device=ctx)
    g3 = dgl.graph(([2, 3, 4], [3, 2, 1]), idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_nodes(bg, 1)
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes(), F.tensor([4, 0, 5], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([0, 0, 3], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, [1, 7])
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes(), F.tensor([4, 0, 4], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([0, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, F.tensor([1, 7], dtype=idtype))
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes(), F.tensor([4, 0, 4], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([0, 0, 1], dtype=F.int64))

    # batched heterogeneous graph
    g1 = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([1, 3], [0, 1])
    }, num_nodes_dict={'user': 4, 'game': 3}, idtype=idtype, device=ctx)
    g2 = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 2], [3, 4]),
        ('user', 'plays', 'game'): ([], [])
    }, num_nodes_dict={'user': 6, 'game': 2}, idtype=idtype, device=ctx)
    g3 = dgl.heterograph({
        ('user', 'follows', 'user'): ([], []),
        ('user', 'plays', 'game'): ([1, 2], [1, 2])
    }, idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_nodes(bg, 1, ntype='user')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes('user'), F.tensor([3, 6, 3], dtype=F.int64))
    assert F.array_equal(bg.batch_num_nodes('game'), bg_r.batch_num_nodes('game'))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 2, 0], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 2], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, 6, ntype='game')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg.batch_num_nodes('user'), bg_r.batch_num_nodes('user'))
    assert F.array_equal(bg_r.batch_num_nodes('game'), F.tensor([3, 2, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([2, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, [1, 5, 6, 11], ntype='user')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes('user'), F.tensor([3, 4, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_nodes('game'), bg_r.batch_num_nodes('game'))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 1, 0], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, [0, 3, 4, 7], ntype='game')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg.batch_num_nodes('user'), bg_r.batch_num_nodes('user'))
    assert F.array_equal(bg_r.batch_num_nodes('game'), F.tensor([2, 0, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, F.tensor([1, 5, 6, 11], dtype=idtype), ntype='user')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes('user'), F.tensor([3, 4, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_nodes('game'), bg_r.batch_num_nodes('game'))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 1, 0], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, F.tensor([0, 3, 4, 7], dtype=idtype), ntype='game')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg.batch_num_nodes('user'), bg_r.batch_num_nodes('user'))
    assert F.array_equal(bg_r.batch_num_nodes('game'), F.tensor([2, 0, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
@parametrize_dtype
def test_add_selfloop(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 0, 2], [2, 1, 0]), idtype=idtype, device=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.ndata['hn'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.add_self_loop(g)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 6
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 0, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 1, 0, 0, 1, 2], dtype=idtype))
    assert F.array_equal(g.edata['he'], F.tensor([1, 2, 3, 0, 0, 0], dtype=idtype))

    # bipartite graph
1610
1611
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1, 2], [1, 2, 2])}, idtype=idtype, device=F.ctx())
1612
1613
1614
1615
1616
1617
1618
1619
    # nothing will happend
    raise_error = False
    try:
        g = dgl.add_self_loop(g)
    except:
        raise_error = True
    assert raise_error

1620
    g = create_test_heterograph5(idtype)
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
    g = dgl.add_self_loop(g, etype='follows')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('follows') == 5
    assert g.number_of_edges('plays') == 2
    u, v = g.edges(form='uv', order='eid', etype='follows')
    assert F.array_equal(u, F.tensor([1, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 0, 1, 2], dtype=idtype))
    assert F.array_equal(g.edges['follows'].data['h'], F.tensor([1, 2, 0, 0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 2], dtype=idtype))

    raise_error = False
    try:
        g = dgl.add_self_loop(g, etype='plays')
    except:
        raise_error = True
    assert raise_error

@parametrize_dtype
def test_remove_selfloop(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 0, 0, 1], [1, 0, 0, 2]), idtype=idtype, device=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_self_loop(g)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 2
    assert F.array_equal(g.edata['he'], F.tensor([1, 4], dtype=idtype))

    # bipartite graph
1650
1651
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1, 2], [1, 2, 2])}, idtype=idtype, device=F.ctx())
1652
1653
1654
1655
1656
1657
1658
1659
    # nothing will happend
    raise_error = False
    try:
        g = dgl.remove_self_loop(g, etype='plays')
    except:
        raise_error = True
    assert raise_error

1660
    g = create_test_heterograph4(idtype)
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
    g = dgl.remove_self_loop(g, etype='follows')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('follows') == 2
    assert g.number_of_edges('plays') == 2
    u, v = g.edges(form='uv', order='eid', etype='follows')
    assert F.array_equal(u, F.tensor([1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(g.edges['follows'].data['h'], F.tensor([2, 4], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 2], dtype=idtype))

    raise_error = False
    try:
        g = dgl.remove_self_loop(g, etype='plays')
    except:
        raise_error = True
    assert raise_error
1678

1679
1680

@parametrize_dtype
1681
def test_reorder_graph(idtype):
1682
1683
1684
1685
1686
    g = dgl.graph(([0, 1, 2, 3, 4], [2, 2, 3, 2, 3]),
                  idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.randn((g.num_nodes(), 3)), ctx=F.ctx())
    g.edata['w'] = F.copy_to(F.randn((g.num_edges(), 2)), ctx=F.ctx())

1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
    # call with default args: node_permute_algo='rcmk', edge_permute_algo='src', store_ids=True
    rg = dgl.reorder_graph(g)
    assert dgl.NID in rg.ndata.keys()
    assert dgl.EID in rg.edata.keys()
    src = F.asnumpy(rg.edges()[0])
    assert np.array_equal(src, np.sort(src))

    # call with 'dst' edge_permute_algo
    rg = dgl.reorder_graph(g, edge_permute_algo='dst')
    dst = F.asnumpy(rg.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    # call with unknown edge_permute_algo
    raise_error = False
    try:
        dgl.reorder_graph(g, edge_permute_algo='none')
    except:
        raise_error = True
    assert raise_error
1706
1707

    # reorder back to original according to stored ids
1708
1709
1710
    rg = dgl.reorder_graph(g)
    rg2 = dgl.reorder_graph(rg, 'custom', permute_config={
        'nodes_perm': np.argsort(F.asnumpy(rg.ndata[dgl.NID]))})
1711
1712
1713
1714
    assert F.array_equal(g.ndata['h'], rg2.ndata['h'])
    assert F.array_equal(g.edata['w'], rg2.edata['w'])

    # do not store ids
1715
    rg = dgl.reorder_graph(g, store_ids=False)
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
    assert not dgl.NID in rg.ndata.keys()
    assert not dgl.EID in rg.edata.keys()

    # metis does not work on windows.
    if os.name == 'nt':
        pass
    else:
        # metis_partition may fail for small graph.
        mg = create_large_graph(1000).to(F.ctx())

        # call with metis strategy, but k is not specified
        raise_error = False
        try:
1729
            dgl.reorder_graph(mg, node_permute_algo='metis')
1730
1731
1732
1733
1734
1735
1736
        except:
            raise_error = True
        assert raise_error

        # call with metis strategy, k is specified
        raise_error = False
        try:
1737
1738
            dgl.reorder_graph(mg,
                              node_permute_algo='metis', permute_config={'k': 2})
1739
1740
1741
1742
1743
1744
1745
1746
        except:
            raise_error = True
        assert not raise_error

    # call with qualified nodes_perm specified
    nodes_perm = np.random.permutation(g.num_nodes())
    raise_error = False
    try:
1747
1748
        dgl.reorder_graph(g, node_permute_algo='custom', permute_config={
            'nodes_perm': nodes_perm})
1749
1750
1751
1752
1753
1754
1755
    except:
        raise_error = True
    assert not raise_error

    # call with unqualified nodes_perm specified
    raise_error = False
    try:
1756
1757
        dgl.reorder_graph(g, node_permute_algo='custom', permute_config={
            'nodes_perm':  nodes_perm[:g.num_nodes() - 1]})
1758
1759
1760
1761
1762
1763
1764
    except:
        raise_error = True
    assert raise_error

    # call with unsupported strategy
    raise_error = False
    try:
1765
        dgl.reorder_graph(g, node_permute_algo='cmk')
1766
1767
1768
1769
1770
1771
1772
1773
1774
    except:
        raise_error = True
    assert raise_error

    # heterograph: not supported
    raise_error = False
    try:
        hg = dgl.heterogrpah({('user', 'follow', 'user'): (
            [0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1775
        dgl.reorder_graph(hg)
1776
1777
1778
1779
1780
1781
1782
    except:
        raise_error = True
    assert raise_error

    # add 'csr' format if needed
    fg = g.formats('csc')
    assert 'csr' not in sum(fg.formats().values(), [])
1783
    rfg = dgl.reorder_graph(fg)
1784
1785
    assert 'csr' in sum(rfg.formats().values(), [])

1786
if __name__ == '__main__':
1787
    test_partition_with_halo()