test_transform.py 38.6 KB
Newer Older
1
from scipy import sparse as spsp
2
import unittest
3
4
5
6
import networkx as nx
import numpy as np
import dgl
import dgl.function as fn
7
import backend as F
8
from dgl.graph_index import from_scipy_sparse_matrix
9
import unittest
10
from utils import parametrize_dtype
11
12
13
14

D = 5

# line graph related
15

16
17
18
def test_line_graph():
    N = 5
    G = dgl.DGLGraph(nx.star_graph(N))
19
    G.edata['h'] = F.randn((2 * N, D))
20
21
22
    n_edges = G.number_of_edges()
    L = G.line_graph(shared=True)
    assert L.number_of_nodes() == 2 * N
23
    L.ndata['h'] = F.randn((2 * N, D))
24
25
26
27
28
    # update node features on line graph should reflect to edge features on
    # original graph.
    u = [0, 0, 2, 3]
    v = [1, 2, 0, 0]
    eid = G.edge_ids(u, v)
29
30
    L.nodes[eid].data['h'] = F.zeros((4, D))
    assert F.allclose(G.edges[u, v].data['h'], F.zeros((4, D)))
31
32
33

    # adding a new node feature on line graph should also reflect to a new
    # edge feature on original graph
34
    data = F.randn((n_edges, D))
35
    L.ndata['w'] = data
36
    assert F.allclose(G.edata['w'], data)
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
@parametrize_dtype
def test_hetero_linegraph(index_dtype):
    g = dgl.graph(([0, 1, 1, 2, 2],[2, 0, 2, 0, 1]),
        'user', 'follows', index_dtype=index_dtype)
    lg = dgl.line_heterograph(g)
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))

    lg = dgl.line_heterograph(g, backtracking=False)
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 4
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 1, 2, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([4, 0, 3, 1]))
59
    g = dgl.graph(([0, 1, 1, 2, 2],[2, 0, 2, 0, 1]),
60
61
62
63
64
65
66
67
68
69
        'user', 'follows', restrict_format='csr', index_dtype=index_dtype)
    lg = dgl.line_heterograph(g)
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))

70
    g = dgl.graph(([0, 1, 1, 2, 2],[2, 0, 2, 0, 1]),
71
72
73
74
75
76
77
78
79
80
81
82
83
        'user', 'follows', restrict_format='csc', index_dtype=index_dtype)
    lg = dgl.line_heterograph(g)
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col, eid = lg.edges('all')
    row = F.asnumpy(row)
    col = F.asnumpy(col)
    eid = F.asnumpy(eid).astype(int)
    order = np.argsort(eid)
    assert np.array_equal(row[order],
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(col[order],
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))
84

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
def test_no_backtracking():
    N = 5
    G = dgl.DGLGraph(nx.star_graph(N))
    L = G.line_graph(backtracking=False)
    assert L.number_of_nodes() == 2 * N
    for i in range(1, N):
        e1 = G.edge_id(0, i)
        e2 = G.edge_id(i, 0)
        assert not L.has_edge_between(e1, e2)
        assert not L.has_edge_between(e2, e1)

# reverse graph related
def test_reverse():
    g = dgl.DGLGraph()
    g.add_nodes(5)
    # The graph need not to be completely connected.
    g.add_edges([0, 1, 2], [1, 2, 1])
102
103
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [3.], [4.]])
    g.edata['h'] = F.tensor([[5.], [6.], [7.]])
104
105
106
107
108
109
    rg = g.reverse()

    assert g.is_multigraph == rg.is_multigraph

    assert g.number_of_nodes() == rg.number_of_nodes()
    assert g.number_of_edges() == rg.number_of_edges()
110
111
    assert F.allclose(F.astype(rg.has_edges_between(
        [1, 2, 1], [0, 1, 2]), F.float32), F.ones((3,)))
112
113
114
115
    assert g.edge_id(0, 1) == rg.edge_id(1, 0)
    assert g.edge_id(1, 2) == rg.edge_id(2, 1)
    assert g.edge_id(2, 1) == rg.edge_id(1, 2)

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    # test dgl.reverse_heterograph
    # test homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 2]), F.tensor([1, 2, 0])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.]])
    g_r = dgl.reverse_heterograph(g)
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    u_g, v_g, eids_g = g.all_edges(form='all')
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all')
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    assert F.array_equal(g.ndata['h'], g_r.ndata['h'])
    assert len(g_r.edata) == 0

    # without share ndata
    g_r = dgl.reverse_heterograph(g, copy_ndata=False)
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    assert len(g_r.ndata) == 0
    assert len(g_r.edata) == 0

    # with share ndata and edata
    g_r = dgl.reverse_heterograph(g, copy_ndata=True, copy_edata=True)
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    assert F.array_equal(g.ndata['h'], g_r.ndata['h'])
    assert F.array_equal(g.edata['h'], g_r.edata['h'])

    # add new node feature to g_r
    g_r.ndata['hh'] = F.tensor([0, 1, 2])
    assert ('hh' in g.ndata) is False
    assert ('hh' in g_r.ndata) is True

    # add new edge feature to g_r
    g_r.edata['hh'] = F.tensor([0, 1, 2])
    assert ('hh' in g.edata) is False
    assert ('hh' in g_r.edata) is True

    # test heterogeneous graph
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2, 4, 3 ,1, 3], [1, 2, 3, 2, 0, 0, 1]),
        ('user', 'plays', 'game'): ([0, 0, 2, 3, 3, 4, 1], [1, 0, 1, 0, 1, 0, 0]),
        ('developer', 'develops', 'game'): ([0, 1, 1, 2], [0, 0, 1, 1])})
    g.nodes['user'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    g.nodes['user'].data['hh'] = F.tensor([1, 1, 1, 1, 1])
    g.nodes['game'].data['h'] = F.tensor([0, 1])
    g.edges['follows'].data['h'] = F.tensor([0, 1, 2, 4, 3 ,1, 3])
    g.edges['follows'].data['hh'] = F.tensor([1, 2, 3, 2, 0, 0, 1])
    g_r = dgl.reverse_heterograph(g)

    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g_r.number_of_nodes(ntype)
    assert F.array_equal(g.nodes['user'].data['h'], g_r.nodes['user'].data['h'])
    assert F.array_equal(g.nodes['user'].data['hh'], g_r.nodes['user'].data['hh'])
    assert F.array_equal(g.nodes['game'].data['h'], g_r.nodes['game'].data['h'])
    assert len(g_r.edges['follows'].data) == 0
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('user', 'follows', 'user'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('user', 'follows', 'user'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('user', 'plays', 'game'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('game', 'plays', 'user'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('developer', 'develops', 'game'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('game', 'develops', 'developer'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)

    # withour share ndata
    g_r = dgl.reverse_heterograph(g, copy_ndata=False)
    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g_r.number_of_nodes(ntype)
    assert len(g_r.nodes['user'].data) == 0
    assert len(g_r.nodes['game'].data) == 0

    g_r = dgl.reverse_heterograph(g, copy_ndata=True, copy_edata=True)
    print(g_r)
    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    assert F.array_equal(g.edges['follows'].data['h'], g_r.edges['follows'].data['h'])
    assert F.array_equal(g.edges['follows'].data['hh'], g_r.edges['follows'].data['hh'])

    # add new node feature to g_r
    g_r.nodes['user'].data['hhh'] = F.tensor([0, 1, 2, 3, 4])
    assert ('hhh' in g.nodes['user'].data) is False
    assert ('hhh' in g_r.nodes['user'].data) is True

    # add new edge feature to g_r
    g_r.edges['follows'].data['hhh'] = F.tensor([1, 2, 3, 2, 0, 0, 1])
    assert ('hhh' in g.edges['follows'].data) is False
    assert ('hhh' in g_r.edges['follows'].data) is True

227

228
229
230
231
def test_reverse_shared_frames():
    g = dgl.DGLGraph()
    g.add_nodes(3)
    g.add_edges([0, 1, 2], [1, 2, 1])
232
233
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.]])
234
235

    rg = g.reverse(share_ndata=True, share_edata=True)
236
237
238
    assert F.allclose(g.ndata['h'], rg.ndata['h'])
    assert F.allclose(g.edata['h'], rg.edata['h'])
    assert F.allclose(g.edges[[0, 2], [1, 1]].data['h'],
239
240
241
                      rg.edges[[1, 1], [0, 2]].data['h'])

    rg.ndata['h'] = rg.ndata['h'] + 1
242
    assert F.allclose(rg.ndata['h'], g.ndata['h'])
243
244

    g.edata['h'] = g.edata['h'] - 1
245
    assert F.allclose(rg.edata['h'], g.edata['h'])
246
247
248
249
250

    src_msg = fn.copy_src(src='h', out='m')
    sum_reduce = fn.sum(msg='m', out='h')

    rg.update_all(src_msg, sum_reduce)
251
    assert F.allclose(g.ndata['h'], rg.ndata['h'])
252

253

254
255
256
257
258
259
260
261
262
263
def test_simple_graph():
    elist = [(0, 1), (0, 2), (1, 2), (0, 1)]
    g = dgl.DGLGraph(elist, readonly=True)
    assert g.is_multigraph
    sg = dgl.to_simple_graph(g)
    assert not sg.is_multigraph
    assert sg.number_of_edges() == 3
    src, dst = sg.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist)
264

265

266
267
def test_bidirected_graph():
    def _test(in_readonly, out_readonly):
268
269
270
        elist = [(0, 0), (0, 1), (1, 0),
                (1, 1), (2, 1), (2, 2)]
        num_edges = 7
271
272
273
274
        g = dgl.DGLGraph(elist, readonly=in_readonly)
        elist.append((1, 2))
        elist = set(elist)
        big = dgl.to_bidirected(g, out_readonly)
275
        assert big.number_of_edges() == num_edges
276
277
278
279
280
281
282
283
284
        src, dst = big.edges()
        eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
        assert eset == set(elist)

    _test(True, True)
    _test(True, False)
    _test(False, True)
    _test(False, False)

285

286
287
288
289
def test_khop_graph():
    N = 20
    feat = F.randn((N, 5))

Mufei Li's avatar
Mufei Li committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    def _test(g):
        for k in range(4):
            g_k = dgl.khop_graph(g, k)
            # use original graph to do message passing for k times.
            g.ndata['h'] = feat
            for _ in range(k):
                g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            h_0 = g.ndata.pop('h')
            # use k-hop graph to do message passing for one time.
            g_k.ndata['h'] = feat
            g_k.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            h_1 = g_k.ndata.pop('h')
            assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

    # Test for random undirected graphs
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    _test(g)
    # Test for random directed graphs
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3, directed=True))
    _test(g)
310

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
def test_khop_adj():
    N = 20
    feat = F.randn((N, 5))
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    for k in range(3):
        adj = F.tensor(dgl.khop_adj(g, k))
        # use original graph to do message passing for k times.
        g.ndata['h'] = feat
        for _ in range(k):
            g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
        h_0 = g.ndata.pop('h')
        # use k-hop adj to do message passing for one time.
        h_1 = F.matmul(adj, feat)
        assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

326

327
328
329
330
331
332
333
def test_laplacian_lambda_max():
    N = 20
    eps = 1e-6
    # test DGLGraph
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    l_max = dgl.laplacian_lambda_max(g)
    assert (l_max[0] < 2 + eps)
Zihao Ye's avatar
Zihao Ye committed
334
    # test batched DGLGraph
335
336
337
338
339
340
341
342
343
344
    N_arr = [20, 30, 10, 12]
    bg = dgl.batch([
        dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
        for N in N_arr
    ])
    l_max_arr = dgl.laplacian_lambda_max(bg)
    assert len(l_max_arr) == len(N_arr)
    for l_max in l_max_arr:
        assert l_max < 2 + eps

345

VoVAllen's avatar
VoVAllen committed
346
def test_add_self_loop():
347
348
349
    g = dgl.DGLGraph()
    g.add_nodes(5)
    g.add_edges([0, 1, 2], [1, 1, 2])
VoVAllen's avatar
VoVAllen committed
350
351
    # Nodes 0, 3, 4 don't have self-loop
    new_g = dgl.transform.add_self_loop(g)
352
353
354
355
356
357
358
359
360
361
362
363
    assert F.allclose(new_g.edges()[0], F.tensor([0, 0, 1, 2, 3, 4]))
    assert F.allclose(new_g.edges()[1], F.tensor([1, 0, 1, 2, 3, 4]))


def test_remove_self_loop():
    g = dgl.DGLGraph()
    g.add_nodes(5)
    g.add_edges([0, 1, 2], [1, 1, 2])
    new_g = dgl.transform.remove_self_loop(g)
    assert F.allclose(new_g.edges()[0], F.tensor([0]))
    assert F.allclose(new_g.edges()[1], F.tensor([1]))

364
365
366
367
def create_large_graph_index(num_nodes):
    row = np.random.choice(num_nodes, num_nodes * 10)
    col = np.random.choice(num_nodes, num_nodes * 10)
    spm = spsp.coo_matrix((np.ones(len(row)), (row, col)))
368
369

    return from_scipy_sparse_matrix(spm, True)
370
371
372
373
374
375
376
377
378

def get_nodeflow(g, node_ids, num_layers):
    batch_size = len(node_ids)
    expand_factor = g.number_of_nodes()
    sampler = dgl.contrib.sampling.NeighborSampler(g, batch_size,
            expand_factor=expand_factor, num_hops=num_layers,
            seed_nodes=node_ids)
    return next(iter(sampler))

379
def test_partition_with_halo():
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    g = dgl.DGLGraph(create_large_graph_index(1000), readonly=True)
    node_part = np.random.choice(4, g.number_of_nodes())
    subgs = dgl.transform.partition_graph_with_halo(g, node_part, 2)
    for part_id, subg in subgs.items():
        node_ids = np.nonzero(node_part == part_id)[0]
        lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
        nf = get_nodeflow(g, node_ids, 2)
        lnf = get_nodeflow(subg, lnode_ids, 2)
        for i in range(nf.num_layers):
            layer_nids1 = F.asnumpy(nf.layer_parent_nid(i))
            layer_nids2 = lnf.layer_parent_nid(i)
            layer_nids2 = F.asnumpy(F.gather_row(subg.parent_nid, layer_nids2))
            assert np.all(np.sort(layer_nids1) == np.sort(layer_nids2))

        for i in range(nf.num_blocks):
            block_eids1 = F.asnumpy(nf.block_parent_eid(i))
            block_eids2 = lnf.block_parent_eid(i)
            block_eids2 = F.asnumpy(F.gather_row(subg.parent_eid, block_eids2))
            assert np.all(np.sort(block_eids1) == np.sort(block_eids2))
399

400
401
402
403
404
405
    subgs = dgl.transform.partition_graph_with_halo(g, node_part, 2, reshuffle=True)
    for part_id, subg in subgs.items():
        node_ids = np.nonzero(node_part == part_id)[0]
        lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
        assert np.all(np.sort(F.asnumpy(subg.ndata['orig_id'])[lnode_ids]) == node_ids)

406
407
@unittest.skipIf(F._default_context_str == 'gpu', reason="METIS doesn't support GPU")
def test_metis_partition():
Da Zheng's avatar
Da Zheng committed
408
    # TODO(zhengda) Metis fails to partition a small graph.
409
    g = dgl.DGLGraph(create_large_graph_index(1000), readonly=True)
Da Zheng's avatar
Da Zheng committed
410
411
412
    check_metis_partition(g, 0)
    check_metis_partition(g, 1)
    check_metis_partition(g, 2)
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
    check_metis_partition_with_constraint(g)

def check_metis_partition_with_constraint(g):
    ntypes = np.zeros((g.number_of_nodes(),), dtype=np.int32)
    ntypes[0:int(g.number_of_nodes()/4)] = 1
    ntypes[int(g.number_of_nodes()*3/4):] = 2
    subgs = dgl.transform.metis_partition(g, 4, extra_cached_hops=1, balance_ntypes=ntypes)
    if subgs is not None:
        for i in subgs:
            subg = subgs[i]
            parent_nids = F.asnumpy(subg.ndata[dgl.NID])
            sub_ntypes = ntypes[parent_nids]
            print('type0:', np.sum(sub_ntypes == 0))
            print('type1:', np.sum(sub_ntypes == 1))
            print('type2:', np.sum(sub_ntypes == 2))
    subgs = dgl.transform.metis_partition(g, 4, extra_cached_hops=1,
                                          balance_ntypes=ntypes, balance_edges=True)
    if subgs is not None:
        for i in subgs:
            subg = subgs[i]
            parent_nids = F.asnumpy(subg.ndata[dgl.NID])
            sub_ntypes = ntypes[parent_nids]
            print('type0:', np.sum(sub_ntypes == 0))
            print('type1:', np.sum(sub_ntypes == 1))
            print('type2:', np.sum(sub_ntypes == 2))
Da Zheng's avatar
Da Zheng committed
438
439
440

def check_metis_partition(g, extra_hops):
    subgs = dgl.transform.metis_partition(g, 4, extra_cached_hops=extra_hops)
441
442
443
444
    num_inner_nodes = 0
    num_inner_edges = 0
    if subgs is not None:
        for part_id, subg in subgs.items():
Da Zheng's avatar
Da Zheng committed
445
446
447
448
449
            lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
            ledge_ids = np.nonzero(F.asnumpy(subg.edata['inner_edge']))[0]
            num_inner_nodes += len(lnode_ids)
            num_inner_edges += len(ledge_ids)
            assert np.sum(F.asnumpy(subg.ndata['part_id']) == part_id) == len(lnode_ids)
450
451
452
        assert num_inner_nodes == g.number_of_nodes()
        print(g.number_of_edges() - num_inner_edges)

Da Zheng's avatar
Da Zheng committed
453
454
455
    if extra_hops == 0:
        return

456
    # partitions with node reshuffling
Da Zheng's avatar
Da Zheng committed
457
    subgs = dgl.transform.metis_partition(g, 4, extra_cached_hops=extra_hops, reshuffle=True)
458
459
    num_inner_nodes = 0
    num_inner_edges = 0
Da Zheng's avatar
Da Zheng committed
460
    edge_cnts = np.zeros((g.number_of_edges(),))
461
462
463
464
465
466
467
    if subgs is not None:
        for part_id, subg in subgs.items():
            lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
            ledge_ids = np.nonzero(F.asnumpy(subg.edata['inner_edge']))[0]
            num_inner_nodes += len(lnode_ids)
            num_inner_edges += len(ledge_ids)
            assert np.sum(F.asnumpy(subg.ndata['part_id']) == part_id) == len(lnode_ids)
Da Zheng's avatar
Da Zheng committed
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
            nids = F.asnumpy(subg.ndata[dgl.NID])

            # ensure the local node Ids are contiguous.
            parent_ids = F.asnumpy(subg.ndata[dgl.NID])
            parent_ids = parent_ids[:len(lnode_ids)]
            assert np.all(parent_ids == np.arange(parent_ids[0], parent_ids[-1] + 1))

            # count the local edges.
            parent_ids = F.asnumpy(subg.edata[dgl.EID])[ledge_ids]
            edge_cnts[parent_ids] += 1

            orig_ids = subg.ndata['orig_id']
            inner_node = F.asnumpy(subg.ndata['inner_node'])
            for nid in range(subg.number_of_nodes()):
                neighs = subg.predecessors(nid)
                old_neighs1 = F.gather_row(orig_ids, neighs)
                old_nid = F.asnumpy(orig_ids[nid])
                old_neighs2 = g.predecessors(old_nid)
                # If this is an inner node, it should have the full neighborhood.
                if inner_node[nid]:
                    assert np.all(np.sort(F.asnumpy(old_neighs1)) == np.sort(F.asnumpy(old_neighs2)))
        # Normally, local edges are only counted once.
        assert np.all(edge_cnts == 1)

492
493
494
        assert num_inner_nodes == g.number_of_nodes()
        print(g.number_of_edges() - num_inner_edges)

Da Zheng's avatar
Da Zheng committed
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
@unittest.skipIf(F._default_context_str == 'gpu', reason="It doesn't support GPU")
def test_reorder_nodes():
    g = dgl.DGLGraph(create_large_graph_index(1000), readonly=True)
    new_nids = np.random.permutation(g.number_of_nodes())
    # TODO(zhengda) we need to test both CSR and COO.
    new_g = dgl.transform.reorder_nodes(g, new_nids)
    new_in_deg = new_g.in_degrees()
    new_out_deg = new_g.out_degrees()
    in_deg = g.in_degrees()
    out_deg = g.out_degrees()
    new_in_deg1 = F.scatter_row(in_deg, F.tensor(new_nids), in_deg)
    new_out_deg1 = F.scatter_row(out_deg, F.tensor(new_nids), out_deg)
    assert np.all(F.asnumpy(new_in_deg == new_in_deg1))
    assert np.all(F.asnumpy(new_out_deg == new_out_deg1))
    orig_ids = F.asnumpy(new_g.ndata['orig_id'])
510
511
512
513
514
515
516
    for nid in range(g.number_of_nodes()):
        neighs = F.asnumpy(g.successors(nid))
        new_neighs1 = new_nids[neighs]
        new_nid = new_nids[nid]
        new_neighs2 = new_g.successors(new_nid)
        assert np.all(np.sort(new_neighs1) == np.sort(F.asnumpy(new_neighs2)))

Da Zheng's avatar
Da Zheng committed
517
518
519
520
521
522
523
524
525
526
527
528
529
    for nid in range(new_g.number_of_nodes()):
        neighs = F.asnumpy(new_g.successors(nid))
        old_neighs1 = orig_ids[neighs]
        old_nid = orig_ids[nid]
        old_neighs2 = g.successors(old_nid)
        assert np.all(np.sort(old_neighs1) == np.sort(F.asnumpy(old_neighs2)))

        neighs = F.asnumpy(new_g.predecessors(nid))
        old_neighs1 = orig_ids[neighs]
        old_nid = orig_ids[nid]
        old_neighs2 = g.predecessors(old_nid)
        assert np.all(np.sort(old_neighs1) == np.sort(F.asnumpy(old_neighs2)))

530
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
531
532
533
534
535
536
@parametrize_dtype
def test_in_subgraph(index_dtype):
    g1 = dgl.graph([(1,0),(2,0),(3,0),(0,1),(2,1),(3,1),(0,2)], 'user', 'follow', index_dtype=index_dtype)
    g2 = dgl.bipartite([(0,0),(0,1),(1,2),(3,2)], 'user', 'play', 'game', index_dtype=index_dtype)
    g3 = dgl.bipartite([(2,0),(2,1),(2,2),(1,0),(1,3),(0,0)], 'game', 'liked-by', 'user', index_dtype=index_dtype)
    g4 = dgl.bipartite([(0,0),(1,0),(2,0),(3,0)], 'user', 'flips', 'coin', index_dtype=index_dtype)
537
538
    hg = dgl.hetero_from_relations([g1, g2, g3, g4])
    subg = dgl.in_subgraph(hg, {'user' : [0,1], 'game' : 0})
539
    assert subg._idtype_str == index_dtype
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4
    u, v = subg['follow'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
    assert edge_set == {(1,0),(2,0),(3,0),(0,1),(2,1),(3,1)}
    u, v = subg['play'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
    assert edge_set == {(0,0)}
    u, v = subg['liked-by'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
    assert edge_set == {(2,0),(2,1),(1,0),(0,0)}
    assert subg['flips'].number_of_edges() == 0

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
557
558
559
560
561
562
@parametrize_dtype
def test_out_subgraph(index_dtype):
    g1 = dgl.graph([(1,0),(2,0),(3,0),(0,1),(2,1),(3,1),(0,2)], 'user', 'follow', index_dtype=index_dtype)
    g2 = dgl.bipartite([(0,0),(0,1),(1,2),(3,2)], 'user', 'play', 'game', index_dtype=index_dtype)
    g3 = dgl.bipartite([(2,0),(2,1),(2,2),(1,0),(1,3),(0,0)], 'game', 'liked-by', 'user', index_dtype=index_dtype)
    g4 = dgl.bipartite([(0,0),(1,0),(2,0),(3,0)], 'user', 'flips', 'coin', index_dtype=index_dtype)
563
564
    hg = dgl.hetero_from_relations([g1, g2, g3, g4])
    subg = dgl.out_subgraph(hg, {'user' : [0,1], 'game' : 0})
565
    assert subg._idtype_str == index_dtype
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4
    u, v = subg['follow'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(1,0),(0,1),(0,2)}
    assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
    u, v = subg['play'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0),(0,1),(1,2)}
    assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
    u, v = subg['liked-by'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0)}
    assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
    u, v = subg['flips'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0),(1,0)}
    assert F.array_equal(hg['flips'].edge_ids(u, v), subg['flips'].edata[dgl.EID])
584

585
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU compaction not implemented")
586
587
@parametrize_dtype
def test_compact(index_dtype):
588
589
590
591
    g1 = dgl.heterograph({
        ('user', 'follow', 'user'): [(1, 3), (3, 5)],
        ('user', 'plays', 'game'): [(2, 4), (3, 4), (2, 5)],
        ('game', 'wished-by', 'user'): [(6, 7), (5, 7)]},
592
        {'user': 20, 'game': 10}, index_dtype=index_dtype)
593
594
595
596

    g2 = dgl.heterograph({
        ('game', 'clicked-by', 'user'): [(3, 1)],
        ('user', 'likes', 'user'): [(1, 8), (8, 9)]},
597
        {'user': 20, 'game': 10}, index_dtype=index_dtype)
598

599
600
    g3 = dgl.graph([(0, 1), (1, 2)], num_nodes=10, ntype='user', index_dtype=index_dtype)
    g4 = dgl.graph([(1, 3), (3, 5)], num_nodes=10, ntype='user', index_dtype=index_dtype)
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622

    def _check(g, new_g, induced_nodes):
        assert g.ntypes == new_g.ntypes
        assert g.canonical_etypes == new_g.canonical_etypes

        for ntype in g.ntypes:
            assert -1 not in induced_nodes[ntype]

        for etype in g.canonical_etypes:
            g_src, g_dst = g.all_edges(order='eid', etype=etype)
            g_src = F.asnumpy(g_src)
            g_dst = F.asnumpy(g_dst)
            new_g_src, new_g_dst = new_g.all_edges(order='eid', etype=etype)
            new_g_src_mapped = induced_nodes[etype[0]][F.asnumpy(new_g_src)]
            new_g_dst_mapped = induced_nodes[etype[2]][F.asnumpy(new_g_dst)]
            assert (g_src == new_g_src_mapped).all()
            assert (g_dst == new_g_dst_mapped).all()

    # Test default
    new_g1 = dgl.compact_graphs(g1)
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
623
    assert new_g1._idtype_str == index_dtype
624
625
626
627
628
629
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7])
    assert set(induced_nodes['game']) == set([4, 5, 6])
    _check(g1, new_g1, induced_nodes)

    # Test with always_preserve given a dict
    new_g1 = dgl.compact_graphs(
630
631
        g1, always_preserve={'game': F.tensor([4, 7], dtype=getattr(F, index_dtype))})
    assert new_g1._idtype_str == index_dtype
632
633
634
635
636
637
638
639
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7])
    assert set(induced_nodes['game']) == set([4, 5, 6, 7])
    _check(g1, new_g1, induced_nodes)

    # Test with always_preserve given a tensor
    new_g3 = dgl.compact_graphs(
640
        g3, always_preserve=F.tensor([1, 7], dtype=getattr(F, index_dtype)))
641
642
    induced_nodes = {ntype: new_g3.nodes[ntype].data[dgl.NID] for ntype in new_g3.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
643

644
    assert new_g3._idtype_str == index_dtype
645
646
647
648
649
650
651
    assert set(induced_nodes['user']) == set([0, 1, 2, 7])
    _check(g3, new_g3, induced_nodes)

    # Test multiple graphs
    new_g1, new_g2 = dgl.compact_graphs([g1, g2])
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
652
653
    assert new_g1._idtype_str == index_dtype
    assert new_g2._idtype_str == index_dtype
654
655
656
657
658
659
660
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7, 8, 9])
    assert set(induced_nodes['game']) == set([3, 4, 5, 6])
    _check(g1, new_g1, induced_nodes)
    _check(g2, new_g2, induced_nodes)

    # Test multiple graphs with always_preserve given a dict
    new_g1, new_g2 = dgl.compact_graphs(
661
        [g1, g2], always_preserve={'game': F.tensor([4, 7], dtype=getattr(F, index_dtype))})
662
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
663
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
664
665
    assert new_g1._idtype_str == index_dtype
    assert new_g2._idtype_str == index_dtype
666
667
668
669
670
671
672
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7, 8, 9])
    assert set(induced_nodes['game']) == set([3, 4, 5, 6, 7])
    _check(g1, new_g1, induced_nodes)
    _check(g2, new_g2, induced_nodes)

    # Test multiple graphs with always_preserve given a tensor
    new_g3, new_g4 = dgl.compact_graphs(
673
        [g3, g4], always_preserve=F.tensor([1, 7], dtype=getattr(F, index_dtype)))
674
675
    induced_nodes = {ntype: new_g3.nodes[ntype].data[dgl.NID] for ntype in new_g3.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
676

677
678
    assert new_g3._idtype_str == index_dtype
    assert new_g4._idtype_str == index_dtype
679
680
681
682
    assert set(induced_nodes['user']) == set([0, 1, 2, 3, 5, 7])
    _check(g3, new_g3, induced_nodes)
    _check(g4, new_g4, induced_nodes)

683
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU to simple not implemented")
684
685
@parametrize_dtype
def test_to_simple(index_dtype):
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 2, 1]), F.tensor([1, 2, 0, 2])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
    sg, wb = dgl.to_simple(g, writeback_mapping=True)
    u, v = g.all_edges(form='uv', order='eid')
    u = F.asnumpy(u).tolist()
    v = F.asnumpy(v).tolist()
    uv = list(zip(u, v))
    eid_map = F.asnumpy(wb)

    su, sv = sg.all_edges(form='uv', order='eid')
    su = F.asnumpy(su).tolist()
    sv = F.asnumpy(sv).tolist()
    suv = list(zip(su, sv))
    sc = F.asnumpy(sg.edata['count'])
    assert set(uv) == set(suv)
    for i, e in enumerate(suv):
        assert sc[i] == sum(e == _e for _e in uv)
    for i, e in enumerate(uv):
        assert eid_map[i] == suv.index(e)
    # shared ndata
    assert F.array_equal(sg.ndata['h'], g.ndata['h'])
    assert 'h' not in sg.edata
    # new ndata to sg
    sg.ndata['hh'] = F.tensor([[0.], [1.], [2.]])
    assert 'hh' not in g.ndata

    sg = dgl.to_simple(g, writeback_mapping=False, copy_ndata=False)
    assert 'h' not in sg.ndata
    assert 'h' not in sg.edata

    # heterogeneous graph
719
    g = dgl.heterograph({
720
721
722
723
724
725
726
727
728
        ('user', 'follow', 'user'): ([0, 1, 2, 1, 1, 1],
                                     [1, 3, 2, 3, 4, 4]),
        ('user', 'plays', 'game'): ([3, 2, 1, 1, 3, 2, 2], [5, 3, 4, 4, 5, 3, 3])},
        index_dtype=index_dtype)
    g.nodes['user'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    g.nodes['user'].data['hh'] = F.tensor([0, 1, 2, 3, 4])
    g.edges['follow'].data['h'] = F.tensor([0, 1, 2, 3, 4, 5])
    sg, wb = dgl.to_simple(g, return_counts='weights', writeback_mapping=True, copy_edata=True)
    g.nodes['game'].data['h'] = F.tensor([0, 1, 2, 3, 4, 5])
729
730
731
732
733
734

    for etype in g.canonical_etypes:
        u, v = g.all_edges(form='uv', order='eid', etype=etype)
        u = F.asnumpy(u).tolist()
        v = F.asnumpy(v).tolist()
        uv = list(zip(u, v))
735
        eid_map = F.asnumpy(wb[etype])
736
737
738
739
740
741
742
743
744
745
746
747

        su, sv = sg.all_edges(form='uv', order='eid', etype=etype)
        su = F.asnumpy(su).tolist()
        sv = F.asnumpy(sv).tolist()
        suv = list(zip(su, sv))
        sw = F.asnumpy(sg.edges[etype].data['weights'])

        assert set(uv) == set(suv)
        for i, e in enumerate(suv):
            assert sw[i] == sum(e == _e for _e in uv)
        for i, e in enumerate(uv):
            assert eid_map[i] == suv.index(e)
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
    # shared ndata
    assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
    assert F.array_equal(sg.nodes['user'].data['hh'], g.nodes['user'].data['hh'])
    assert 'h' not in sg.nodes['game'].data
    # new ndata to sg
    sg.nodes['user'].data['hhh'] = F.tensor([0, 1, 2, 3, 4])
    assert 'hhh' not in g.nodes['user'].data
    # share edata
    feat_idx = F.asnumpy(wb[('user', 'follow', 'user')])
    _, indices = np.unique(feat_idx, return_index=True)
    assert np.array_equal(F.asnumpy(sg.edges['follow'].data['h']),
                          F.asnumpy(g.edges['follow'].data['h'])[indices])

    sg = dgl.to_simple(g, writeback_mapping=False, copy_ndata=False)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)
    assert 'h' not in sg.nodes['user'].data
    assert 'hh' not in sg.nodes['user'].data
766

767
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU compaction not implemented")
768
769
@parametrize_dtype
def test_to_block(index_dtype):
770
    def check(g, bg, ntype, etype, dst_nodes, include_dst_in_src=True):
771
772
773
        if dst_nodes is not None:
            assert F.array_equal(bg.dstnodes[ntype].data[dgl.NID], dst_nodes)
        n_dst_nodes = bg.number_of_nodes('DST/' + ntype)
774
775
776
777
        if include_dst_in_src:
            assert F.array_equal(
                bg.srcnodes[ntype].data[dgl.NID][:n_dst_nodes],
                bg.dstnodes[ntype].data[dgl.NID])
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794

        g = g[etype]
        bg = bg[etype]
        induced_src = bg.srcdata[dgl.NID]
        induced_dst = bg.dstdata[dgl.NID]
        induced_eid = bg.edata[dgl.EID]
        bg_src, bg_dst = bg.all_edges(order='eid')
        src_ans, dst_ans = g.all_edges(order='eid')

        induced_src_bg = F.gather_row(induced_src, bg_src)
        induced_dst_bg = F.gather_row(induced_dst, bg_dst)
        induced_src_ans = F.gather_row(src_ans, induced_eid)
        induced_dst_ans = F.gather_row(dst_ans, induced_eid)

        assert F.array_equal(induced_src_bg, induced_src_ans)
        assert F.array_equal(induced_dst_bg, induced_dst_ans)

795
    def checkall(g, bg, dst_nodes, include_dst_in_src=True):
796
797
        for etype in g.etypes:
            ntype = g.to_canonical_etype(etype)[2]
798
            if dst_nodes is not None and ntype in dst_nodes:
799
                check(g, bg, ntype, etype, dst_nodes[ntype], include_dst_in_src)
800
            else:
801
                check(g, bg, ntype, etype, None, include_dst_in_src)
802
803
804
805

    g = dgl.heterograph({
        ('A', 'AA', 'A'): [(0, 1), (2, 3), (1, 2), (3, 4)],
        ('A', 'AB', 'B'): [(0, 1), (1, 3), (3, 5), (1, 6)],
806
        ('B', 'BA', 'A'): [(2, 3), (3, 2)]}, index_dtype=index_dtype)
807
808
809
810
    g_a = g['AA']

    bg = dgl.to_block(g_a)
    check(g_a, bg, 'A', 'AA', None)
811
812
813
814
815
816
817
    assert bg.number_of_src_nodes() == 5
    assert bg.number_of_dst_nodes() == 4

    bg = dgl.to_block(g_a, include_dst_in_src=False)
    check(g_a, bg, 'A', 'AA', None, False)
    assert bg.number_of_src_nodes() == 4
    assert bg.number_of_dst_nodes() == 4
818

819
    dst_nodes = F.tensor([4, 3, 2, 1], dtype=getattr(F, index_dtype))
820
821
    bg = dgl.to_block(g_a, dst_nodes)
    check(g_a, bg, 'A', 'AA', dst_nodes)
822
823
824
825

    g_ab = g['AB']

    bg = dgl.to_block(g_ab)
826
    assert bg._idtype_str == index_dtype
827
828
829
    assert bg.number_of_nodes('SRC/B') == 4
    assert F.array_equal(bg.srcnodes['B'].data[dgl.NID], bg.dstnodes['B'].data[dgl.NID])
    assert bg.number_of_nodes('DST/A') == 0
830
831
    checkall(g_ab, bg, None)

832
    dst_nodes = {'B': F.tensor([5, 6, 3, 1], dtype=getattr(F, index_dtype))}
833
    bg = dgl.to_block(g, dst_nodes)
834
    assert bg.number_of_nodes('SRC/B') == 4
835
836
837
    assert F.array_equal(bg.srcnodes['B'].data[dgl.NID], bg.dstnodes['B'].data[dgl.NID])
    assert bg.number_of_nodes('DST/A') == 0
    checkall(g, bg, dst_nodes)
838

839
    dst_nodes = {'A': F.tensor([4, 3, 2, 1], dtype=getattr(F, index_dtype)), 'B': F.tensor([3, 5, 6, 1], dtype=getattr(F, index_dtype))}
840
841
    bg = dgl.to_block(g, dst_nodes=dst_nodes)
    checkall(g, bg, dst_nodes)
842
843

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
844
845
@parametrize_dtype
def test_remove_edges(index_dtype):
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
    def check(g1, etype, g, edges_removed):
        src, dst, eid = g.edges(etype=etype, form='all')
        src1, dst1 = g1.edges(etype=etype, order='eid')
        if etype is not None:
            eid1 = g1.edges[etype].data[dgl.EID]
        else:
            eid1 = g1.edata[dgl.EID]
        src1 = F.asnumpy(src1)
        dst1 = F.asnumpy(dst1)
        eid1 = F.asnumpy(eid1)
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        eid = F.asnumpy(eid)
        sde_set = set(zip(src, dst, eid))

        for s, d, e in zip(src1, dst1, eid1):
            assert (s, d, e) in sde_set
        assert not np.isin(edges_removed, eid1).any()
864
        assert g1.idtype == g.idtype
865
866
867

    for fmt in ['coo', 'csr', 'csc']:
        for edges_to_remove in [[2], [2, 2], [3, 2], [1, 3, 1, 2]]:
868
869
            g = dgl.graph([(0, 1), (2, 3), (1, 2), (3, 4)], restrict_format=fmt, index_dtype=index_dtype)
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove, getattr(F, index_dtype)))
870
871
872
873
            check(g1, None, g, edges_to_remove)

            g = dgl.graph(
                spsp.csr_matrix(([1, 1, 1, 1], ([0, 2, 1, 3], [1, 3, 2, 4])), shape=(5, 5)),
874
875
                restrict_format=fmt, index_dtype=index_dtype)
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove, getattr(F, index_dtype)))
876
877
878
879
880
            check(g1, None, g, edges_to_remove)

    g = dgl.heterograph({
        ('A', 'AA', 'A'): [(0, 1), (2, 3), (1, 2), (3, 4)],
        ('A', 'AB', 'B'): [(0, 1), (1, 3), (3, 5), (1, 6)],
881
882
        ('B', 'BA', 'A'): [(2, 3), (3, 2)]}, index_dtype=index_dtype)
    g2 = dgl.remove_edges(g, {'AA': F.tensor([2], getattr(F, index_dtype)), 'AB': F.tensor([3], getattr(F, index_dtype)), 'BA': F.tensor([1], getattr(F, index_dtype))})
883
884
885
    check(g2, 'AA', g, [2])
    check(g2, 'AB', g, [3])
    check(g2, 'BA', g, [1])
886

887
    g3 = dgl.remove_edges(g, {'AA': F.tensor([], getattr(F, index_dtype)), 'AB': F.tensor([3], getattr(F, index_dtype)), 'BA': F.tensor([1], getattr(F, index_dtype))})
888
889
890
891
    check(g3, 'AA', g, [])
    check(g3, 'AB', g, [3])
    check(g3, 'BA', g, [1])

892
    g4 = dgl.remove_edges(g, {'AB': F.tensor([3, 1, 2, 0], getattr(F, index_dtype))})
893
    check(g4, 'AA', g, [])
894
    check(g4, 'AB', g, [3, 1, 2, 0])
895
896
    check(g4, 'BA', g, [])

897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
def test_cast():
    m = spsp.coo_matrix(([1, 1], ([0, 1], [1, 2])), (4, 4))
    g = dgl.DGLGraph(m, readonly=True)
    gsrc, gdst = g.edges(order='eid')
    ndata = F.randn((4, 5))
    edata = F.randn((2, 4))
    g.ndata['x'] = ndata
    g.edata['y'] = edata

    hg = dgl.as_heterograph(g, 'A', 'AA')
    assert hg.ntypes == ['A']
    assert hg.etypes == ['AA']
    assert hg.canonical_etypes == [('A', 'AA', 'A')]
    assert hg.number_of_nodes() == 4
    assert hg.number_of_edges() == 2
    hgsrc, hgdst = hg.edges(order='eid')
    assert F.array_equal(gsrc, hgsrc)
    assert F.array_equal(gdst, hgdst)

    g2 = dgl.as_immutable_graph(hg)
    assert g2.number_of_nodes() == 4
    assert g2.number_of_edges() == 2
    g2src, g2dst = hg.edges(order='eid')
    assert F.array_equal(g2src, gsrc)
    assert F.array_equal(g2dst, gdst)

923
if __name__ == '__main__':
Da Zheng's avatar
Da Zheng committed
924
    test_reorder_nodes()
925
926
    # test_line_graph()
    # test_no_backtracking()
927
    test_reverse()
928
929
930
931
932
933
934
935
936
    # test_reverse_shared_frames()
    # test_simple_graph()
    # test_bidirected_graph()
    # test_khop_adj()
    # test_khop_graph()
    # test_laplacian_lambda_max()
    # test_remove_self_loop()
    # test_add_self_loop()
    # test_partition_with_halo()
937
    # test_metis_partition()
938
    # test_hetero_linegraph('int32')
939
    # test_compact()
940
    test_to_simple("int32")
941
942
    # test_in_subgraph("int32")
    # test_out_subgraph()
943
    # test_to_block("int32")
944
    # test_remove_edges()