test_transform.py 21.7 KB
Newer Older
1
from scipy import sparse as spsp
2
import unittest
3
4
5
6
import networkx as nx
import numpy as np
import dgl
import dgl.function as fn
7
import backend as F
8
from dgl.graph_index import from_scipy_sparse_matrix
9
import unittest
10
11
12
13

D = 5

# line graph related
14

15
16
17
def test_line_graph():
    N = 5
    G = dgl.DGLGraph(nx.star_graph(N))
18
    G.edata['h'] = F.randn((2 * N, D))
19
20
21
    n_edges = G.number_of_edges()
    L = G.line_graph(shared=True)
    assert L.number_of_nodes() == 2 * N
22
    L.ndata['h'] = F.randn((2 * N, D))
23
24
25
26
27
    # update node features on line graph should reflect to edge features on
    # original graph.
    u = [0, 0, 2, 3]
    v = [1, 2, 0, 0]
    eid = G.edge_ids(u, v)
28
29
    L.nodes[eid].data['h'] = F.zeros((4, D))
    assert F.allclose(G.edges[u, v].data['h'], F.zeros((4, D)))
30
31
32

    # adding a new node feature on line graph should also reflect to a new
    # edge feature on original graph
33
    data = F.randn((n_edges, D))
34
    L.ndata['w'] = data
35
    assert F.allclose(G.edata['w'], data)
36

37

38
39
40
41
42
43
44
45
46
47
48
49
def test_no_backtracking():
    N = 5
    G = dgl.DGLGraph(nx.star_graph(N))
    L = G.line_graph(backtracking=False)
    assert L.number_of_nodes() == 2 * N
    for i in range(1, N):
        e1 = G.edge_id(0, i)
        e2 = G.edge_id(i, 0)
        assert not L.has_edge_between(e1, e2)
        assert not L.has_edge_between(e2, e1)

# reverse graph related
50
51


52
53
54
55
56
def test_reverse():
    g = dgl.DGLGraph()
    g.add_nodes(5)
    # The graph need not to be completely connected.
    g.add_edges([0, 1, 2], [1, 2, 1])
57
58
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [3.], [4.]])
    g.edata['h'] = F.tensor([[5.], [6.], [7.]])
59
60
61
62
63
64
    rg = g.reverse()

    assert g.is_multigraph == rg.is_multigraph

    assert g.number_of_nodes() == rg.number_of_nodes()
    assert g.number_of_edges() == rg.number_of_edges()
65
66
    assert F.allclose(F.astype(rg.has_edges_between(
        [1, 2, 1], [0, 1, 2]), F.float32), F.ones((3,)))
67
68
69
70
    assert g.edge_id(0, 1) == rg.edge_id(1, 0)
    assert g.edge_id(1, 2) == rg.edge_id(2, 1)
    assert g.edge_id(2, 1) == rg.edge_id(1, 2)

71

72
73
74
75
def test_reverse_shared_frames():
    g = dgl.DGLGraph()
    g.add_nodes(3)
    g.add_edges([0, 1, 2], [1, 2, 1])
76
77
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.]])
78
79

    rg = g.reverse(share_ndata=True, share_edata=True)
80
81
82
    assert F.allclose(g.ndata['h'], rg.ndata['h'])
    assert F.allclose(g.edata['h'], rg.edata['h'])
    assert F.allclose(g.edges[[0, 2], [1, 1]].data['h'],
83
84
85
                      rg.edges[[1, 1], [0, 2]].data['h'])

    rg.ndata['h'] = rg.ndata['h'] + 1
86
    assert F.allclose(rg.ndata['h'], g.ndata['h'])
87
88

    g.edata['h'] = g.edata['h'] - 1
89
    assert F.allclose(rg.edata['h'], g.edata['h'])
90
91
92
93
94

    src_msg = fn.copy_src(src='h', out='m')
    sum_reduce = fn.sum(msg='m', out='h')

    rg.update_all(src_msg, sum_reduce)
95
    assert F.allclose(g.ndata['h'], rg.ndata['h'])
96

97

98
99
100
101
102
103
104
105
106
107
def test_simple_graph():
    elist = [(0, 1), (0, 2), (1, 2), (0, 1)]
    g = dgl.DGLGraph(elist, readonly=True)
    assert g.is_multigraph
    sg = dgl.to_simple_graph(g)
    assert not sg.is_multigraph
    assert sg.number_of_edges() == 3
    src, dst = sg.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist)
108

109

110
111
def test_bidirected_graph():
    def _test(in_readonly, out_readonly):
112
113
114
        elist = [(0, 0), (0, 1), (1, 0),
                (1, 1), (2, 1), (2, 2)]
        num_edges = 7
115
116
117
118
        g = dgl.DGLGraph(elist, readonly=in_readonly)
        elist.append((1, 2))
        elist = set(elist)
        big = dgl.to_bidirected(g, out_readonly)
119
        assert big.number_of_edges() == num_edges
120
121
122
123
124
125
126
127
128
        src, dst = big.edges()
        eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
        assert eset == set(elist)

    _test(True, True)
    _test(True, False)
    _test(False, True)
    _test(False, False)

129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
def test_khop_graph():
    N = 20
    feat = F.randn((N, 5))
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    for k in range(4):
        g_k = dgl.khop_graph(g, k)
        # use original graph to do message passing for k times.
        g.ndata['h'] = feat
        for _ in range(k):
            g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
        h_0 = g.ndata.pop('h')
        # use k-hop graph to do message passing for one time.
        g_k.ndata['h'] = feat
        g_k.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
        h_1 = g_k.ndata.pop('h')
        assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
def test_khop_adj():
    N = 20
    feat = F.randn((N, 5))
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    for k in range(3):
        adj = F.tensor(dgl.khop_adj(g, k))
        # use original graph to do message passing for k times.
        g.ndata['h'] = feat
        for _ in range(k):
            g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
        h_0 = g.ndata.pop('h')
        # use k-hop adj to do message passing for one time.
        h_1 = F.matmul(adj, feat)
        assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

163

164
165
166
167
168
169
170
def test_laplacian_lambda_max():
    N = 20
    eps = 1e-6
    # test DGLGraph
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    l_max = dgl.laplacian_lambda_max(g)
    assert (l_max[0] < 2 + eps)
Zihao Ye's avatar
Zihao Ye committed
171
    # test batched DGLGraph
172
173
174
175
176
177
178
179
180
181
    N_arr = [20, 30, 10, 12]
    bg = dgl.batch([
        dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
        for N in N_arr
    ])
    l_max_arr = dgl.laplacian_lambda_max(bg)
    assert len(l_max_arr) == len(N_arr)
    for l_max in l_max_arr:
        assert l_max < 2 + eps

182

VoVAllen's avatar
VoVAllen committed
183
def test_add_self_loop():
184
185
186
    g = dgl.DGLGraph()
    g.add_nodes(5)
    g.add_edges([0, 1, 2], [1, 1, 2])
VoVAllen's avatar
VoVAllen committed
187
188
    # Nodes 0, 3, 4 don't have self-loop
    new_g = dgl.transform.add_self_loop(g)
189
190
191
192
193
194
195
196
197
198
199
200
    assert F.allclose(new_g.edges()[0], F.tensor([0, 0, 1, 2, 3, 4]))
    assert F.allclose(new_g.edges()[1], F.tensor([1, 0, 1, 2, 3, 4]))


def test_remove_self_loop():
    g = dgl.DGLGraph()
    g.add_nodes(5)
    g.add_edges([0, 1, 2], [1, 1, 2])
    new_g = dgl.transform.remove_self_loop(g)
    assert F.allclose(new_g.edges()[0], F.tensor([0]))
    assert F.allclose(new_g.edges()[1], F.tensor([1]))

201
202
203
204
def create_large_graph_index(num_nodes):
    row = np.random.choice(num_nodes, num_nodes * 10)
    col = np.random.choice(num_nodes, num_nodes * 10)
    spm = spsp.coo_matrix((np.ones(len(row)), (row, col)))
205
206
    # It's possible that we generate a multigraph.
    return from_scipy_sparse_matrix(spm, True, True)
207
208
209
210
211
212
213
214
215

def get_nodeflow(g, node_ids, num_layers):
    batch_size = len(node_ids)
    expand_factor = g.number_of_nodes()
    sampler = dgl.contrib.sampling.NeighborSampler(g, batch_size,
            expand_factor=expand_factor, num_hops=num_layers,
            seed_nodes=node_ids)
    return next(iter(sampler))

216
def test_partition_with_halo():
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    g = dgl.DGLGraph(create_large_graph_index(1000), readonly=True)
    node_part = np.random.choice(4, g.number_of_nodes())
    subgs = dgl.transform.partition_graph_with_halo(g, node_part, 2)
    for part_id, subg in subgs.items():
        node_ids = np.nonzero(node_part == part_id)[0]
        lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
        nf = get_nodeflow(g, node_ids, 2)
        lnf = get_nodeflow(subg, lnode_ids, 2)
        for i in range(nf.num_layers):
            layer_nids1 = F.asnumpy(nf.layer_parent_nid(i))
            layer_nids2 = lnf.layer_parent_nid(i)
            layer_nids2 = F.asnumpy(F.gather_row(subg.parent_nid, layer_nids2))
            assert np.all(np.sort(layer_nids1) == np.sort(layer_nids2))

        for i in range(nf.num_blocks):
            block_eids1 = F.asnumpy(nf.block_parent_eid(i))
            block_eids2 = lnf.block_parent_eid(i)
            block_eids2 = F.asnumpy(F.gather_row(subg.parent_eid, block_eids2))
            assert np.all(np.sort(block_eids1) == np.sort(block_eids2))
236

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
@unittest.skipIf(F._default_context_str == 'gpu', reason="METIS doesn't support GPU")
def test_metis_partition():
    g = dgl.DGLGraph(create_large_graph_index(1000), readonly=True)
    subgs = dgl.transform.metis_partition(g, 4, 0)
    num_inner_nodes = 0
    num_inner_edges = 0
    if subgs is not None:
        for part_id, subg in subgs.items():
            assert np.all(F.asnumpy(subg.ndata['inner_node']) == 1)
            assert np.all(F.asnumpy(subg.edata['inner_edge']) == 1)
            assert np.all(F.asnumpy(subg.ndata['part_id']) == part_id)
            num_inner_nodes += subg.number_of_nodes()
            num_inner_edges += subg.number_of_edges()
        assert num_inner_nodes == g.number_of_nodes()
        print(g.number_of_edges() - num_inner_edges)

    subgs = dgl.transform.metis_partition(g, 4, 1)
    num_inner_nodes = 0
    num_inner_edges = 0
    if subgs is not None:
        for part_id, subg in subgs.items():
            lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
            ledge_ids = np.nonzero(F.asnumpy(subg.edata['inner_edge']))[0]
            num_inner_nodes += len(lnode_ids)
            num_inner_edges += len(ledge_ids)
            assert np.sum(F.asnumpy(subg.ndata['part_id']) == part_id) == len(lnode_ids)
        assert num_inner_nodes == g.number_of_nodes()
        print(g.number_of_edges() - num_inner_edges)

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
def test_in_subgraph():
    g1 = dgl.graph([(1,0),(2,0),(3,0),(0,1),(2,1),(3,1),(0,2)], 'user', 'follow')
    g2 = dgl.bipartite([(0,0),(0,1),(1,2),(3,2)], 'user', 'play', 'game')
    g3 = dgl.bipartite([(2,0),(2,1),(2,2),(1,0),(1,3),(0,0)], 'game', 'liked-by', 'user')
    g4 = dgl.bipartite([(0,0),(1,0),(2,0),(3,0)], 'user', 'flips', 'coin')
    hg = dgl.hetero_from_relations([g1, g2, g3, g4])
    subg = dgl.in_subgraph(hg, {'user' : [0,1], 'game' : 0})
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4
    u, v = subg['follow'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
    assert edge_set == {(1,0),(2,0),(3,0),(0,1),(2,1),(3,1)}
    u, v = subg['play'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
    assert edge_set == {(0,0)}
    u, v = subg['liked-by'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
    assert edge_set == {(2,0),(2,1),(1,0),(0,0)}
    assert subg['flips'].number_of_edges() == 0

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
def test_out_subgraph():
    g1 = dgl.graph([(1,0),(2,0),(3,0),(0,1),(2,1),(3,1),(0,2)], 'user', 'follow')
    g2 = dgl.bipartite([(0,0),(0,1),(1,2),(3,2)], 'user', 'play', 'game')
    g3 = dgl.bipartite([(2,0),(2,1),(2,2),(1,0),(1,3),(0,0)], 'game', 'liked-by', 'user')
    g4 = dgl.bipartite([(0,0),(1,0),(2,0),(3,0)], 'user', 'flips', 'coin')
    hg = dgl.hetero_from_relations([g1, g2, g3, g4])
    subg = dgl.out_subgraph(hg, {'user' : [0,1], 'game' : 0})
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4
    u, v = subg['follow'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(1,0),(0,1),(0,2)}
    assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
    u, v = subg['play'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0),(0,1),(1,2)}
    assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
    u, v = subg['liked-by'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0)}
    assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
    u, v = subg['flips'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0),(1,0)}
    assert F.array_equal(hg['flips'].edge_ids(u, v), subg['flips'].edata[dgl.EID])
316

317
318
319
320
321
322
323
324
325
326
327
328
329
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU compaction not implemented")
def test_compact():
    g1 = dgl.heterograph({
        ('user', 'follow', 'user'): [(1, 3), (3, 5)],
        ('user', 'plays', 'game'): [(2, 4), (3, 4), (2, 5)],
        ('game', 'wished-by', 'user'): [(6, 7), (5, 7)]},
        {'user': 20, 'game': 10})

    g2 = dgl.heterograph({
        ('game', 'clicked-by', 'user'): [(3, 1)],
        ('user', 'likes', 'user'): [(1, 8), (8, 9)]},
        {'user': 20, 'game': 10})

330
331
    g3 = dgl.graph([(0, 1), (1, 2)], num_nodes=10, ntype='user')
    g4 = dgl.graph([(1, 3), (3, 5)], num_nodes=10, ntype='user')
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428

    def _check(g, new_g, induced_nodes):
        assert g.ntypes == new_g.ntypes
        assert g.canonical_etypes == new_g.canonical_etypes

        for ntype in g.ntypes:
            assert -1 not in induced_nodes[ntype]

        for etype in g.canonical_etypes:
            g_src, g_dst = g.all_edges(order='eid', etype=etype)
            g_src = F.asnumpy(g_src)
            g_dst = F.asnumpy(g_dst)
            new_g_src, new_g_dst = new_g.all_edges(order='eid', etype=etype)
            new_g_src_mapped = induced_nodes[etype[0]][F.asnumpy(new_g_src)]
            new_g_dst_mapped = induced_nodes[etype[2]][F.asnumpy(new_g_dst)]
            assert (g_src == new_g_src_mapped).all()
            assert (g_dst == new_g_dst_mapped).all()

    # Test default
    new_g1 = dgl.compact_graphs(g1)
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7])
    assert set(induced_nodes['game']) == set([4, 5, 6])
    _check(g1, new_g1, induced_nodes)

    # Test with always_preserve given a dict
    new_g1 = dgl.compact_graphs(
        g1, always_preserve={'game': F.tensor([4, 7], dtype=F.int64)})
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7])
    assert set(induced_nodes['game']) == set([4, 5, 6, 7])
    _check(g1, new_g1, induced_nodes)

    # Test with always_preserve given a tensor
    new_g3 = dgl.compact_graphs(
        g3, always_preserve=F.tensor([1, 7], dtype=F.int64))
    induced_nodes = {ntype: new_g3.nodes[ntype].data[dgl.NID] for ntype in new_g3.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
    assert set(induced_nodes['user']) == set([0, 1, 2, 7])
    _check(g3, new_g3, induced_nodes)

    # Test multiple graphs
    new_g1, new_g2 = dgl.compact_graphs([g1, g2])
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7, 8, 9])
    assert set(induced_nodes['game']) == set([3, 4, 5, 6])
    _check(g1, new_g1, induced_nodes)
    _check(g2, new_g2, induced_nodes)

    # Test multiple graphs with always_preserve given a dict
    new_g1, new_g2 = dgl.compact_graphs(
        [g1, g2], always_preserve={'game': F.tensor([4, 7], dtype=F.int64)})
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7, 8, 9])
    assert set(induced_nodes['game']) == set([3, 4, 5, 6, 7])
    _check(g1, new_g1, induced_nodes)
    _check(g2, new_g2, induced_nodes)

    # Test multiple graphs with always_preserve given a tensor
    new_g3, new_g4 = dgl.compact_graphs(
        [g3, g4], always_preserve=F.tensor([1, 7], dtype=F.int64))
    induced_nodes = {ntype: new_g3.nodes[ntype].data[dgl.NID] for ntype in new_g3.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
    assert set(induced_nodes['user']) == set([0, 1, 2, 3, 5, 7])
    _check(g3, new_g3, induced_nodes)
    _check(g4, new_g4, induced_nodes)


def test_to_simple():
    g = dgl.heterograph({
        ('user', 'follow', 'user'): [(0, 1), (1, 3), (2, 2), (1, 3), (1, 4), (1, 4)],
        ('user', 'plays', 'game'): [(3, 5), (2, 3), (1, 4), (1, 4), (3, 5), (2, 3), (2, 3)]})
    sg = dgl.to_simple(g, return_counts='weights', writeback_mapping='new_eid')

    for etype in g.canonical_etypes:
        u, v = g.all_edges(form='uv', order='eid', etype=etype)
        u = F.asnumpy(u).tolist()
        v = F.asnumpy(v).tolist()
        uv = list(zip(u, v))
        eid_map = F.asnumpy(g.edges[etype].data['new_eid'])

        su, sv = sg.all_edges(form='uv', order='eid', etype=etype)
        su = F.asnumpy(su).tolist()
        sv = F.asnumpy(sv).tolist()
        suv = list(zip(su, sv))
        sw = F.asnumpy(sg.edges[etype].data['weights'])

        assert set(uv) == set(suv)
        for i, e in enumerate(suv):
            assert sw[i] == sum(e == _e for _e in uv)
        for i, e in enumerate(uv):
            assert eid_map[i] == suv.index(e)

429
430
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU compaction not implemented")
def test_to_block():
431
432
433
434
    def check(g, bg, ntype, etype, dst_nodes):
        if dst_nodes is not None:
            assert F.array_equal(bg.dstnodes[ntype].data[dgl.NID], dst_nodes)
        n_dst_nodes = bg.number_of_nodes('DST/' + ntype)
435
        assert F.array_equal(
436
437
            bg.srcnodes[ntype].data[dgl.NID][:n_dst_nodes],
            bg.dstnodes[ntype].data[dgl.NID])
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

        g = g[etype]
        bg = bg[etype]
        induced_src = bg.srcdata[dgl.NID]
        induced_dst = bg.dstdata[dgl.NID]
        induced_eid = bg.edata[dgl.EID]
        bg_src, bg_dst = bg.all_edges(order='eid')
        src_ans, dst_ans = g.all_edges(order='eid')

        induced_src_bg = F.gather_row(induced_src, bg_src)
        induced_dst_bg = F.gather_row(induced_dst, bg_dst)
        induced_src_ans = F.gather_row(src_ans, induced_eid)
        induced_dst_ans = F.gather_row(dst_ans, induced_eid)

        assert F.array_equal(induced_src_bg, induced_src_ans)
        assert F.array_equal(induced_dst_bg, induced_dst_ans)

455
    def checkall(g, bg, dst_nodes):
456
457
        for etype in g.etypes:
            ntype = g.to_canonical_etype(etype)[2]
458
459
            if dst_nodes is not None and ntype in dst_nodes:
                check(g, bg, ntype, etype, dst_nodes[ntype])
460
461
462
463
464
465
466
467
468
469
470
471
            else:
                check(g, bg, ntype, etype, None)

    g = dgl.heterograph({
        ('A', 'AA', 'A'): [(0, 1), (2, 3), (1, 2), (3, 4)],
        ('A', 'AB', 'B'): [(0, 1), (1, 3), (3, 5), (1, 6)],
        ('B', 'BA', 'A'): [(2, 3), (3, 2)]})
    g_a = g['AA']

    bg = dgl.to_block(g_a)
    check(g_a, bg, 'A', 'AA', None)

472
473
474
    dst_nodes = F.tensor([3, 4], dtype=F.int64)
    bg = dgl.to_block(g_a, dst_nodes)
    check(g_a, bg, 'A', 'AA', dst_nodes)
475

476
477
478
    dst_nodes = F.tensor([4, 3, 2, 1], dtype=F.int64)
    bg = dgl.to_block(g_a, dst_nodes)
    check(g_a, bg, 'A', 'AA', dst_nodes)
479
480
481
482

    g_ab = g['AB']

    bg = dgl.to_block(g_ab)
483
484
485
    assert bg.number_of_nodes('SRC/B') == 4
    assert F.array_equal(bg.srcnodes['B'].data[dgl.NID], bg.dstnodes['B'].data[dgl.NID])
    assert bg.number_of_nodes('DST/A') == 0
486
487
    checkall(g_ab, bg, None)

488
489
490
491
492
493
    dst_nodes = {'B': F.tensor([5, 6], dtype=F.int64)}
    bg = dgl.to_block(g, dst_nodes)
    assert bg.number_of_nodes('SRC/B') == 2
    assert F.array_equal(bg.srcnodes['B'].data[dgl.NID], bg.dstnodes['B'].data[dgl.NID])
    assert bg.number_of_nodes('DST/A') == 0
    checkall(g, bg, dst_nodes)
494

495
496
497
    dst_nodes = {'A': F.tensor([3, 4], dtype=F.int64), 'B': F.tensor([5, 6], dtype=F.int64)}
    bg = dgl.to_block(g, dst_nodes)
    checkall(g, bg, dst_nodes)
498

499
500
501
    dst_nodes = {'A': F.tensor([4, 3, 2, 1], dtype=F.int64), 'B': F.tensor([3, 5, 6, 1], dtype=F.int64)}
    bg = dgl.to_block(g, dst_nodes=dst_nodes)
    checkall(g, bg, dst_nodes)
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
def test_remove_edges():
    def check(g1, etype, g, edges_removed):
        src, dst, eid = g.edges(etype=etype, form='all')
        src1, dst1 = g1.edges(etype=etype, order='eid')
        if etype is not None:
            eid1 = g1.edges[etype].data[dgl.EID]
        else:
            eid1 = g1.edata[dgl.EID]
        src1 = F.asnumpy(src1)
        dst1 = F.asnumpy(dst1)
        eid1 = F.asnumpy(eid1)
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        eid = F.asnumpy(eid)
        sde_set = set(zip(src, dst, eid))

        for s, d, e in zip(src1, dst1, eid1):
            assert (s, d, e) in sde_set
        assert not np.isin(edges_removed, eid1).any()

    for fmt in ['coo', 'csr', 'csc']:
        for edges_to_remove in [[2], [2, 2], [3, 2], [1, 3, 1, 2]]:
            g = dgl.graph([(0, 1), (2, 3), (1, 2), (3, 4)], restrict_format=fmt)
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove))
            check(g1, None, g, edges_to_remove)

            g = dgl.graph(
                spsp.csr_matrix(([1, 1, 1, 1], ([0, 2, 1, 3], [1, 3, 2, 4])), shape=(5, 5)),
                restrict_format=fmt)
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove))
            check(g1, None, g, edges_to_remove)

    g = dgl.heterograph({
        ('A', 'AA', 'A'): [(0, 1), (2, 3), (1, 2), (3, 4)],
        ('A', 'AB', 'B'): [(0, 1), (1, 3), (3, 5), (1, 6)],
        ('B', 'BA', 'A'): [(2, 3), (3, 2)]})
    g2 = dgl.remove_edges(g, {'AA': F.tensor([2]), 'AB': F.tensor([3]), 'BA': F.tensor([1])})
    check(g2, 'AA', g, [2])
    check(g2, 'AB', g, [3])
    check(g2, 'BA', g, [1])
544

545
546
547
548
549
if __name__ == '__main__':
    test_line_graph()
    test_no_backtracking()
    test_reverse()
    test_reverse_shared_frames()
550
    test_simple_graph()
551
    test_bidirected_graph()
552
553
554
    test_khop_adj()
    test_khop_graph()
    test_laplacian_lambda_max()
555
    test_remove_self_loop()
VoVAllen's avatar
VoVAllen committed
556
    test_add_self_loop()
557
558
    test_partition_with_halo()
    test_metis_partition()
559
560
    test_compact()
    test_to_simple()
561
562
    test_in_subgraph()
    test_out_subgraph()
563
564
    test_to_block()
    test_remove_edges()