test_transform.py 94.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
##
#   Copyright 2019-2021 Contributors
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.
#

17
from scipy import sparse as spsp
18
19
import networkx as nx
import numpy as np
20
import os
21
22
import dgl
import dgl.function as fn
23
import dgl.partition
24
import backend as F
25
import unittest
26
import math
27
from utils import parametrize_dtype
28

29
from test_heterograph import create_test_heterograph3, create_test_heterograph4, create_test_heterograph5
30

31
32
33
D = 5

# line graph related
34

35
def test_line_graph1():
36
    N = 5
37
    G = dgl.DGLGraph(nx.star_graph(N)).to(F.ctx())
38
    G.edata['h'] = F.randn((2 * N, D))
39
40
    L = G.line_graph(shared=True)
    assert L.number_of_nodes() == 2 * N
41
    assert F.allclose(L.ndata['h'], G.edata['h'])
42
    assert G.device == F.ctx()
43

44
@parametrize_dtype
45
def test_line_graph2(idtype):
46
47
48
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 1, 2, 2],[2, 0, 2, 0, 1])
    }, idtype=idtype)
49
    lg = dgl.line_graph(g)
50
51
52
53
54
55
56
57
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))

58
    lg = dgl.line_graph(g, backtracking=False)
59
60
61
62
63
64
65
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 4
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 1, 2, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([4, 0, 3, 1]))
66
67
68
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 1, 2, 2],[2, 0, 2, 0, 1])
    }, idtype=idtype).formats('csr')
69
    lg = dgl.line_graph(g)
70
71
72
73
74
75
76
77
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))

78
79
80
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 1, 2, 2],[2, 0, 2, 0, 1])
    }, idtype=idtype).formats('csc')
81
    lg = dgl.line_graph(g)
82
83
84
85
86
87
88
89
90
91
92
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col, eid = lg.edges('all')
    row = F.asnumpy(row)
    col = F.asnumpy(col)
    eid = F.asnumpy(eid).astype(int)
    order = np.argsort(eid)
    assert np.array_equal(row[order],
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(col[order],
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))
93

94
95
96
97
98
99
100
101
102
103
104
105
def test_no_backtracking():
    N = 5
    G = dgl.DGLGraph(nx.star_graph(N))
    L = G.line_graph(backtracking=False)
    assert L.number_of_nodes() == 2 * N
    for i in range(1, N):
        e1 = G.edge_id(0, i)
        e2 = G.edge_id(i, 0)
        assert not L.has_edge_between(e1, e2)
        assert not L.has_edge_between(e2, e1)

# reverse graph related
106
107
@parametrize_dtype
def test_reverse(idtype):
108
    g = dgl.DGLGraph()
109
    g = g.astype(idtype).to(F.ctx())
110
111
112
    g.add_nodes(5)
    # The graph need not to be completely connected.
    g.add_edges([0, 1, 2], [1, 2, 1])
113
114
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [3.], [4.]])
    g.edata['h'] = F.tensor([[5.], [6.], [7.]])
115
116
117
118
119
120
    rg = g.reverse()

    assert g.is_multigraph == rg.is_multigraph

    assert g.number_of_nodes() == rg.number_of_nodes()
    assert g.number_of_edges() == rg.number_of_edges()
121
122
    assert F.allclose(F.astype(rg.has_edges_between(
        [1, 2, 1], [0, 1, 2]), F.float32), F.ones((3,)))
123
124
125
126
    assert g.edge_id(0, 1) == rg.edge_id(1, 0)
    assert g.edge_id(1, 2) == rg.edge_id(2, 1)
    assert g.edge_id(2, 1) == rg.edge_id(1, 2)

127
    # test dgl.reverse
128
129
130
131
    # test homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 2]), F.tensor([1, 2, 0])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.]])
132
    g_r = dgl.reverse(g)
133
134
135
136
137
138
139
140
141
142
143
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    u_g, v_g, eids_g = g.all_edges(form='all')
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all')
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    assert F.array_equal(g.ndata['h'], g_r.ndata['h'])
    assert len(g_r.edata) == 0

    # without share ndata
144
    g_r = dgl.reverse(g, copy_ndata=False)
145
146
147
148
149
150
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    assert len(g_r.ndata) == 0
    assert len(g_r.edata) == 0

    # with share ndata and edata
151
    g_r = dgl.reverse(g, copy_ndata=True, copy_edata=True)
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    assert F.array_equal(g.ndata['h'], g_r.ndata['h'])
    assert F.array_equal(g.edata['h'], g_r.edata['h'])

    # add new node feature to g_r
    g_r.ndata['hh'] = F.tensor([0, 1, 2])
    assert ('hh' in g.ndata) is False
    assert ('hh' in g_r.ndata) is True

    # add new edge feature to g_r
    g_r.edata['hh'] = F.tensor([0, 1, 2])
    assert ('hh' in g.edata) is False
    assert ('hh' in g_r.edata) is True

    # test heterogeneous graph
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2, 4, 3 ,1, 3], [1, 2, 3, 2, 0, 0, 1]),
        ('user', 'plays', 'game'): ([0, 0, 2, 3, 3, 4, 1], [1, 0, 1, 0, 1, 0, 0]),
171
172
        ('developer', 'develops', 'game'): ([0, 1, 1, 2], [0, 0, 1, 1])},
        idtype=idtype, device=F.ctx())
173
174
175
176
177
    g.nodes['user'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    g.nodes['user'].data['hh'] = F.tensor([1, 1, 1, 1, 1])
    g.nodes['game'].data['h'] = F.tensor([0, 1])
    g.edges['follows'].data['h'] = F.tensor([0, 1, 2, 4, 3 ,1, 3])
    g.edges['follows'].data['hh'] = F.tensor([1, 2, 3, 2, 0, 0, 1])
178
    g_r = dgl.reverse(g)
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g_r.number_of_nodes(ntype)
    assert F.array_equal(g.nodes['user'].data['h'], g_r.nodes['user'].data['h'])
    assert F.array_equal(g.nodes['user'].data['hh'], g_r.nodes['user'].data['hh'])
    assert F.array_equal(g.nodes['game'].data['h'], g_r.nodes['game'].data['h'])
    assert len(g_r.edges['follows'].data) == 0
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('user', 'follows', 'user'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('user', 'follows', 'user'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('user', 'plays', 'game'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('game', 'plays', 'user'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('developer', 'develops', 'game'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('game', 'develops', 'developer'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)

    # withour share ndata
208
    g_r = dgl.reverse(g, copy_ndata=False)
209
210
211
212
213
214
215
216
217
218
    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g_r.number_of_nodes(ntype)
    assert len(g_r.nodes['user'].data) == 0
    assert len(g_r.nodes['game'].data) == 0

219
    g_r = dgl.reverse(g, copy_ndata=True, copy_edata=True)
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    print(g_r)
    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    assert F.array_equal(g.edges['follows'].data['h'], g_r.edges['follows'].data['h'])
    assert F.array_equal(g.edges['follows'].data['hh'], g_r.edges['follows'].data['hh'])

    # add new node feature to g_r
    g_r.nodes['user'].data['hhh'] = F.tensor([0, 1, 2, 3, 4])
    assert ('hhh' in g.nodes['user'].data) is False
    assert ('hhh' in g_r.nodes['user'].data) is True

    # add new edge feature to g_r
    g_r.edges['follows'].data['hhh'] = F.tensor([1, 2, 3, 2, 0, 0, 1])
    assert ('hhh' in g.edges['follows'].data) is False
    assert ('hhh' in g_r.edges['follows'].data) is True

239

240
241
@parametrize_dtype
def test_reverse_shared_frames(idtype):
242
    g = dgl.DGLGraph()
243
    g = g.astype(idtype).to(F.ctx())
244
245
    g.add_nodes(3)
    g.add_edges([0, 1, 2], [1, 2, 1])
246
247
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.]])
248
249

    rg = g.reverse(share_ndata=True, share_edata=True)
250
251
252
    assert F.allclose(g.ndata['h'], rg.ndata['h'])
    assert F.allclose(g.edata['h'], rg.edata['h'])
    assert F.allclose(g.edges[[0, 2], [1, 1]].data['h'],
253
254
                      rg.edges[[1, 1], [0, 2]].data['h'])

255
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
256
def test_to_bidirected():
257
258
    # homogeneous graph
    elist = [(0, 0), (0, 1), (1, 0),
259
             (1, 1), (2, 1), (2, 2)]
260
    num_edges = 7
261
    g = dgl.graph(tuple(zip(*elist)))
262
263
264
265
266
267
268
269
270
271
272
273
274
    elist.append((1, 2))
    elist = set(elist)
    big = dgl.to_bidirected(g)
    assert big.number_of_edges() == num_edges
    src, dst = big.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist)

    # heterogeneous graph
    elist1 = [(0, 0), (0, 1), (1, 0),
                (1, 1), (2, 1), (2, 2)]
    elist2 = [(0, 0), (0, 1)]
    g = dgl.heterograph({
275
276
        ('user', 'wins', 'user'): tuple(zip(*elist1)),
        ('user', 'follows', 'user'): tuple(zip(*elist2))
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    })
    g.nodes['user'].data['h'] = F.ones((3, 1))
    elist1.append((1, 2))
    elist1 = set(elist1)
    elist2.append((1, 0))
    elist2 = set(elist2)
    big = dgl.to_bidirected(g)
    assert big.number_of_edges('wins') == 7
    assert big.number_of_edges('follows') == 3
    src, dst = big.edges(etype='wins')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist1)
    src, dst = big.edges(etype='follows')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist2)

    big = dgl.to_bidirected(g, copy_ndata=True)
    assert F.array_equal(g.nodes['user'].data['h'], big.nodes['user'].data['h'])

def test_add_reverse_edges():
297
298
299
300
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 3, 1]), F.tensor([1, 2, 0, 2])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [1.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
301
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True)
302
303
304
305
306
307
308
309
310
311
312
313
    u, v = g.edges()
    ub, vb = bg.edges()
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert F.array_equal(g.ndata['h'], bg.ndata['h'])
    assert F.array_equal(F.cat([g.edata['h'], g.edata['h']], dim=0), bg.edata['h'])
    bg.ndata['hh'] = F.tensor([[0.], [1.], [2.], [1.]])
    assert ('hh' in g.ndata) is False
    bg.edata['hh'] = F.tensor([[0.], [1.], [2.], [1.], [0.], [1.], [2.], [1.]])
    assert ('hh' in g.edata) is False

    # donot share ndata and edata
314
    bg = dgl.add_reverse_edges(g, copy_ndata=False, copy_edata=False)
315
316
317
318
319
320
321
    ub, vb = bg.edges()
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert ('h' in bg.ndata) is False
    assert ('h' in bg.edata) is False

    # zero edge graph
322
    g = dgl.graph(([], []))
323
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True)
324
325
326
327
328
329
330
331
332
333

    # heterogeneous graph
    g = dgl.heterograph({
        ('user', 'wins', 'user'): (F.tensor([0, 2, 0, 2, 2]), F.tensor([1, 1, 2, 1, 0])),
        ('user', 'plays', 'game'): (F.tensor([1, 2, 1]), F.tensor([2, 1, 1])),
        ('user', 'follows', 'user'): (F.tensor([1, 2, 1]), F.tensor([0, 0, 0]))
    })
    g.nodes['game'].data['hv'] = F.ones((3, 1))
    g.nodes['user'].data['hv'] = F.ones((3, 1))
    g.edges['wins'].data['h'] = F.tensor([0, 1, 2, 3, 4])
334
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True, ignore_bipartite=True)
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    assert F.array_equal(g.nodes['game'].data['hv'], bg.nodes['game'].data['hv'])
    assert F.array_equal(g.nodes['user'].data['hv'], bg.nodes['user'].data['hv'])
    u, v = g.all_edges(order='eid', etype=('user', 'wins', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'wins', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert F.array_equal(F.cat([g.edges['wins'].data['h'], g.edges['wins'].data['h']], dim=0),
                         bg.edges['wins'].data['h'])
    u, v = g.all_edges(order='eid', etype=('user', 'follows', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'follows', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'plays', 'game'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'plays', 'game'))
    assert F.array_equal(u, ub)
    assert F.array_equal(v, vb)
351
352
    assert set(bg.edges['plays'].data.keys()) == {dgl.EID}
    assert set(bg.edges['follows'].data.keys()) == {dgl.EID}
353
354

    # donot share ndata and edata
355
    bg = dgl.add_reverse_edges(g, copy_ndata=False, copy_edata=False, ignore_bipartite=True)
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
    assert len(bg.edges['wins'].data) == 0
    assert len(bg.edges['plays'].data) == 0
    assert len(bg.edges['follows'].data) == 0
    assert len(bg.nodes['game'].data) == 0
    assert len(bg.nodes['user'].data) == 0
    u, v = g.all_edges(order='eid', etype=('user', 'wins', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'wins', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'follows', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'follows', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'plays', 'game'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'plays', 'game'))
    assert F.array_equal(u, ub)
    assert F.array_equal(v, vb)

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
    # test the case when some nodes have zero degree
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 3, 1]), F.tensor([1, 2, 0, 2])), num_nodes=6)
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [1.], [1.], [1.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True)
    assert g.number_of_nodes() == bg.number_of_nodes()
    assert F.array_equal(g.ndata['h'], bg.ndata['h'])
    assert F.array_equal(F.cat([g.edata['h'], g.edata['h']], dim=0), bg.edata['h'])

    # heterogeneous graph
    g = dgl.heterograph({
        ('user', 'wins', 'user'): (F.tensor([0, 2, 0, 2, 2]), F.tensor([1, 1, 2, 1, 0])),
        ('user', 'plays', 'game'): (F.tensor([1, 2, 1]), F.tensor([2, 1, 1])),
        ('user', 'follows', 'user'): (F.tensor([1, 2, 1]), F.tensor([0, 0, 0]))},
        num_nodes_dict={
            'user': 5,
            'game': 3
        })
    g.nodes['game'].data['hv'] = F.ones((3, 1))
    g.nodes['user'].data['hv'] = F.ones((5, 1))
    g.edges['wins'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True, ignore_bipartite=True)
    assert g.number_of_nodes('user') == bg.number_of_nodes('user')
    assert g.number_of_nodes('game') == bg.number_of_nodes('game')
    assert F.array_equal(g.nodes['game'].data['hv'], bg.nodes['game'].data['hv'])
    assert F.array_equal(g.nodes['user'].data['hv'], bg.nodes['user'].data['hv'])
    assert F.array_equal(F.cat([g.edges['wins'].data['h'], g.edges['wins'].data['h']], dim=0),
                         bg.edges['wins'].data['h'])

404

405
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
406
407
408
409
410
411
412
413
414
415
def test_simple_graph():
    elist = [(0, 1), (0, 2), (1, 2), (0, 1)]
    g = dgl.DGLGraph(elist, readonly=True)
    assert g.is_multigraph
    sg = dgl.to_simple_graph(g)
    assert not sg.is_multigraph
    assert sg.number_of_edges() == 3
    src, dst = sg.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist)
416

417
418
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
def _test_bidirected_graph():
419
    def _test(in_readonly, out_readonly):
420
421
422
        elist = [(0, 0), (0, 1), (1, 0),
                (1, 1), (2, 1), (2, 2)]
        num_edges = 7
423
424
425
        g = dgl.DGLGraph(elist, readonly=in_readonly)
        elist.append((1, 2))
        elist = set(elist)
426
        big = dgl.to_bidirected_stale(g, out_readonly)
427
        assert big.number_of_edges() == num_edges
428
429
430
431
432
433
434
435
436
        src, dst = big.edges()
        eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
        assert eset == set(elist)

    _test(True, True)
    _test(True, False)
    _test(False, True)
    _test(False, False)

437

438
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
439
440
441
442
def test_khop_graph():
    N = 20
    feat = F.randn((N, 5))

Mufei Li's avatar
Mufei Li committed
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
    def _test(g):
        for k in range(4):
            g_k = dgl.khop_graph(g, k)
            # use original graph to do message passing for k times.
            g.ndata['h'] = feat
            for _ in range(k):
                g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            h_0 = g.ndata.pop('h')
            # use k-hop graph to do message passing for one time.
            g_k.ndata['h'] = feat
            g_k.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            h_1 = g_k.ndata.pop('h')
            assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

    # Test for random undirected graphs
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    _test(g)
    # Test for random directed graphs
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3, directed=True))
    _test(g)
463

464
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
465
466
467
468
469
def test_khop_adj():
    N = 20
    feat = F.randn((N, 5))
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    for k in range(3):
470
        adj = F.tensor(F.swapaxes(dgl.khop_adj(g, k), 0, 1))
471
472
473
474
475
476
477
478
479
        # use original graph to do message passing for k times.
        g.ndata['h'] = feat
        for _ in range(k):
            g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
        h_0 = g.ndata.pop('h')
        # use k-hop adj to do message passing for one time.
        h_1 = F.matmul(adj, feat)
        assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

480

481
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
482
483
484
485
486
487
488
def test_laplacian_lambda_max():
    N = 20
    eps = 1e-6
    # test DGLGraph
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    l_max = dgl.laplacian_lambda_max(g)
    assert (l_max[0] < 2 + eps)
Zihao Ye's avatar
Zihao Ye committed
489
    # test batched DGLGraph
490
    '''
491
492
493
494
495
496
497
498
499
    N_arr = [20, 30, 10, 12]
    bg = dgl.batch([
        dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
        for N in N_arr
    ])
    l_max_arr = dgl.laplacian_lambda_max(bg)
    assert len(l_max_arr) == len(N_arr)
    for l_max in l_max_arr:
        assert l_max < 2 + eps
500
    '''
501

502
def create_large_graph(num_nodes, idtype=F.int64):
503
504
505
    row = np.random.choice(num_nodes, num_nodes * 10)
    col = np.random.choice(num_nodes, num_nodes * 10)
    spm = spsp.coo_matrix((np.ones(len(row)), (row, col)))
506
    spm.sum_duplicates()
507

508
    return dgl.from_scipy(spm, idtype=idtype)
509
510
511
512
513
514
515
516
517

def get_nodeflow(g, node_ids, num_layers):
    batch_size = len(node_ids)
    expand_factor = g.number_of_nodes()
    sampler = dgl.contrib.sampling.NeighborSampler(g, batch_size,
            expand_factor=expand_factor, num_hops=num_layers,
            seed_nodes=node_ids)
    return next(iter(sampler))

518
# Disabled since everything will be on heterogeneous graphs
519
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
520
def test_partition_with_halo():
521
    g = create_large_graph(1000)
522
    node_part = np.random.choice(4, g.number_of_nodes())
523
    subgs, _, _ = dgl.transform.partition_graph_with_halo(g, node_part, 2, reshuffle=True)
524
525
526
    for part_id, subg in subgs.items():
        node_ids = np.nonzero(node_part == part_id)[0]
        lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
527
528
529
530
        orig_nids = F.asnumpy(subg.ndata['orig_id'])[lnode_ids]
        assert np.all(np.sort(orig_nids) == node_ids)
        assert np.all(F.asnumpy(subg.in_degrees(lnode_ids)) == F.asnumpy(g.in_degrees(orig_nids)))
        assert np.all(F.asnumpy(subg.out_degrees(lnode_ids)) == F.asnumpy(g.out_degrees(orig_nids)))
531

532
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
533
@unittest.skipIf(F._default_context_str == 'gpu', reason="METIS doesn't support GPU")
534
535
@parametrize_dtype
def test_metis_partition(idtype):
Da Zheng's avatar
Da Zheng committed
536
    # TODO(zhengda) Metis fails to partition a small graph.
537
538
539
540
541
542
543
544
545
546
547
548
549
    g = create_large_graph(1000, idtype=idtype)
    if idtype == F.int64:
        check_metis_partition(g, 0)
        check_metis_partition(g, 1)
        check_metis_partition(g, 2)
        check_metis_partition_with_constraint(g)
    else:
        assert_fail = False
        try:
            check_metis_partition(g, 1)
        except:
            assert_fail = True
        assert assert_fail
550

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
def check_metis_partition_with_constraint(g):
    ntypes = np.zeros((g.number_of_nodes(),), dtype=np.int32)
    ntypes[0:int(g.number_of_nodes()/4)] = 1
    ntypes[int(g.number_of_nodes()*3/4):] = 2
    subgs = dgl.transform.metis_partition(g, 4, extra_cached_hops=1, balance_ntypes=ntypes)
    if subgs is not None:
        for i in subgs:
            subg = subgs[i]
            parent_nids = F.asnumpy(subg.ndata[dgl.NID])
            sub_ntypes = ntypes[parent_nids]
            print('type0:', np.sum(sub_ntypes == 0))
            print('type1:', np.sum(sub_ntypes == 1))
            print('type2:', np.sum(sub_ntypes == 2))
    subgs = dgl.transform.metis_partition(g, 4, extra_cached_hops=1,
                                          balance_ntypes=ntypes, balance_edges=True)
    if subgs is not None:
        for i in subgs:
            subg = subgs[i]
            parent_nids = F.asnumpy(subg.ndata[dgl.NID])
            sub_ntypes = ntypes[parent_nids]
            print('type0:', np.sum(sub_ntypes == 0))
            print('type1:', np.sum(sub_ntypes == 1))
            print('type2:', np.sum(sub_ntypes == 2))
Da Zheng's avatar
Da Zheng committed
574
575
576

def check_metis_partition(g, extra_hops):
    subgs = dgl.transform.metis_partition(g, 4, extra_cached_hops=extra_hops)
577
578
579
580
    num_inner_nodes = 0
    num_inner_edges = 0
    if subgs is not None:
        for part_id, subg in subgs.items():
Da Zheng's avatar
Da Zheng committed
581
582
583
584
585
            lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
            ledge_ids = np.nonzero(F.asnumpy(subg.edata['inner_edge']))[0]
            num_inner_nodes += len(lnode_ids)
            num_inner_edges += len(ledge_ids)
            assert np.sum(F.asnumpy(subg.ndata['part_id']) == part_id) == len(lnode_ids)
586
587
588
        assert num_inner_nodes == g.number_of_nodes()
        print(g.number_of_edges() - num_inner_edges)

Da Zheng's avatar
Da Zheng committed
589
590
591
    if extra_hops == 0:
        return

592
    # partitions with node reshuffling
Da Zheng's avatar
Da Zheng committed
593
    subgs = dgl.transform.metis_partition(g, 4, extra_cached_hops=extra_hops, reshuffle=True)
594
595
    num_inner_nodes = 0
    num_inner_edges = 0
Da Zheng's avatar
Da Zheng committed
596
    edge_cnts = np.zeros((g.number_of_edges(),))
597
598
599
600
601
602
603
    if subgs is not None:
        for part_id, subg in subgs.items():
            lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
            ledge_ids = np.nonzero(F.asnumpy(subg.edata['inner_edge']))[0]
            num_inner_nodes += len(lnode_ids)
            num_inner_edges += len(ledge_ids)
            assert np.sum(F.asnumpy(subg.ndata['part_id']) == part_id) == len(lnode_ids)
Da Zheng's avatar
Da Zheng committed
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
            nids = F.asnumpy(subg.ndata[dgl.NID])

            # ensure the local node Ids are contiguous.
            parent_ids = F.asnumpy(subg.ndata[dgl.NID])
            parent_ids = parent_ids[:len(lnode_ids)]
            assert np.all(parent_ids == np.arange(parent_ids[0], parent_ids[-1] + 1))

            # count the local edges.
            parent_ids = F.asnumpy(subg.edata[dgl.EID])[ledge_ids]
            edge_cnts[parent_ids] += 1

            orig_ids = subg.ndata['orig_id']
            inner_node = F.asnumpy(subg.ndata['inner_node'])
            for nid in range(subg.number_of_nodes()):
                neighs = subg.predecessors(nid)
                old_neighs1 = F.gather_row(orig_ids, neighs)
                old_nid = F.asnumpy(orig_ids[nid])
                old_neighs2 = g.predecessors(old_nid)
                # If this is an inner node, it should have the full neighborhood.
                if inner_node[nid]:
                    assert np.all(np.sort(F.asnumpy(old_neighs1)) == np.sort(F.asnumpy(old_neighs2)))
        # Normally, local edges are only counted once.
        assert np.all(edge_cnts == 1)

628
629
630
        assert num_inner_nodes == g.number_of_nodes()
        print(g.number_of_edges() - num_inner_edges)

Da Zheng's avatar
Da Zheng committed
631
632
@unittest.skipIf(F._default_context_str == 'gpu', reason="It doesn't support GPU")
def test_reorder_nodes():
633
    g = create_large_graph(1000)
Da Zheng's avatar
Da Zheng committed
634
635
    new_nids = np.random.permutation(g.number_of_nodes())
    # TODO(zhengda) we need to test both CSR and COO.
636
    new_g = dgl.partition.reorder_nodes(g, new_nids)
Da Zheng's avatar
Da Zheng committed
637
638
639
640
641
642
643
644
645
    new_in_deg = new_g.in_degrees()
    new_out_deg = new_g.out_degrees()
    in_deg = g.in_degrees()
    out_deg = g.out_degrees()
    new_in_deg1 = F.scatter_row(in_deg, F.tensor(new_nids), in_deg)
    new_out_deg1 = F.scatter_row(out_deg, F.tensor(new_nids), out_deg)
    assert np.all(F.asnumpy(new_in_deg == new_in_deg1))
    assert np.all(F.asnumpy(new_out_deg == new_out_deg1))
    orig_ids = F.asnumpy(new_g.ndata['orig_id'])
646
647
648
649
650
651
652
    for nid in range(g.number_of_nodes()):
        neighs = F.asnumpy(g.successors(nid))
        new_neighs1 = new_nids[neighs]
        new_nid = new_nids[nid]
        new_neighs2 = new_g.successors(new_nid)
        assert np.all(np.sort(new_neighs1) == np.sort(F.asnumpy(new_neighs2)))

Da Zheng's avatar
Da Zheng committed
653
654
655
656
657
658
659
660
661
662
663
664
665
    for nid in range(new_g.number_of_nodes()):
        neighs = F.asnumpy(new_g.successors(nid))
        old_neighs1 = orig_ids[neighs]
        old_nid = orig_ids[nid]
        old_neighs2 = g.successors(old_nid)
        assert np.all(np.sort(old_neighs1) == np.sort(F.asnumpy(old_neighs2)))

        neighs = F.asnumpy(new_g.predecessors(nid))
        old_neighs1 = orig_ids[neighs]
        old_nid = orig_ids[nid]
        old_neighs2 = g.predecessors(old_nid)
        assert np.all(np.sort(old_neighs1) == np.sort(F.asnumpy(old_neighs2)))

666
@parametrize_dtype
667
def test_compact(idtype):
668
    g1 = dgl.heterograph({
669
670
671
        ('user', 'follow', 'user'): ([1, 3], [3, 5]),
        ('user', 'plays', 'game'): ([2, 3, 2], [4, 4, 5]),
        ('game', 'wished-by', 'user'): ([6, 5], [7, 7])},
672
        {'user': 20, 'game': 10}, idtype=idtype, device=F.ctx())
673
674

    g2 = dgl.heterograph({
675
676
        ('game', 'clicked-by', 'user'): ([3], [1]),
        ('user', 'likes', 'user'): ([1, 8], [8, 9])},
677
        {'user': 20, 'game': 10}, idtype=idtype, device=F.ctx())
678

679
    g3 = dgl.heterograph({('user', '_E', 'user'): ((0, 1), (1, 2))},
680
                         {'user': 10}, idtype=idtype, device=F.ctx())
681
    g4 = dgl.heterograph({('user', '_E', 'user'): ((1, 3), (3, 5))},
682
                         {'user': 10}, idtype=idtype, device=F.ctx())
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

    def _check(g, new_g, induced_nodes):
        assert g.ntypes == new_g.ntypes
        assert g.canonical_etypes == new_g.canonical_etypes

        for ntype in g.ntypes:
            assert -1 not in induced_nodes[ntype]

        for etype in g.canonical_etypes:
            g_src, g_dst = g.all_edges(order='eid', etype=etype)
            g_src = F.asnumpy(g_src)
            g_dst = F.asnumpy(g_dst)
            new_g_src, new_g_dst = new_g.all_edges(order='eid', etype=etype)
            new_g_src_mapped = induced_nodes[etype[0]][F.asnumpy(new_g_src)]
            new_g_dst_mapped = induced_nodes[etype[2]][F.asnumpy(new_g_dst)]
            assert (g_src == new_g_src_mapped).all()
            assert (g_dst == new_g_dst_mapped).all()

    # Test default
    new_g1 = dgl.compact_graphs(g1)
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
705
    assert new_g1.idtype == idtype
706
707
708
709
710
711
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7])
    assert set(induced_nodes['game']) == set([4, 5, 6])
    _check(g1, new_g1, induced_nodes)

    # Test with always_preserve given a dict
    new_g1 = dgl.compact_graphs(
712
713
        g1, always_preserve={'game': F.tensor([4, 7], idtype)})
    assert new_g1.idtype == idtype
714
715
716
717
718
719
720
721
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7])
    assert set(induced_nodes['game']) == set([4, 5, 6, 7])
    _check(g1, new_g1, induced_nodes)

    # Test with always_preserve given a tensor
    new_g3 = dgl.compact_graphs(
722
        g3, always_preserve=F.tensor([1, 7], idtype))
723
724
    induced_nodes = {ntype: new_g3.nodes[ntype].data[dgl.NID] for ntype in new_g3.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
725

726
    assert new_g3.idtype == idtype
727
728
729
730
731
732
733
    assert set(induced_nodes['user']) == set([0, 1, 2, 7])
    _check(g3, new_g3, induced_nodes)

    # Test multiple graphs
    new_g1, new_g2 = dgl.compact_graphs([g1, g2])
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
734
735
    assert new_g1.idtype == idtype
    assert new_g2.idtype == idtype
736
737
738
739
740
741
742
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7, 8, 9])
    assert set(induced_nodes['game']) == set([3, 4, 5, 6])
    _check(g1, new_g1, induced_nodes)
    _check(g2, new_g2, induced_nodes)

    # Test multiple graphs with always_preserve given a dict
    new_g1, new_g2 = dgl.compact_graphs(
743
        [g1, g2], always_preserve={'game': F.tensor([4, 7], dtype=idtype)})
744
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
745
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
746
747
    assert new_g1.idtype == idtype
    assert new_g2.idtype == idtype
748
749
750
751
752
753
754
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7, 8, 9])
    assert set(induced_nodes['game']) == set([3, 4, 5, 6, 7])
    _check(g1, new_g1, induced_nodes)
    _check(g2, new_g2, induced_nodes)

    # Test multiple graphs with always_preserve given a tensor
    new_g3, new_g4 = dgl.compact_graphs(
755
        [g3, g4], always_preserve=F.tensor([1, 7], dtype=idtype))
756
757
    induced_nodes = {ntype: new_g3.nodes[ntype].data[dgl.NID] for ntype in new_g3.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
758

759
760
761
    assert new_g3.idtype == idtype
    assert new_g4.idtype == idtype

762
763
764
765
    assert set(induced_nodes['user']) == set([0, 1, 2, 3, 5, 7])
    _check(g3, new_g3, induced_nodes)
    _check(g4, new_g4, induced_nodes)

766
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU to simple not implemented")
767
@parametrize_dtype
768
def test_to_simple(idtype):
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 2, 1]), F.tensor([1, 2, 0, 2])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
    sg, wb = dgl.to_simple(g, writeback_mapping=True)
    u, v = g.all_edges(form='uv', order='eid')
    u = F.asnumpy(u).tolist()
    v = F.asnumpy(v).tolist()
    uv = list(zip(u, v))
    eid_map = F.asnumpy(wb)

    su, sv = sg.all_edges(form='uv', order='eid')
    su = F.asnumpy(su).tolist()
    sv = F.asnumpy(sv).tolist()
    suv = list(zip(su, sv))
    sc = F.asnumpy(sg.edata['count'])
    assert set(uv) == set(suv)
    for i, e in enumerate(suv):
        assert sc[i] == sum(e == _e for _e in uv)
    for i, e in enumerate(uv):
        assert eid_map[i] == suv.index(e)
    # shared ndata
    assert F.array_equal(sg.ndata['h'], g.ndata['h'])
    assert 'h' not in sg.edata
    # new ndata to sg
    sg.ndata['hh'] = F.tensor([[0.], [1.], [2.]])
    assert 'hh' not in g.ndata

    sg = dgl.to_simple(g, writeback_mapping=False, copy_ndata=False)
    assert 'h' not in sg.ndata
    assert 'h' not in sg.edata

801
802
803
804
805
806
807
808
    # test coalesce edge feature
    sg = dgl.to_simple(g, copy_edata=True, aggregator='arbitrary')
    assert F.allclose(sg.edata['h'][1], F.tensor([4.]))
    sg = dgl.to_simple(g, copy_edata=True, aggregator='sum')
    assert F.allclose(sg.edata['h'][1], F.tensor([10.]))
    sg = dgl.to_simple(g, copy_edata=True, aggregator='mean')
    assert F.allclose(sg.edata['h'][1], F.tensor([5.]))

809
    # heterogeneous graph
810
    g = dgl.heterograph({
811
812
813
        ('user', 'follow', 'user'): ([0, 1, 2, 1, 1, 1],
                                     [1, 3, 2, 3, 4, 4]),
        ('user', 'plays', 'game'): ([3, 2, 1, 1, 3, 2, 2], [5, 3, 4, 4, 5, 3, 3])},
814
        idtype=idtype, device=F.ctx())
815
816
817
818
819
    g.nodes['user'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    g.nodes['user'].data['hh'] = F.tensor([0, 1, 2, 3, 4])
    g.edges['follow'].data['h'] = F.tensor([0, 1, 2, 3, 4, 5])
    sg, wb = dgl.to_simple(g, return_counts='weights', writeback_mapping=True, copy_edata=True)
    g.nodes['game'].data['h'] = F.tensor([0, 1, 2, 3, 4, 5])
820
821
822
823
824
825

    for etype in g.canonical_etypes:
        u, v = g.all_edges(form='uv', order='eid', etype=etype)
        u = F.asnumpy(u).tolist()
        v = F.asnumpy(v).tolist()
        uv = list(zip(u, v))
826
        eid_map = F.asnumpy(wb[etype])
827
828
829
830
831
832
833
834
835
836
837
838

        su, sv = sg.all_edges(form='uv', order='eid', etype=etype)
        su = F.asnumpy(su).tolist()
        sv = F.asnumpy(sv).tolist()
        suv = list(zip(su, sv))
        sw = F.asnumpy(sg.edges[etype].data['weights'])

        assert set(uv) == set(suv)
        for i, e in enumerate(suv):
            assert sw[i] == sum(e == _e for _e in uv)
        for i, e in enumerate(uv):
            assert eid_map[i] == suv.index(e)
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
    # shared ndata
    assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
    assert F.array_equal(sg.nodes['user'].data['hh'], g.nodes['user'].data['hh'])
    assert 'h' not in sg.nodes['game'].data
    # new ndata to sg
    sg.nodes['user'].data['hhh'] = F.tensor([0, 1, 2, 3, 4])
    assert 'hhh' not in g.nodes['user'].data
    # share edata
    feat_idx = F.asnumpy(wb[('user', 'follow', 'user')])
    _, indices = np.unique(feat_idx, return_index=True)
    assert np.array_equal(F.asnumpy(sg.edges['follow'].data['h']),
                          F.asnumpy(g.edges['follow'].data['h'])[indices])

    sg = dgl.to_simple(g, writeback_mapping=False, copy_ndata=False)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)
    assert 'h' not in sg.nodes['user'].data
    assert 'hh' not in sg.nodes['user'].data
857

858
859
860
861
862
863
864
865
866
867
    # verify DGLGraph.edge_ids() after dgl.to_simple()
    # in case ids are not initialized in underlying coo2csr()
    u = F.tensor([0, 1, 2])
    v = F.tensor([1, 2, 3])
    eids = F.tensor([0, 1, 2])
    g = dgl.graph((u, v))
    assert F.array_equal(g.edge_ids(u, v), eids)
    sg = dgl.to_simple(g)
    assert F.array_equal(sg.edge_ids(u, v), eids)

868
@parametrize_dtype
869
def test_to_block(idtype):
870
    def check(g, bg, ntype, etype, dst_nodes, include_dst_in_src=True):
871
872
873
        if dst_nodes is not None:
            assert F.array_equal(bg.dstnodes[ntype].data[dgl.NID], dst_nodes)
        n_dst_nodes = bg.number_of_nodes('DST/' + ntype)
874
875
876
877
        if include_dst_in_src:
            assert F.array_equal(
                bg.srcnodes[ntype].data[dgl.NID][:n_dst_nodes],
                bg.dstnodes[ntype].data[dgl.NID])
878
879
880
881
882
883

        g = g[etype]
        bg = bg[etype]
        induced_src = bg.srcdata[dgl.NID]
        induced_dst = bg.dstdata[dgl.NID]
        induced_eid = bg.edata[dgl.EID]
884

885
886
887
888
889
890
891
892
893
894
895
        bg_src, bg_dst = bg.all_edges(order='eid')
        src_ans, dst_ans = g.all_edges(order='eid')

        induced_src_bg = F.gather_row(induced_src, bg_src)
        induced_dst_bg = F.gather_row(induced_dst, bg_dst)
        induced_src_ans = F.gather_row(src_ans, induced_eid)
        induced_dst_ans = F.gather_row(dst_ans, induced_eid)

        assert F.array_equal(induced_src_bg, induced_src_ans)
        assert F.array_equal(induced_dst_bg, induced_dst_ans)

896
    def checkall(g, bg, dst_nodes, include_dst_in_src=True):
897
898
        for etype in g.etypes:
            ntype = g.to_canonical_etype(etype)[2]
899
            if dst_nodes is not None and ntype in dst_nodes:
900
                check(g, bg, ntype, etype, dst_nodes[ntype], include_dst_in_src)
901
            else:
902
                check(g, bg, ntype, etype, None, include_dst_in_src)
903
904

    g = dgl.heterograph({
905
906
        ('A', 'AA', 'A'): ([0, 2, 1, 3], [1, 3, 2, 4]),
        ('A', 'AB', 'B'): ([0, 1, 3, 1], [1, 3, 5, 6]),
907
        ('B', 'BA', 'A'): ([2, 3], [3, 2])}, idtype=idtype, device=F.ctx())
908
909
910
911
912
    g.nodes['A'].data['x'] = F.randn((5, 10))
    g.nodes['B'].data['x'] = F.randn((7, 5))
    g.edges['AA'].data['x'] = F.randn((4, 3))
    g.edges['AB'].data['x'] = F.randn((4, 3))
    g.edges['BA'].data['x'] = F.randn((2, 3))
913
914
    g_a = g['AA']

915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
    def check_features(g, bg):
        for ntype in bg.srctypes:
            for key in g.nodes[ntype].data:
                assert F.array_equal(
                    bg.srcnodes[ntype].data[key],
                    F.gather_row(g.nodes[ntype].data[key], bg.srcnodes[ntype].data[dgl.NID]))
        for ntype in bg.dsttypes:
            for key in g.nodes[ntype].data:
                assert F.array_equal(
                    bg.dstnodes[ntype].data[key],
                    F.gather_row(g.nodes[ntype].data[key], bg.dstnodes[ntype].data[dgl.NID]))
        for etype in bg.canonical_etypes:
            for key in g.edges[etype].data:
                assert F.array_equal(
                    bg.edges[etype].data[key],
                    F.gather_row(g.edges[etype].data[key], bg.edges[etype].data[dgl.EID]))

932
933
    bg = dgl.to_block(g_a)
    check(g_a, bg, 'A', 'AA', None)
934
    check_features(g_a, bg)
935
936
937
938
939
    assert bg.number_of_src_nodes() == 5
    assert bg.number_of_dst_nodes() == 4

    bg = dgl.to_block(g_a, include_dst_in_src=False)
    check(g_a, bg, 'A', 'AA', None, False)
940
    check_features(g_a, bg)
941
942
    assert bg.number_of_src_nodes() == 4
    assert bg.number_of_dst_nodes() == 4
943

944
    dst_nodes = F.tensor([4, 3, 2, 1], dtype=idtype)
945
946
    bg = dgl.to_block(g_a, dst_nodes)
    check(g_a, bg, 'A', 'AA', dst_nodes)
947
    check_features(g_a, bg)
948
949
950
951

    g_ab = g['AB']

    bg = dgl.to_block(g_ab)
952
    assert bg.idtype == idtype
953
954
955
    assert bg.number_of_nodes('SRC/B') == 4
    assert F.array_equal(bg.srcnodes['B'].data[dgl.NID], bg.dstnodes['B'].data[dgl.NID])
    assert bg.number_of_nodes('DST/A') == 0
956
    checkall(g_ab, bg, None)
957
    check_features(g_ab, bg)
958

959
    dst_nodes = {'B': F.tensor([5, 6, 3, 1], dtype=idtype)}
960
    bg = dgl.to_block(g, dst_nodes)
961
    assert bg.number_of_nodes('SRC/B') == 4
962
963
964
    assert F.array_equal(bg.srcnodes['B'].data[dgl.NID], bg.dstnodes['B'].data[dgl.NID])
    assert bg.number_of_nodes('DST/A') == 0
    checkall(g, bg, dst_nodes)
965
    check_features(g, bg)
966

967
    dst_nodes = {'A': F.tensor([4, 3, 2, 1], dtype=idtype), 'B': F.tensor([3, 5, 6, 1], dtype=idtype)}
968
969
    bg = dgl.to_block(g, dst_nodes=dst_nodes)
    checkall(g, bg, dst_nodes)
970
    check_features(g, bg)
971

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
    # test specifying lhs_nodes with include_dst_in_src
    src_nodes = {}
    for ntype in dst_nodes.keys():
        # use the previous run to get the list of source nodes
        src_nodes[ntype] = bg.srcnodes[ntype].data[dgl.NID]
    bg = dgl.to_block(g, dst_nodes=dst_nodes, src_nodes=src_nodes)
    checkall(g, bg, dst_nodes)
    check_features(g, bg)

    # test without include_dst_in_src
    dst_nodes = {'A': F.tensor([4, 3, 2, 1], dtype=idtype), 'B': F.tensor([3, 5, 6, 1], dtype=idtype)}
    bg = dgl.to_block(g, dst_nodes=dst_nodes, include_dst_in_src=False)
    checkall(g, bg, dst_nodes, False)
    check_features(g, bg)

    # test specifying lhs_nodes without include_dst_in_src
    src_nodes = {}
    for ntype in dst_nodes.keys():
        # use the previous run to get the list of source nodes
        src_nodes[ntype] = bg.srcnodes[ntype].data[dgl.NID]
    bg = dgl.to_block(g, dst_nodes=dst_nodes, include_dst_in_src=False,
        src_nodes=src_nodes)
    checkall(g, bg, dst_nodes, False)
    check_features(g, bg)


998
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
999
@parametrize_dtype
1000
def test_remove_edges(idtype):
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
    def check(g1, etype, g, edges_removed):
        src, dst, eid = g.edges(etype=etype, form='all')
        src1, dst1 = g1.edges(etype=etype, order='eid')
        if etype is not None:
            eid1 = g1.edges[etype].data[dgl.EID]
        else:
            eid1 = g1.edata[dgl.EID]
        src1 = F.asnumpy(src1)
        dst1 = F.asnumpy(dst1)
        eid1 = F.asnumpy(eid1)
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        eid = F.asnumpy(eid)
        sde_set = set(zip(src, dst, eid))

        for s, d, e in zip(src1, dst1, eid1):
            assert (s, d, e) in sde_set
        assert not np.isin(edges_removed, eid1).any()
1019
        assert g1.idtype == g.idtype
1020
1021
1022

    for fmt in ['coo', 'csr', 'csc']:
        for edges_to_remove in [[2], [2, 2], [3, 2], [1, 3, 1, 2]]:
1023
            g = dgl.graph(([0, 2, 1, 3], [1, 3, 2, 4]), idtype=idtype).formats(fmt)
1024
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove, idtype))
1025
1026
            check(g1, None, g, edges_to_remove)

1027
            g = dgl.from_scipy(
1028
                spsp.csr_matrix(([1, 1, 1, 1], ([0, 2, 1, 3], [1, 3, 2, 4])), shape=(5, 5)),
1029
1030
                idtype=idtype).formats(fmt)
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove, idtype))
1031
1032
1033
            check(g1, None, g, edges_to_remove)

    g = dgl.heterograph({
1034
1035
1036
        ('A', 'AA', 'A'): ([0, 2, 1, 3], [1, 3, 2, 4]),
        ('A', 'AB', 'B'): ([0, 1, 3, 1], [1, 3, 5, 6]),
        ('B', 'BA', 'A'): ([2, 3], [3, 2])}, idtype=idtype)
1037
    g2 = dgl.remove_edges(g, {'AA': F.tensor([2], idtype), 'AB': F.tensor([3], idtype), 'BA': F.tensor([1], idtype)})
1038
1039
1040
    check(g2, 'AA', g, [2])
    check(g2, 'AB', g, [3])
    check(g2, 'BA', g, [1])
1041

1042
    g3 = dgl.remove_edges(g, {'AA': F.tensor([], idtype), 'AB': F.tensor([3], idtype), 'BA': F.tensor([1], idtype)})
1043
1044
1045
1046
    check(g3, 'AA', g, [])
    check(g3, 'AB', g, [3])
    check(g3, 'BA', g, [1])

1047
    g4 = dgl.remove_edges(g, {'AB': F.tensor([3, 1, 2, 0], idtype)})
1048
    check(g4, 'AA', g, [])
1049
    check(g4, 'AB', g, [3, 1, 2, 0])
1050
1051
    check(g4, 'BA', g, [])

1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
@parametrize_dtype
def test_add_edges(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = 0
    v = 1
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
1076
1077
1078
1079
1080
1081
1082
1083
1084
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))
    g = dgl.add_edges(g, [], [])
    g = dgl.add_edges(g, 0, [])
    g = dgl.add_edges(g, [], 0)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([0, 0, 2, 2], dtype=idtype))

    # zero data graph
1117
    g = dgl.graph(([], []), num_nodes=0, idtype=idtype, device=F.ctx())
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 2], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 2
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([2, 2], dtype=idtype))

    # bipartite graph
1132
1133
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
    u = 0
    v = 1
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
1160
1161
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
1174
1175
1176
1177
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2, 0], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([0, 0, 2, 2], dtype=idtype))

    # heterogeneous graph
1196
    g = create_test_heterograph3(idtype)
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v, etype='plays')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 2
    assert g.number_of_edges('plays') == 6
    assert g.number_of_edges('develops') == 2
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([0, 1, 1, 2, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0, 1, 1, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 1, 1, 1, 0, 0], dtype=idtype))

    # add with feature
    e_feat = {'h': F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.nodes['game'].data['h'] =  F.copy_to(F.tensor([2, 2, 1, 1], dtype=idtype), ctx=F.ctx())
    g = dgl.add_edges(g, u, v, data=e_feat, etype='develops')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 3
    assert g.number_of_edges('plays') == 6
    assert g.number_of_edges('develops') == 4
    u, v = g.edges(form='uv', order='eid', etype='develops')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['develops'].data['h'], F.tensor([0, 0, 2, 2], dtype=idtype))

@parametrize_dtype
def test_add_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1], dtype=idtype), ctx=F.ctx())
    new_g = dgl.add_nodes(g, 1)
    assert g.number_of_nodes() == 3
    assert new_g.number_of_nodes() == 4
    assert F.array_equal(new_g.ndata['h'], F.tensor([1, 1, 1, 0], dtype=idtype))

    # zero node graph
1241
    g = dgl.graph(([], []), num_nodes=3, idtype=idtype, device=F.ctx())
1242
1243
1244
1245
1246
1247
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1], dtype=idtype), ctx=F.ctx())
    g = dgl.add_nodes(g, 1, data={'h' : F.copy_to(F.tensor([2],  dtype=idtype), ctx=F.ctx())})
    assert g.number_of_nodes() == 4
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 2], dtype=idtype))

    # bipartite graph
1248
1249
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1250
1251
1252
1253
1254
1255
1256
1257
1258
    g = dgl.add_nodes(g, 2, data={'h' : F.copy_to(F.tensor([2, 2],  dtype=idtype), ctx=F.ctx())}, ntype='user')
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 3
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([0, 0, 2, 2], dtype=idtype))
    g = dgl.add_nodes(g, 2, ntype='game')
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 5

    # heterogeneous graph
1259
    g = create_test_heterograph3(idtype)
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
    g = dgl.add_nodes(g, 1, ntype='user')
    g = dgl.add_nodes(g, 2, data={'h' : F.copy_to(F.tensor([2, 2],  dtype=idtype), ctx=F.ctx())}, ntype='game')
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 2
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2, 2], dtype=idtype))

@parametrize_dtype
def test_remove_edges(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = 0
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = [0]
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 0

    # has node data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 1)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.ndata['h'], F.tensor([1, 2, 3], dtype=idtype))

    # has edge data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 0)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.edata['h'], F.tensor([2], dtype=idtype))

    # invalid eid
    assert_fail = False
    try:
        g = dgl.remove_edges(g, 1)
    except:
        assert_fail = True
    assert assert_fail

    # bipartite graph
1312
1313
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1314
1315
1316
1317
1318
1319
    e = 0
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
1320
1321
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
    e = [0]
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 0

    # has data
1333
1334
1335
1336
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
1337
1338
1339
1340
1341
1342
1343
1344
    g.edata['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 1)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1], dtype=idtype))

    # heterogeneous graph
1345
    g = create_test_heterograph3(idtype)
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 1, etype='plays')
    assert g.number_of_edges('plays') == 3
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 3, 4], dtype=idtype))
    # remove all edges of 'develops'
    g = dgl.remove_edges(g, [0, 1], etype='develops')
    assert g.number_of_edges('develops') == 0
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3], dtype=idtype))

1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
    # batched graph
    ctx = F.ctx()
    g1 = dgl.graph(([0, 1], [1, 2]), num_nodes=5, idtype=idtype, device=ctx)
    g2 = dgl.graph(([], []), idtype=idtype, device=ctx)
    g3 = dgl.graph(([2, 3, 4], [3, 2, 1]), idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_edges(bg, 2)
    assert bg.batch_size == bg_r.batch_size
    assert F.array_equal(bg.batch_num_nodes(), bg_r.batch_num_nodes())
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([2, 0, 2], dtype=F.int64))

    bg_r = dgl.remove_edges(bg, [0, 2])
    assert bg.batch_size == bg_r.batch_size
    assert F.array_equal(bg.batch_num_nodes(), bg_r.batch_num_nodes())
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([1, 0, 2], dtype=F.int64))

    bg_r = dgl.remove_edges(bg, F.tensor([0, 2], dtype=idtype))
    assert bg.batch_size == bg_r.batch_size
    assert F.array_equal(bg.batch_num_nodes(), bg_r.batch_num_nodes())
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([1, 0, 2], dtype=F.int64))

    # batched heterogeneous graph
    g1 = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([1, 3], [0, 1])
    }, num_nodes_dict={'user': 4, 'game': 3}, idtype=idtype, device=ctx)
    g2 = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 2], [3, 4]),
        ('user', 'plays', 'game'): ([], [])
    }, num_nodes_dict={'user': 6, 'game': 2}, idtype=idtype, device=ctx)
    g3 = dgl.heterograph({
        ('user', 'follows', 'user'): ([], []),
        ('user', 'plays', 'game'): ([1, 2], [1, 2])
    }, idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_edges(bg, 1, etype='follows')
    assert bg.batch_size == bg_r.batch_size
    ntypes = bg.ntypes
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([1, 2, 0], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges('plays'), bg.batch_num_edges('plays'))

    bg_r = dgl.remove_edges(bg, 2, etype='plays')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([2, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_edges(bg, [0, 1, 3], etype='follows')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 1, 0], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('plays'), bg_r.batch_num_edges('plays'))

    bg_r = dgl.remove_edges(bg, [1, 2], etype='plays')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_edges(bg, F.tensor([0, 1, 3], dtype=idtype), etype='follows')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 1, 0], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('plays'), bg_r.batch_num_edges('plays'))

    bg_r = dgl.remove_edges(bg, F.tensor([1, 2], dtype=idtype), etype='plays')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
@parametrize_dtype
def test_remove_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = 0
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = [1]
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 0
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = F.tensor([2], dtype=idtype)
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))

    # invalid nid
    assert_fail = False
    try:
        g.remove_nodes(3)
    except:
        assert_fail = True
    assert assert_fail

    # has node and edge data
    g = dgl.graph(([0, 0, 2], [0, 1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['hv'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_nodes(g, F.tensor([0], dtype=idtype))
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    assert F.array_equal(g.ndata['hv'], F.tensor([2, 3], dtype=idtype))
    assert F.array_equal(g.edata['he'], F.tensor([3], dtype=idtype))

    # node id larger than current max node id
1485
1486
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1487
1488
1489
1490
1491
1492
1493
1494
    n = 0
    g = dgl.remove_nodes(g, n, ntype='user')
    assert g.number_of_nodes('user') == 1
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
1495
1496
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1497
1498
1499
1500
1501
1502
1503
1504
    n = [1]
    g = dgl.remove_nodes(g, n, ntype='user')
    assert g.number_of_nodes('user') == 1
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
1505
1506
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
    n = F.tensor([0], dtype=idtype)
    g = dgl.remove_nodes(g, n, ntype='game')
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges() == 2
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0 ,1], dtype=idtype))

    # heterogeneous graph
1517
    g = create_test_heterograph3(idtype)
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_nodes(g, 0, ntype='game')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 1
    assert g.number_of_nodes('developer') == 2
    assert g.number_of_edges('plays') == 2
    assert g.number_of_edges('develops') == 1
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3], dtype=idtype))
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([3, 4], dtype=idtype))
    u, v = g.edges(form='uv', order='eid', etype='develops')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0], dtype=idtype))

1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
    # batched graph
    ctx = F.ctx()
    g1 = dgl.graph(([0, 1], [1, 2]), num_nodes=5, idtype=idtype, device=ctx)
    g2 = dgl.graph(([], []), idtype=idtype, device=ctx)
    g3 = dgl.graph(([2, 3, 4], [3, 2, 1]), idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_nodes(bg, 1)
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes(), F.tensor([4, 0, 5], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([0, 0, 3], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, [1, 7])
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes(), F.tensor([4, 0, 4], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([0, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, F.tensor([1, 7], dtype=idtype))
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes(), F.tensor([4, 0, 4], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([0, 0, 1], dtype=F.int64))

    # batched heterogeneous graph
    g1 = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([1, 3], [0, 1])
    }, num_nodes_dict={'user': 4, 'game': 3}, idtype=idtype, device=ctx)
    g2 = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 2], [3, 4]),
        ('user', 'plays', 'game'): ([], [])
    }, num_nodes_dict={'user': 6, 'game': 2}, idtype=idtype, device=ctx)
    g3 = dgl.heterograph({
        ('user', 'follows', 'user'): ([], []),
        ('user', 'plays', 'game'): ([1, 2], [1, 2])
    }, idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_nodes(bg, 1, ntype='user')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes('user'), F.tensor([3, 6, 3], dtype=F.int64))
    assert F.array_equal(bg.batch_num_nodes('game'), bg_r.batch_num_nodes('game'))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 2, 0], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 2], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, 6, ntype='game')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg.batch_num_nodes('user'), bg_r.batch_num_nodes('user'))
    assert F.array_equal(bg_r.batch_num_nodes('game'), F.tensor([3, 2, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([2, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, [1, 5, 6, 11], ntype='user')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes('user'), F.tensor([3, 4, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_nodes('game'), bg_r.batch_num_nodes('game'))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 1, 0], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, [0, 3, 4, 7], ntype='game')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg.batch_num_nodes('user'), bg_r.batch_num_nodes('user'))
    assert F.array_equal(bg_r.batch_num_nodes('game'), F.tensor([2, 0, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, F.tensor([1, 5, 6, 11], dtype=idtype), ntype='user')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes('user'), F.tensor([3, 4, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_nodes('game'), bg_r.batch_num_nodes('game'))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 1, 0], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, F.tensor([0, 3, 4, 7], dtype=idtype), ntype='game')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg.batch_num_nodes('user'), bg_r.batch_num_nodes('user'))
    assert F.array_equal(bg_r.batch_num_nodes('game'), F.tensor([2, 0, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
@parametrize_dtype
def test_add_selfloop(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 0, 2], [2, 1, 0]), idtype=idtype, device=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.ndata['hn'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.add_self_loop(g)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 6
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 0, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 1, 0, 0, 1, 2], dtype=idtype))
    assert F.array_equal(g.edata['he'], F.tensor([1, 2, 3, 0, 0, 0], dtype=idtype))

    # bipartite graph
1628
1629
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1, 2], [1, 2, 2])}, idtype=idtype, device=F.ctx())
1630
1631
1632
1633
1634
1635
1636
1637
    # nothing will happend
    raise_error = False
    try:
        g = dgl.add_self_loop(g)
    except:
        raise_error = True
    assert raise_error

1638
    g = create_test_heterograph5(idtype)
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
    g = dgl.add_self_loop(g, etype='follows')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('follows') == 5
    assert g.number_of_edges('plays') == 2
    u, v = g.edges(form='uv', order='eid', etype='follows')
    assert F.array_equal(u, F.tensor([1, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 0, 1, 2], dtype=idtype))
    assert F.array_equal(g.edges['follows'].data['h'], F.tensor([1, 2, 0, 0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 2], dtype=idtype))

    raise_error = False
    try:
        g = dgl.add_self_loop(g, etype='plays')
    except:
        raise_error = True
    assert raise_error

@parametrize_dtype
def test_remove_selfloop(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 0, 0, 1], [1, 0, 0, 2]), idtype=idtype, device=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_self_loop(g)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 2
    assert F.array_equal(g.edata['he'], F.tensor([1, 4], dtype=idtype))

    # bipartite graph
1668
1669
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1, 2], [1, 2, 2])}, idtype=idtype, device=F.ctx())
1670
1671
1672
1673
1674
1675
1676
1677
    # nothing will happend
    raise_error = False
    try:
        g = dgl.remove_self_loop(g, etype='plays')
    except:
        raise_error = True
    assert raise_error

1678
    g = create_test_heterograph4(idtype)
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
    g = dgl.remove_self_loop(g, etype='follows')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('follows') == 2
    assert g.number_of_edges('plays') == 2
    u, v = g.edges(form='uv', order='eid', etype='follows')
    assert F.array_equal(u, F.tensor([1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(g.edges['follows'].data['h'], F.tensor([2, 4], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 2], dtype=idtype))

    raise_error = False
    try:
        g = dgl.remove_self_loop(g, etype='plays')
    except:
        raise_error = True
    assert raise_error
1696

1697
1698

@parametrize_dtype
1699
def test_reorder_graph(idtype):
1700
1701
1702
1703
1704
    g = dgl.graph(([0, 1, 2, 3, 4], [2, 2, 3, 2, 3]),
                  idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.randn((g.num_nodes(), 3)), ctx=F.ctx())
    g.edata['w'] = F.copy_to(F.randn((g.num_edges(), 2)), ctx=F.ctx())

1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
    # call with default args: node_permute_algo='rcmk', edge_permute_algo='src', store_ids=True
    rg = dgl.reorder_graph(g)
    assert dgl.NID in rg.ndata.keys()
    assert dgl.EID in rg.edata.keys()
    src = F.asnumpy(rg.edges()[0])
    assert np.array_equal(src, np.sort(src))

    # call with 'dst' edge_permute_algo
    rg = dgl.reorder_graph(g, edge_permute_algo='dst')
    dst = F.asnumpy(rg.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    # call with unknown edge_permute_algo
    raise_error = False
    try:
        dgl.reorder_graph(g, edge_permute_algo='none')
    except:
        raise_error = True
    assert raise_error
1724
1725

    # reorder back to original according to stored ids
1726
1727
1728
    rg = dgl.reorder_graph(g)
    rg2 = dgl.reorder_graph(rg, 'custom', permute_config={
        'nodes_perm': np.argsort(F.asnumpy(rg.ndata[dgl.NID]))})
1729
1730
1731
1732
    assert F.array_equal(g.ndata['h'], rg2.ndata['h'])
    assert F.array_equal(g.edata['w'], rg2.edata['w'])

    # do not store ids
1733
    rg = dgl.reorder_graph(g, store_ids=False)
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
    assert not dgl.NID in rg.ndata.keys()
    assert not dgl.EID in rg.edata.keys()

    # metis does not work on windows.
    if os.name == 'nt':
        pass
    else:
        # metis_partition may fail for small graph.
        mg = create_large_graph(1000).to(F.ctx())

        # call with metis strategy, but k is not specified
        raise_error = False
        try:
1747
            dgl.reorder_graph(mg, node_permute_algo='metis')
1748
1749
1750
1751
1752
1753
1754
        except:
            raise_error = True
        assert raise_error

        # call with metis strategy, k is specified
        raise_error = False
        try:
1755
1756
            dgl.reorder_graph(mg,
                              node_permute_algo='metis', permute_config={'k': 2})
1757
1758
1759
1760
1761
1762
1763
1764
        except:
            raise_error = True
        assert not raise_error

    # call with qualified nodes_perm specified
    nodes_perm = np.random.permutation(g.num_nodes())
    raise_error = False
    try:
1765
1766
        dgl.reorder_graph(g, node_permute_algo='custom', permute_config={
            'nodes_perm': nodes_perm})
1767
1768
1769
1770
1771
1772
1773
    except:
        raise_error = True
    assert not raise_error

    # call with unqualified nodes_perm specified
    raise_error = False
    try:
1774
1775
        dgl.reorder_graph(g, node_permute_algo='custom', permute_config={
            'nodes_perm':  nodes_perm[:g.num_nodes() - 1]})
1776
1777
1778
1779
1780
1781
1782
    except:
        raise_error = True
    assert raise_error

    # call with unsupported strategy
    raise_error = False
    try:
1783
        dgl.reorder_graph(g, node_permute_algo='cmk')
1784
1785
1786
1787
1788
1789
1790
1791
1792
    except:
        raise_error = True
    assert raise_error

    # heterograph: not supported
    raise_error = False
    try:
        hg = dgl.heterogrpah({('user', 'follow', 'user'): (
            [0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1793
        dgl.reorder_graph(hg)
1794
1795
1796
1797
1798
1799
1800
    except:
        raise_error = True
    assert raise_error

    # add 'csr' format if needed
    fg = g.formats('csc')
    assert 'csr' not in sum(fg.formats().values(), [])
1801
    rfg = dgl.reorder_graph(fg)
1802
1803
    assert 'csr' in sum(rfg.formats().values(), [])

1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
@parametrize_dtype
def test_module_add_self_loop(idtype):
    g = dgl.graph(([1, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((g.num_nodes(), 2))
    g.edata['w'] = F.randn((g.num_edges(), 3))

    # Case1: add self-loops with the default setting
    transform = dgl.AddSelfLoop()
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_nodes()
    assert new_g.num_edges() == 4
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (1, 2), (2, 2)}
    assert 'h' in new_g.ndata
    assert 'w' in new_g.edata

    # Case2: Remove self-loops first to avoid duplicate ones
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_nodes()
    assert new_g.num_edges() == 5
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (1, 2), (2, 2)}
    assert 'h' in new_g.ndata
    assert 'w' in new_g.edata

    # Create a heterogeneous graph
    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0], [1]),
        ('user', 'follows', 'user'): ([1], [3])
    }, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h1'] = F.randn((4, 2))
    g.edges['plays'].data['w1'] = F.randn((1, 3))
    g.nodes['game'].data['h2'] = F.randn((2, 4))
    g.edges['follows'].data['w2'] = F.randn((1, 5))

    # Case3: add self-loops for a heterogeneous graph
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
    assert new_g.num_edges('plays') == 1
    assert new_g.num_edges('follows') == 5
    assert 'h1' in new_g.nodes['user'].data
    assert 'h2' in new_g.nodes['game'].data
    assert 'w1' in new_g.edges['plays'].data
    assert 'w2' in new_g.edges['follows'].data

    # Case4: add self-etypes for a heterogeneous graph
    transform = dgl.AddSelfLoop(new_etypes=True)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert set(new_g.canonical_etypes) == {
        ('user', 'plays', 'game'), ('user', 'follows', 'user'),
        ('user', 'self', 'user'), ('game', 'self', 'game')
    }
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
    assert new_g.num_edges('plays') == 1
    assert new_g.num_edges('follows') == 5
    assert new_g.num_edges(('user', 'self', 'user')) == 4
    assert new_g.num_edges(('game', 'self', 'game')) == 2
    assert 'h1' in new_g.nodes['user'].data
    assert 'h2' in new_g.nodes['game'].data
    assert 'w1' in new_g.edges['plays'].data
    assert 'w2' in new_g.edges['follows'].data

@parametrize_dtype
def test_module_remove_self_loop(idtype):
    transform = dgl.RemoveSelfLoop()

    # Case1: homogeneous graph
    g = dgl.graph(([1, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((g.num_nodes(), 2))
    g.edata['w'] = F.randn((g.num_edges(), 3))
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_nodes()
    assert new_g.num_edges() == 1
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 2)}
    assert 'h' in new_g.ndata
    assert 'w' in new_g.edata

    # Case2: heterogeneous graph
    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1], [1, 1]),
        ('user', 'follows', 'user'): ([1, 2], [2, 2])
    }, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h1'] = F.randn((3, 2))
    g.edges['plays'].data['w1'] = F.randn((2, 3))
    g.nodes['game'].data['h2'] = F.randn((2, 4))
    g.edges['follows'].data['w2'] = F.randn((2, 5))

    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
    assert new_g.num_edges('plays') == 2
    assert new_g.num_edges('follows') == 1
    assert 'h1' in new_g.nodes['user'].data
    assert 'h2' in new_g.nodes['game'].data
    assert 'w1' in new_g.edges['plays'].data
    assert 'w2' in new_g.edges['follows'].data

@parametrize_dtype
def test_module_add_reverse(idtype):
    transform = dgl.AddReverse()

    # Case1: Add reverse edges for a homogeneous graph
    g = dgl.graph(([0], [1]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((g.num_nodes(), 3))
    g.edata['w'] = F.randn((g.num_edges(), 2))
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert g.num_nodes() == new_g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 0)}
    assert F.allclose(g.ndata['h'], new_g.ndata['h'])
    assert F.allclose(g.edata['w'], F.narrow_row(new_g.edata['w'], 0, 1))
    assert F.allclose(F.narrow_row(new_g.edata['w'], 1, 2), F.zeros((1, 2), F.float32, F.ctx()))

    # Case2: Add reverse edges for a homogeneous graph and copy edata
    transform = dgl.AddReverse(copy_edata=True)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert g.num_nodes() == new_g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 0)}
    assert F.allclose(g.ndata['h'], new_g.ndata['h'])
    assert F.allclose(g.edata['w'], F.narrow_row(new_g.edata['w'], 0, 1))
    assert F.allclose(g.edata['w'], F.narrow_row(new_g.edata['w'], 1, 2))

    # Case3: Add reverse edges for a heterogeneous graph
    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1], [1, 1]),
        ('user', 'follows', 'user'): ([1, 2], [2, 2])
    }, device=F.ctx())
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert g.ntypes == new_g.ntypes
    assert set(new_g.canonical_etypes) == {
        ('user', 'plays', 'game'), ('user', 'follows', 'user'), ('game', 'rev_plays', 'user')}
    for nty in g.ntypes:
        assert g.num_nodes(nty) == new_g.num_nodes(nty)

    src, dst = new_g.edges(etype='plays')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

    src, dst = new_g.edges(etype='follows')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 2), (2, 2), (2, 1)}

    src, dst = new_g.edges(etype='rev_plays')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 1), (1, 0)}

    # Case4: Enforce reverse edge types for symmetric canonical edge types
    transform = dgl.AddReverse(sym_new_etype=True)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert g.ntypes == new_g.ntypes
    assert set(new_g.canonical_etypes) == {
        ('user', 'plays', 'game'), ('user', 'follows', 'user'),
        ('game', 'rev_plays', 'user'), ('user', 'rev_follows', 'user')}
    for nty in g.ntypes:
        assert g.num_nodes(nty) == new_g.num_nodes(nty)

    src, dst = new_g.edges(etype='plays')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

    src, dst = new_g.edges(etype='follows')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 2), (2, 2)}

    src, dst = new_g.edges(etype='rev_plays')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 1), (1, 0)}

    src, dst = new_g.edges(etype='rev_follows')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(2, 1), (2, 2)}

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not supported for to_simple")
@parametrize_dtype
def test_module_to_simple(idtype):
    transform = dgl.ToSimple()
    g = dgl.graph(([0, 1, 1], [1, 2, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((g.num_nodes(), 2))
    g.edata['w'] = F.tensor([[0.1], [0.2], [0.3]])
    sg = transform(g)
    assert sg.device == g.device
    assert sg.idtype == g.idtype
    assert sg.num_nodes() == g.num_nodes()
    assert sg.num_edges() == 2
    src, dst = sg.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 2)}
    assert F.allclose(sg.edata['count'], F.tensor([1, 2]))
    assert F.allclose(sg.ndata['h'], g.ndata['h'])

    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 1], [1, 2, 2]),
        ('user', 'plays', 'game'): ([0, 1, 0], [1, 1, 1])
    })
    sg = transform(g)
    assert sg.device == g.device
    assert sg.idtype == g.idtype
    assert sg.ntypes == g.ntypes
    assert sg.canonical_etypes == g.canonical_etypes
    for nty in sg.ntypes:
        assert sg.num_nodes(nty) == g.num_nodes(nty)
    for ety in sg.canonical_etypes:
        assert sg.num_edges(ety) == 2

    src, dst = sg.edges(etype='follows')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 2)}

    src, dst = sg.edges(etype='plays')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

@parametrize_dtype
def test_module_line_graph(idtype):
    transform = dgl.LineGraph()
    g = dgl.graph(([0, 1, 1], [1, 0, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['w'] = F.tensor([[0.], [0.1], [0.2]])
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_edges()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (0, 2), (1, 0)}

    transform = dgl.LineGraph(backtracking=False)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_edges()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 2)}

@parametrize_dtype
def test_module_khop_graph(idtype):
    transform = dgl.KHopGraph(2)
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((g.num_nodes(), 2))
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_nodes()
    assert F.allclose(g.ndata['h'], new_g.ndata['h'])
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 2)}

@parametrize_dtype
def test_module_add_metapaths(idtype):
    g = dgl.heterograph({
        ('person', 'author', 'paper'): ([0, 0, 1], [1, 2, 2]),
        ('paper', 'accepted', 'venue'): ([1], [0]),
        ('paper', 'rejected', 'venue'): ([2], [1])
    }, idtype=idtype, device=F.ctx())
    g.nodes['venue'].data['h'] = F.randn((g.num_nodes('venue'), 2))
    g.edges['author'].data['h'] = F.randn((g.num_edges('author'), 3))

    # Case1: keep_orig_edges is True
    metapaths = {
        'accepted': [('person', 'author', 'paper'), ('paper', 'accepted', 'venue')],
        'rejected': [('person', 'author', 'paper'), ('paper', 'rejected', 'venue')]
    }
    transform = dgl.AddMetaPaths(metapaths)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert set(new_g.canonical_etypes) == {
        ('person', 'author', 'paper'), ('paper', 'accepted', 'venue'),
        ('paper', 'rejected', 'venue'), ('person', 'accepted', 'venue'),
        ('person', 'rejected', 'venue')
    }
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
    for ety in g.canonical_etypes:
        assert new_g.num_edges(ety) == g.num_edges(ety)
    assert F.allclose(g.nodes['venue'].data['h'], new_g.nodes['venue'].data['h'])
    assert F.allclose(g.edges['author'].data['h'], new_g.edges['author'].data['h'])

    src, dst = new_g.edges(etype=('person', 'accepted', 'venue'))
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0)}

    src, dst = new_g.edges(etype=('person', 'rejected', 'venue'))
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

    # Case2: keep_orig_edges is False
    transform = dgl.AddMetaPaths(metapaths, keep_orig_edges=False)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert len(new_g.canonical_etypes) == 2
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
    assert F.allclose(g.nodes['venue'].data['h'], new_g.nodes['venue'].data['h'])

    src, dst = new_g.edges(etype=('person', 'accepted', 'venue'))
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0)}

    src, dst = new_g.edges(etype=('person', 'rejected', 'venue'))
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

@parametrize_dtype
def test_module_compose(idtype):
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    transform = dgl.Compose([dgl.AddReverse(), dgl.AddSelfLoop()])
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_edges() == 7

    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 2), (1, 0), (2, 1), (0, 0), (1, 1), (2, 2)}

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
@parametrize_dtype
def test_module_gcnnorm(idtype):
    g = dgl.heterograph({
        ('A', 'r1', 'A'): ([0, 1, 2], [0, 0, 1]),
        ('A', 'r2', 'B'): ([0, 0], [1, 1]),
        ('B', 'r3', 'B'): ([0, 1, 2], [0, 0, 1])
    }, idtype=idtype, device=F.ctx())
    g.edges['r3'].data['w'] = F.tensor([0.1, 0.2, 0.3])
    transform = dgl.GCNNorm()
    new_g = transform(g)
    assert 'w' not in new_g.edges[('A', 'r2', 'B')].data
    assert F.allclose(new_g.edges[('A', 'r1', 'A')].data['w'],
                      F.tensor([1./2, 1./math.sqrt(2), 0.]))
    assert F.allclose(new_g.edges[('B', 'r3', 'B')].data['w'], F.tensor([1./3, 2./3, 0.]))

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
@parametrize_dtype
def test_module_ppr(idtype):
    g = dgl.graph(([0, 1, 2, 3, 4], [2, 3, 4, 5, 3]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((6, 2))
    transform = dgl.PPR(avg_degree=2)
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.num_nodes() == g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (0, 2), (0, 4), (1, 1), (1, 3), (1, 5), (2, 2),
                    (2, 3), (2, 4), (3, 3), (3, 5), (4, 3), (4, 4), (4, 5), (5, 5)}
    assert F.allclose(g.ndata['h'], new_g.ndata['h'])
    assert 'w' in new_g.edata

    # Prior edge weights
    g.edata['w'] = F.tensor([0.1, 0.2, 0.3, 0.4, 0.5])
    new_g = transform(g)
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (1, 3), (2, 2), (2, 3), (2, 4),
                    (3, 3), (3, 5), (4, 3), (4, 4), (4, 5), (5, 5)}

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
@parametrize_dtype
def test_module_heat_kernel(idtype):
    # Case1: directed graph
    g = dgl.graph(([0, 1, 2, 3, 4], [2, 3, 4, 5, 3]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((6, 2))
    transform = dgl.HeatKernel(avg_degree=1)
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.num_nodes() == g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 2), (0, 4), (1, 3), (1, 5), (2, 3), (2, 4), (3, 5), (4, 5)}
    assert F.allclose(g.ndata['h'], new_g.ndata['h'])
    assert 'w' in new_g.edata

    # Case2: weighted undirected graph
    g = dgl.graph(([0, 1, 2, 3], [1, 0, 3, 2]), idtype=idtype, device=F.ctx())
    g.edata['w'] = F.tensor([0.1, 0.2, 0.3, 0.4])
    new_g = transform(g)
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (2, 2), (3, 3)}

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
@parametrize_dtype
def test_module_gdc(idtype):
    transform = dgl.GDC([0.1, 0.2, 0.1], avg_degree=1)
    g = dgl.graph(([0, 1, 2, 3, 4], [2, 3, 4, 5, 3]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((6, 2))
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.num_nodes() == g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (0, 2), (0, 4), (1, 1), (1, 3), (1, 5), (2, 2), (2, 3),
                    (2, 4), (3, 3), (3, 5), (4, 3), (4, 4), (4, 5), (5, 5)}
    assert F.allclose(g.ndata['h'], new_g.ndata['h'])
    assert 'w' in new_g.edata

    # Prior edge weights
    g.edata['w'] = F.tensor([0.1, 0.2, 0.3, 0.4, 0.5])
    new_g = transform(g)
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (2, 2), (3, 3), (4, 3), (4, 4), (5, 5)}

@parametrize_dtype
def test_module_node_shuffle(idtype):
    transform = dgl.NodeShuffle()
    g = dgl.heterograph({
        ('A', 'r', 'B'): ([0, 1], [1, 2]),
    }, idtype=idtype, device=F.ctx())
    new_g = transform(g)

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
@parametrize_dtype
def test_module_drop_node(idtype):
    transform = dgl.DropNode()
    g = dgl.heterograph({
        ('A', 'r', 'B'): ([0, 1], [1, 2]),
    }, idtype=idtype, device=F.ctx())
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
@parametrize_dtype
def test_module_drop_edge(idtype):
    transform = dgl.DropEdge()
    g = dgl.heterograph({
        ('A', 'r1', 'B'): ([0, 1], [1, 2]),
        ('C', 'r2', 'C'): ([3, 4, 5], [6, 7, 8])
    }, idtype=idtype, device=F.ctx())
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes

@parametrize_dtype
def test_module_add_edge(idtype):
    transform = dgl.AddEdge()
    g = dgl.heterograph({
        ('A', 'r1', 'B'): ([0, 1, 2, 3, 4], [1, 2, 3, 4, 5]),
        ('C', 'r2', 'C'): ([0, 1, 2, 3, 4], [1, 2, 3, 4, 5])
    }, idtype=idtype, device=F.ctx())
    new_g = transform(g)
    assert new_g.num_edges(('A', 'r1', 'B')) == 6
    assert new_g.num_edges(('C', 'r2', 'C')) == 6
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes

2299
if __name__ == '__main__':
2300
    test_partition_with_halo()