test_transform.py 97.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
##
#   Copyright 2019-2021 Contributors
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.
#

17
from scipy import sparse as spsp
18
19
import networkx as nx
import numpy as np
20
import os
21
22
import dgl
import dgl.function as fn
23
import dgl.partition
24
import backend as F
25
import unittest
26
import math
27
from utils import parametrize_dtype
28

29
from test_heterograph import create_test_heterograph3, create_test_heterograph4, create_test_heterograph5
30

31
32
33
D = 5

# line graph related
34

35
def test_line_graph1():
36
    N = 5
37
    G = dgl.DGLGraph(nx.star_graph(N)).to(F.ctx())
38
    G.edata['h'] = F.randn((2 * N, D))
39
40
    L = G.line_graph(shared=True)
    assert L.number_of_nodes() == 2 * N
41
    assert F.allclose(L.ndata['h'], G.edata['h'])
42
    assert G.device == F.ctx()
43

44
@parametrize_dtype
45
def test_line_graph2(idtype):
46
47
48
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 1, 2, 2],[2, 0, 2, 0, 1])
    }, idtype=idtype)
49
    lg = dgl.line_graph(g)
50
51
52
53
54
55
56
57
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))

58
    lg = dgl.line_graph(g, backtracking=False)
59
60
61
62
63
64
65
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 4
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 1, 2, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([4, 0, 3, 1]))
66
67
68
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 1, 2, 2],[2, 0, 2, 0, 1])
    }, idtype=idtype).formats('csr')
69
    lg = dgl.line_graph(g)
70
71
72
73
74
75
76
77
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))

78
79
80
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 1, 2, 2],[2, 0, 2, 0, 1])
    }, idtype=idtype).formats('csc')
81
    lg = dgl.line_graph(g)
82
83
84
85
86
87
88
89
90
91
92
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col, eid = lg.edges('all')
    row = F.asnumpy(row)
    col = F.asnumpy(col)
    eid = F.asnumpy(eid).astype(int)
    order = np.argsort(eid)
    assert np.array_equal(row[order],
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(col[order],
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))
93

94
95
96
97
98
99
100
101
102
103
104
105
def test_no_backtracking():
    N = 5
    G = dgl.DGLGraph(nx.star_graph(N))
    L = G.line_graph(backtracking=False)
    assert L.number_of_nodes() == 2 * N
    for i in range(1, N):
        e1 = G.edge_id(0, i)
        e2 = G.edge_id(i, 0)
        assert not L.has_edge_between(e1, e2)
        assert not L.has_edge_between(e2, e1)

# reverse graph related
106
107
@parametrize_dtype
def test_reverse(idtype):
108
    g = dgl.DGLGraph()
109
    g = g.astype(idtype).to(F.ctx())
110
111
112
    g.add_nodes(5)
    # The graph need not to be completely connected.
    g.add_edges([0, 1, 2], [1, 2, 1])
113
114
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [3.], [4.]])
    g.edata['h'] = F.tensor([[5.], [6.], [7.]])
115
116
117
118
119
120
    rg = g.reverse()

    assert g.is_multigraph == rg.is_multigraph

    assert g.number_of_nodes() == rg.number_of_nodes()
    assert g.number_of_edges() == rg.number_of_edges()
121
122
    assert F.allclose(F.astype(rg.has_edges_between(
        [1, 2, 1], [0, 1, 2]), F.float32), F.ones((3,)))
123
124
125
126
    assert g.edge_id(0, 1) == rg.edge_id(1, 0)
    assert g.edge_id(1, 2) == rg.edge_id(2, 1)
    assert g.edge_id(2, 1) == rg.edge_id(1, 2)

127
    # test dgl.reverse
128
129
130
131
    # test homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 2]), F.tensor([1, 2, 0])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.]])
132
    g_r = dgl.reverse(g)
133
134
135
136
137
138
139
140
141
142
143
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    u_g, v_g, eids_g = g.all_edges(form='all')
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all')
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    assert F.array_equal(g.ndata['h'], g_r.ndata['h'])
    assert len(g_r.edata) == 0

    # without share ndata
144
    g_r = dgl.reverse(g, copy_ndata=False)
145
146
147
148
149
150
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    assert len(g_r.ndata) == 0
    assert len(g_r.edata) == 0

    # with share ndata and edata
151
    g_r = dgl.reverse(g, copy_ndata=True, copy_edata=True)
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    assert F.array_equal(g.ndata['h'], g_r.ndata['h'])
    assert F.array_equal(g.edata['h'], g_r.edata['h'])

    # add new node feature to g_r
    g_r.ndata['hh'] = F.tensor([0, 1, 2])
    assert ('hh' in g.ndata) is False
    assert ('hh' in g_r.ndata) is True

    # add new edge feature to g_r
    g_r.edata['hh'] = F.tensor([0, 1, 2])
    assert ('hh' in g.edata) is False
    assert ('hh' in g_r.edata) is True

    # test heterogeneous graph
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2, 4, 3 ,1, 3], [1, 2, 3, 2, 0, 0, 1]),
        ('user', 'plays', 'game'): ([0, 0, 2, 3, 3, 4, 1], [1, 0, 1, 0, 1, 0, 0]),
171
172
        ('developer', 'develops', 'game'): ([0, 1, 1, 2], [0, 0, 1, 1])},
        idtype=idtype, device=F.ctx())
173
174
175
176
177
    g.nodes['user'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    g.nodes['user'].data['hh'] = F.tensor([1, 1, 1, 1, 1])
    g.nodes['game'].data['h'] = F.tensor([0, 1])
    g.edges['follows'].data['h'] = F.tensor([0, 1, 2, 4, 3 ,1, 3])
    g.edges['follows'].data['hh'] = F.tensor([1, 2, 3, 2, 0, 0, 1])
178
    g_r = dgl.reverse(g)
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g_r.number_of_nodes(ntype)
    assert F.array_equal(g.nodes['user'].data['h'], g_r.nodes['user'].data['h'])
    assert F.array_equal(g.nodes['user'].data['hh'], g_r.nodes['user'].data['hh'])
    assert F.array_equal(g.nodes['game'].data['h'], g_r.nodes['game'].data['h'])
    assert len(g_r.edges['follows'].data) == 0
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('user', 'follows', 'user'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('user', 'follows', 'user'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('user', 'plays', 'game'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('game', 'plays', 'user'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('developer', 'develops', 'game'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('game', 'develops', 'developer'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)

    # withour share ndata
208
    g_r = dgl.reverse(g, copy_ndata=False)
209
210
211
212
213
214
215
216
217
218
    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g_r.number_of_nodes(ntype)
    assert len(g_r.nodes['user'].data) == 0
    assert len(g_r.nodes['game'].data) == 0

219
    g_r = dgl.reverse(g, copy_ndata=True, copy_edata=True)
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    print(g_r)
    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    assert F.array_equal(g.edges['follows'].data['h'], g_r.edges['follows'].data['h'])
    assert F.array_equal(g.edges['follows'].data['hh'], g_r.edges['follows'].data['hh'])

    # add new node feature to g_r
    g_r.nodes['user'].data['hhh'] = F.tensor([0, 1, 2, 3, 4])
    assert ('hhh' in g.nodes['user'].data) is False
    assert ('hhh' in g_r.nodes['user'].data) is True

    # add new edge feature to g_r
    g_r.edges['follows'].data['hhh'] = F.tensor([1, 2, 3, 2, 0, 0, 1])
    assert ('hhh' in g.edges['follows'].data) is False
    assert ('hhh' in g_r.edges['follows'].data) is True

239

240
241
@parametrize_dtype
def test_reverse_shared_frames(idtype):
242
    g = dgl.DGLGraph()
243
    g = g.astype(idtype).to(F.ctx())
244
245
    g.add_nodes(3)
    g.add_edges([0, 1, 2], [1, 2, 1])
246
247
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.]])
248
249

    rg = g.reverse(share_ndata=True, share_edata=True)
250
251
252
    assert F.allclose(g.ndata['h'], rg.ndata['h'])
    assert F.allclose(g.edata['h'], rg.edata['h'])
    assert F.allclose(g.edges[[0, 2], [1, 1]].data['h'],
253
254
                      rg.edges[[1, 1], [0, 2]].data['h'])

255
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
256
def test_to_bidirected():
257
258
    # homogeneous graph
    elist = [(0, 0), (0, 1), (1, 0),
259
             (1, 1), (2, 1), (2, 2)]
260
    num_edges = 7
261
    g = dgl.graph(tuple(zip(*elist)))
262
263
264
265
266
267
268
269
270
271
272
273
274
    elist.append((1, 2))
    elist = set(elist)
    big = dgl.to_bidirected(g)
    assert big.number_of_edges() == num_edges
    src, dst = big.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist)

    # heterogeneous graph
    elist1 = [(0, 0), (0, 1), (1, 0),
                (1, 1), (2, 1), (2, 2)]
    elist2 = [(0, 0), (0, 1)]
    g = dgl.heterograph({
275
276
        ('user', 'wins', 'user'): tuple(zip(*elist1)),
        ('user', 'follows', 'user'): tuple(zip(*elist2))
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    })
    g.nodes['user'].data['h'] = F.ones((3, 1))
    elist1.append((1, 2))
    elist1 = set(elist1)
    elist2.append((1, 0))
    elist2 = set(elist2)
    big = dgl.to_bidirected(g)
    assert big.number_of_edges('wins') == 7
    assert big.number_of_edges('follows') == 3
    src, dst = big.edges(etype='wins')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist1)
    src, dst = big.edges(etype='follows')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist2)

    big = dgl.to_bidirected(g, copy_ndata=True)
    assert F.array_equal(g.nodes['user'].data['h'], big.nodes['user'].data['h'])

def test_add_reverse_edges():
297
298
299
300
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 3, 1]), F.tensor([1, 2, 0, 2])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [1.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
301
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True)
302
303
304
305
306
307
308
309
310
311
312
313
    u, v = g.edges()
    ub, vb = bg.edges()
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert F.array_equal(g.ndata['h'], bg.ndata['h'])
    assert F.array_equal(F.cat([g.edata['h'], g.edata['h']], dim=0), bg.edata['h'])
    bg.ndata['hh'] = F.tensor([[0.], [1.], [2.], [1.]])
    assert ('hh' in g.ndata) is False
    bg.edata['hh'] = F.tensor([[0.], [1.], [2.], [1.], [0.], [1.], [2.], [1.]])
    assert ('hh' in g.edata) is False

    # donot share ndata and edata
314
    bg = dgl.add_reverse_edges(g, copy_ndata=False, copy_edata=False)
315
316
317
318
319
320
321
    ub, vb = bg.edges()
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert ('h' in bg.ndata) is False
    assert ('h' in bg.edata) is False

    # zero edge graph
322
    g = dgl.graph(([], []))
323
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True, exclude_self=False)
324
325
326
327
328
329
330
331
332
333

    # heterogeneous graph
    g = dgl.heterograph({
        ('user', 'wins', 'user'): (F.tensor([0, 2, 0, 2, 2]), F.tensor([1, 1, 2, 1, 0])),
        ('user', 'plays', 'game'): (F.tensor([1, 2, 1]), F.tensor([2, 1, 1])),
        ('user', 'follows', 'user'): (F.tensor([1, 2, 1]), F.tensor([0, 0, 0]))
    })
    g.nodes['game'].data['hv'] = F.ones((3, 1))
    g.nodes['user'].data['hv'] = F.ones((3, 1))
    g.edges['wins'].data['h'] = F.tensor([0, 1, 2, 3, 4])
334
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True, ignore_bipartite=True)
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    assert F.array_equal(g.nodes['game'].data['hv'], bg.nodes['game'].data['hv'])
    assert F.array_equal(g.nodes['user'].data['hv'], bg.nodes['user'].data['hv'])
    u, v = g.all_edges(order='eid', etype=('user', 'wins', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'wins', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert F.array_equal(F.cat([g.edges['wins'].data['h'], g.edges['wins'].data['h']], dim=0),
                         bg.edges['wins'].data['h'])
    u, v = g.all_edges(order='eid', etype=('user', 'follows', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'follows', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'plays', 'game'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'plays', 'game'))
    assert F.array_equal(u, ub)
    assert F.array_equal(v, vb)
351
352
    assert set(bg.edges['plays'].data.keys()) == {dgl.EID}
    assert set(bg.edges['follows'].data.keys()) == {dgl.EID}
353
354

    # donot share ndata and edata
355
    bg = dgl.add_reverse_edges(g, copy_ndata=False, copy_edata=False, ignore_bipartite=True)
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
    assert len(bg.edges['wins'].data) == 0
    assert len(bg.edges['plays'].data) == 0
    assert len(bg.edges['follows'].data) == 0
    assert len(bg.nodes['game'].data) == 0
    assert len(bg.nodes['user'].data) == 0
    u, v = g.all_edges(order='eid', etype=('user', 'wins', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'wins', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'follows', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'follows', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'plays', 'game'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'plays', 'game'))
    assert F.array_equal(u, ub)
    assert F.array_equal(v, vb)

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
    # test the case when some nodes have zero degree
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 3, 1]), F.tensor([1, 2, 0, 2])), num_nodes=6)
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [1.], [1.], [1.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True)
    assert g.number_of_nodes() == bg.number_of_nodes()
    assert F.array_equal(g.ndata['h'], bg.ndata['h'])
    assert F.array_equal(F.cat([g.edata['h'], g.edata['h']], dim=0), bg.edata['h'])

    # heterogeneous graph
    g = dgl.heterograph({
        ('user', 'wins', 'user'): (F.tensor([0, 2, 0, 2, 2]), F.tensor([1, 1, 2, 1, 0])),
        ('user', 'plays', 'game'): (F.tensor([1, 2, 1]), F.tensor([2, 1, 1])),
        ('user', 'follows', 'user'): (F.tensor([1, 2, 1]), F.tensor([0, 0, 0]))},
        num_nodes_dict={
            'user': 5,
            'game': 3
        })
    g.nodes['game'].data['hv'] = F.ones((3, 1))
    g.nodes['user'].data['hv'] = F.ones((5, 1))
    g.edges['wins'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True, ignore_bipartite=True)
    assert g.number_of_nodes('user') == bg.number_of_nodes('user')
    assert g.number_of_nodes('game') == bg.number_of_nodes('game')
    assert F.array_equal(g.nodes['game'].data['hv'], bg.nodes['game'].data['hv'])
    assert F.array_equal(g.nodes['user'].data['hv'], bg.nodes['user'].data['hv'])
    assert F.array_equal(F.cat([g.edges['wins'].data['h'], g.edges['wins'].data['h']], dim=0),
                         bg.edges['wins'].data['h'])

404
405
406
407
408
409
410
411
412
413
    # test exclude_self
    g = dgl.heterograph({
        ('A', 'r1', 'A'): (F.tensor([0, 0, 1, 1]), F.tensor([0, 1, 1, 2])),
        ('A', 'r2', 'A'): (F.tensor([0, 1]), F.tensor([1, 2]))
    })
    g.edges['r1'].data['h'] = F.tensor([0, 1, 2, 3])
    rg = dgl.add_reverse_edges(g, copy_edata=True, exclude_self=True)
    assert rg.num_edges('r1') == 6
    assert rg.num_edges('r2') == 4
    assert F.array_equal(rg.edges['r1'].data['h'], F.tensor([0, 1, 2, 3, 1, 3]))
414

415
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
416
417
418
419
420
421
422
423
424
425
def test_simple_graph():
    elist = [(0, 1), (0, 2), (1, 2), (0, 1)]
    g = dgl.DGLGraph(elist, readonly=True)
    assert g.is_multigraph
    sg = dgl.to_simple_graph(g)
    assert not sg.is_multigraph
    assert sg.number_of_edges() == 3
    src, dst = sg.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist)
426

427
428
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
def _test_bidirected_graph():
429
    def _test(in_readonly, out_readonly):
430
431
432
        elist = [(0, 0), (0, 1), (1, 0),
                (1, 1), (2, 1), (2, 2)]
        num_edges = 7
433
434
435
        g = dgl.DGLGraph(elist, readonly=in_readonly)
        elist.append((1, 2))
        elist = set(elist)
436
        big = dgl.to_bidirected_stale(g, out_readonly)
437
        assert big.number_of_edges() == num_edges
438
439
440
441
442
443
444
445
446
        src, dst = big.edges()
        eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
        assert eset == set(elist)

    _test(True, True)
    _test(True, False)
    _test(False, True)
    _test(False, False)

447

448
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
449
450
451
452
def test_khop_graph():
    N = 20
    feat = F.randn((N, 5))

Mufei Li's avatar
Mufei Li committed
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
    def _test(g):
        for k in range(4):
            g_k = dgl.khop_graph(g, k)
            # use original graph to do message passing for k times.
            g.ndata['h'] = feat
            for _ in range(k):
                g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            h_0 = g.ndata.pop('h')
            # use k-hop graph to do message passing for one time.
            g_k.ndata['h'] = feat
            g_k.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            h_1 = g_k.ndata.pop('h')
            assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

    # Test for random undirected graphs
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    _test(g)
    # Test for random directed graphs
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3, directed=True))
    _test(g)
473

474
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
475
476
477
478
479
def test_khop_adj():
    N = 20
    feat = F.randn((N, 5))
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    for k in range(3):
480
        adj = F.tensor(F.swapaxes(dgl.khop_adj(g, k), 0, 1))
481
482
483
484
485
486
487
488
489
        # use original graph to do message passing for k times.
        g.ndata['h'] = feat
        for _ in range(k):
            g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
        h_0 = g.ndata.pop('h')
        # use k-hop adj to do message passing for one time.
        h_1 = F.matmul(adj, feat)
        assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

490

491
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
492
493
494
495
496
497
498
def test_laplacian_lambda_max():
    N = 20
    eps = 1e-6
    # test DGLGraph
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    l_max = dgl.laplacian_lambda_max(g)
    assert (l_max[0] < 2 + eps)
Zihao Ye's avatar
Zihao Ye committed
499
    # test batched DGLGraph
500
    '''
501
502
503
504
505
506
507
508
509
    N_arr = [20, 30, 10, 12]
    bg = dgl.batch([
        dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
        for N in N_arr
    ])
    l_max_arr = dgl.laplacian_lambda_max(bg)
    assert len(l_max_arr) == len(N_arr)
    for l_max in l_max_arr:
        assert l_max < 2 + eps
510
    '''
511

512
def create_large_graph(num_nodes, idtype=F.int64):
513
514
515
    row = np.random.choice(num_nodes, num_nodes * 10)
    col = np.random.choice(num_nodes, num_nodes * 10)
    spm = spsp.coo_matrix((np.ones(len(row)), (row, col)))
516
    spm.sum_duplicates()
517

518
    return dgl.from_scipy(spm, idtype=idtype)
519
520
521
522
523
524
525
526
527

def get_nodeflow(g, node_ids, num_layers):
    batch_size = len(node_ids)
    expand_factor = g.number_of_nodes()
    sampler = dgl.contrib.sampling.NeighborSampler(g, batch_size,
            expand_factor=expand_factor, num_hops=num_layers,
            seed_nodes=node_ids)
    return next(iter(sampler))

528
# Disabled since everything will be on heterogeneous graphs
529
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
530
def test_partition_with_halo():
531
    g = create_large_graph(1000)
532
    node_part = np.random.choice(4, g.number_of_nodes())
533
    subgs, _, _ = dgl.transforms.partition_graph_with_halo(g, node_part, 2, reshuffle=True)
534
535
536
    for part_id, subg in subgs.items():
        node_ids = np.nonzero(node_part == part_id)[0]
        lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
537
538
539
540
        orig_nids = F.asnumpy(subg.ndata['orig_id'])[lnode_ids]
        assert np.all(np.sort(orig_nids) == node_ids)
        assert np.all(F.asnumpy(subg.in_degrees(lnode_ids)) == F.asnumpy(g.in_degrees(orig_nids)))
        assert np.all(F.asnumpy(subg.out_degrees(lnode_ids)) == F.asnumpy(g.out_degrees(orig_nids)))
541

542
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
543
@unittest.skipIf(F._default_context_str == 'gpu', reason="METIS doesn't support GPU")
544
545
@parametrize_dtype
def test_metis_partition(idtype):
Da Zheng's avatar
Da Zheng committed
546
    # TODO(zhengda) Metis fails to partition a small graph.
547
548
549
550
551
552
553
554
555
556
557
558
559
    g = create_large_graph(1000, idtype=idtype)
    if idtype == F.int64:
        check_metis_partition(g, 0)
        check_metis_partition(g, 1)
        check_metis_partition(g, 2)
        check_metis_partition_with_constraint(g)
    else:
        assert_fail = False
        try:
            check_metis_partition(g, 1)
        except:
            assert_fail = True
        assert assert_fail
560

561
562
563
564
def check_metis_partition_with_constraint(g):
    ntypes = np.zeros((g.number_of_nodes(),), dtype=np.int32)
    ntypes[0:int(g.number_of_nodes()/4)] = 1
    ntypes[int(g.number_of_nodes()*3/4):] = 2
565
    subgs = dgl.transforms.metis_partition(g, 4, extra_cached_hops=1, balance_ntypes=ntypes)
566
567
568
569
570
571
572
573
    if subgs is not None:
        for i in subgs:
            subg = subgs[i]
            parent_nids = F.asnumpy(subg.ndata[dgl.NID])
            sub_ntypes = ntypes[parent_nids]
            print('type0:', np.sum(sub_ntypes == 0))
            print('type1:', np.sum(sub_ntypes == 1))
            print('type2:', np.sum(sub_ntypes == 2))
574
    subgs = dgl.transforms.metis_partition(g, 4, extra_cached_hops=1,
575
576
577
578
579
580
581
582
583
                                          balance_ntypes=ntypes, balance_edges=True)
    if subgs is not None:
        for i in subgs:
            subg = subgs[i]
            parent_nids = F.asnumpy(subg.ndata[dgl.NID])
            sub_ntypes = ntypes[parent_nids]
            print('type0:', np.sum(sub_ntypes == 0))
            print('type1:', np.sum(sub_ntypes == 1))
            print('type2:', np.sum(sub_ntypes == 2))
Da Zheng's avatar
Da Zheng committed
584
585

def check_metis_partition(g, extra_hops):
586
    subgs = dgl.transforms.metis_partition(g, 4, extra_cached_hops=extra_hops)
587
588
589
590
    num_inner_nodes = 0
    num_inner_edges = 0
    if subgs is not None:
        for part_id, subg in subgs.items():
Da Zheng's avatar
Da Zheng committed
591
592
593
594
595
            lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
            ledge_ids = np.nonzero(F.asnumpy(subg.edata['inner_edge']))[0]
            num_inner_nodes += len(lnode_ids)
            num_inner_edges += len(ledge_ids)
            assert np.sum(F.asnumpy(subg.ndata['part_id']) == part_id) == len(lnode_ids)
596
597
598
        assert num_inner_nodes == g.number_of_nodes()
        print(g.number_of_edges() - num_inner_edges)

Da Zheng's avatar
Da Zheng committed
599
600
601
    if extra_hops == 0:
        return

602
    # partitions with node reshuffling
603
    subgs = dgl.transforms.metis_partition(g, 4, extra_cached_hops=extra_hops, reshuffle=True)
604
605
    num_inner_nodes = 0
    num_inner_edges = 0
Da Zheng's avatar
Da Zheng committed
606
    edge_cnts = np.zeros((g.number_of_edges(),))
607
608
609
610
611
612
613
    if subgs is not None:
        for part_id, subg in subgs.items():
            lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
            ledge_ids = np.nonzero(F.asnumpy(subg.edata['inner_edge']))[0]
            num_inner_nodes += len(lnode_ids)
            num_inner_edges += len(ledge_ids)
            assert np.sum(F.asnumpy(subg.ndata['part_id']) == part_id) == len(lnode_ids)
Da Zheng's avatar
Da Zheng committed
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
            nids = F.asnumpy(subg.ndata[dgl.NID])

            # ensure the local node Ids are contiguous.
            parent_ids = F.asnumpy(subg.ndata[dgl.NID])
            parent_ids = parent_ids[:len(lnode_ids)]
            assert np.all(parent_ids == np.arange(parent_ids[0], parent_ids[-1] + 1))

            # count the local edges.
            parent_ids = F.asnumpy(subg.edata[dgl.EID])[ledge_ids]
            edge_cnts[parent_ids] += 1

            orig_ids = subg.ndata['orig_id']
            inner_node = F.asnumpy(subg.ndata['inner_node'])
            for nid in range(subg.number_of_nodes()):
                neighs = subg.predecessors(nid)
                old_neighs1 = F.gather_row(orig_ids, neighs)
                old_nid = F.asnumpy(orig_ids[nid])
                old_neighs2 = g.predecessors(old_nid)
                # If this is an inner node, it should have the full neighborhood.
                if inner_node[nid]:
                    assert np.all(np.sort(F.asnumpy(old_neighs1)) == np.sort(F.asnumpy(old_neighs2)))
        # Normally, local edges are only counted once.
        assert np.all(edge_cnts == 1)

638
639
640
        assert num_inner_nodes == g.number_of_nodes()
        print(g.number_of_edges() - num_inner_edges)

Da Zheng's avatar
Da Zheng committed
641
642
@unittest.skipIf(F._default_context_str == 'gpu', reason="It doesn't support GPU")
def test_reorder_nodes():
643
    g = create_large_graph(1000)
Da Zheng's avatar
Da Zheng committed
644
645
    new_nids = np.random.permutation(g.number_of_nodes())
    # TODO(zhengda) we need to test both CSR and COO.
646
    new_g = dgl.partition.reorder_nodes(g, new_nids)
Da Zheng's avatar
Da Zheng committed
647
648
649
650
651
652
653
654
655
    new_in_deg = new_g.in_degrees()
    new_out_deg = new_g.out_degrees()
    in_deg = g.in_degrees()
    out_deg = g.out_degrees()
    new_in_deg1 = F.scatter_row(in_deg, F.tensor(new_nids), in_deg)
    new_out_deg1 = F.scatter_row(out_deg, F.tensor(new_nids), out_deg)
    assert np.all(F.asnumpy(new_in_deg == new_in_deg1))
    assert np.all(F.asnumpy(new_out_deg == new_out_deg1))
    orig_ids = F.asnumpy(new_g.ndata['orig_id'])
656
657
658
659
660
661
662
    for nid in range(g.number_of_nodes()):
        neighs = F.asnumpy(g.successors(nid))
        new_neighs1 = new_nids[neighs]
        new_nid = new_nids[nid]
        new_neighs2 = new_g.successors(new_nid)
        assert np.all(np.sort(new_neighs1) == np.sort(F.asnumpy(new_neighs2)))

Da Zheng's avatar
Da Zheng committed
663
664
665
666
667
668
669
670
671
672
673
674
675
    for nid in range(new_g.number_of_nodes()):
        neighs = F.asnumpy(new_g.successors(nid))
        old_neighs1 = orig_ids[neighs]
        old_nid = orig_ids[nid]
        old_neighs2 = g.successors(old_nid)
        assert np.all(np.sort(old_neighs1) == np.sort(F.asnumpy(old_neighs2)))

        neighs = F.asnumpy(new_g.predecessors(nid))
        old_neighs1 = orig_ids[neighs]
        old_nid = orig_ids[nid]
        old_neighs2 = g.predecessors(old_nid)
        assert np.all(np.sort(old_neighs1) == np.sort(F.asnumpy(old_neighs2)))

676
@parametrize_dtype
677
def test_compact(idtype):
678
    g1 = dgl.heterograph({
679
680
681
        ('user', 'follow', 'user'): ([1, 3], [3, 5]),
        ('user', 'plays', 'game'): ([2, 3, 2], [4, 4, 5]),
        ('game', 'wished-by', 'user'): ([6, 5], [7, 7])},
682
        {'user': 20, 'game': 10}, idtype=idtype, device=F.ctx())
683
684

    g2 = dgl.heterograph({
685
686
        ('game', 'clicked-by', 'user'): ([3], [1]),
        ('user', 'likes', 'user'): ([1, 8], [8, 9])},
687
        {'user': 20, 'game': 10}, idtype=idtype, device=F.ctx())
688

689
    g3 = dgl.heterograph({('user', '_E', 'user'): ((0, 1), (1, 2))},
690
                         {'user': 10}, idtype=idtype, device=F.ctx())
691
    g4 = dgl.heterograph({('user', '_E', 'user'): ((1, 3), (3, 5))},
692
                         {'user': 10}, idtype=idtype, device=F.ctx())
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

    def _check(g, new_g, induced_nodes):
        assert g.ntypes == new_g.ntypes
        assert g.canonical_etypes == new_g.canonical_etypes

        for ntype in g.ntypes:
            assert -1 not in induced_nodes[ntype]

        for etype in g.canonical_etypes:
            g_src, g_dst = g.all_edges(order='eid', etype=etype)
            g_src = F.asnumpy(g_src)
            g_dst = F.asnumpy(g_dst)
            new_g_src, new_g_dst = new_g.all_edges(order='eid', etype=etype)
            new_g_src_mapped = induced_nodes[etype[0]][F.asnumpy(new_g_src)]
            new_g_dst_mapped = induced_nodes[etype[2]][F.asnumpy(new_g_dst)]
            assert (g_src == new_g_src_mapped).all()
            assert (g_dst == new_g_dst_mapped).all()

    # Test default
    new_g1 = dgl.compact_graphs(g1)
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
715
    assert new_g1.idtype == idtype
716
717
718
719
720
721
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7])
    assert set(induced_nodes['game']) == set([4, 5, 6])
    _check(g1, new_g1, induced_nodes)

    # Test with always_preserve given a dict
    new_g1 = dgl.compact_graphs(
722
723
        g1, always_preserve={'game': F.tensor([4, 7], idtype)})
    assert new_g1.idtype == idtype
724
725
726
727
728
729
730
731
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7])
    assert set(induced_nodes['game']) == set([4, 5, 6, 7])
    _check(g1, new_g1, induced_nodes)

    # Test with always_preserve given a tensor
    new_g3 = dgl.compact_graphs(
732
        g3, always_preserve=F.tensor([1, 7], idtype))
733
734
    induced_nodes = {ntype: new_g3.nodes[ntype].data[dgl.NID] for ntype in new_g3.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
735

736
    assert new_g3.idtype == idtype
737
738
739
740
741
742
743
    assert set(induced_nodes['user']) == set([0, 1, 2, 7])
    _check(g3, new_g3, induced_nodes)

    # Test multiple graphs
    new_g1, new_g2 = dgl.compact_graphs([g1, g2])
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
744
745
    assert new_g1.idtype == idtype
    assert new_g2.idtype == idtype
746
747
748
749
750
751
752
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7, 8, 9])
    assert set(induced_nodes['game']) == set([3, 4, 5, 6])
    _check(g1, new_g1, induced_nodes)
    _check(g2, new_g2, induced_nodes)

    # Test multiple graphs with always_preserve given a dict
    new_g1, new_g2 = dgl.compact_graphs(
753
        [g1, g2], always_preserve={'game': F.tensor([4, 7], dtype=idtype)})
754
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
755
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
756
757
    assert new_g1.idtype == idtype
    assert new_g2.idtype == idtype
758
759
760
761
762
763
764
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7, 8, 9])
    assert set(induced_nodes['game']) == set([3, 4, 5, 6, 7])
    _check(g1, new_g1, induced_nodes)
    _check(g2, new_g2, induced_nodes)

    # Test multiple graphs with always_preserve given a tensor
    new_g3, new_g4 = dgl.compact_graphs(
765
        [g3, g4], always_preserve=F.tensor([1, 7], dtype=idtype))
766
767
    induced_nodes = {ntype: new_g3.nodes[ntype].data[dgl.NID] for ntype in new_g3.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
768

769
770
771
    assert new_g3.idtype == idtype
    assert new_g4.idtype == idtype

772
773
774
775
    assert set(induced_nodes['user']) == set([0, 1, 2, 3, 5, 7])
    _check(g3, new_g3, induced_nodes)
    _check(g4, new_g4, induced_nodes)

776
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU to simple not implemented")
777
@parametrize_dtype
778
def test_to_simple(idtype):
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 2, 1]), F.tensor([1, 2, 0, 2])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
    sg, wb = dgl.to_simple(g, writeback_mapping=True)
    u, v = g.all_edges(form='uv', order='eid')
    u = F.asnumpy(u).tolist()
    v = F.asnumpy(v).tolist()
    uv = list(zip(u, v))
    eid_map = F.asnumpy(wb)

    su, sv = sg.all_edges(form='uv', order='eid')
    su = F.asnumpy(su).tolist()
    sv = F.asnumpy(sv).tolist()
    suv = list(zip(su, sv))
    sc = F.asnumpy(sg.edata['count'])
    assert set(uv) == set(suv)
    for i, e in enumerate(suv):
        assert sc[i] == sum(e == _e for _e in uv)
    for i, e in enumerate(uv):
        assert eid_map[i] == suv.index(e)
    # shared ndata
    assert F.array_equal(sg.ndata['h'], g.ndata['h'])
    assert 'h' not in sg.edata
    # new ndata to sg
    sg.ndata['hh'] = F.tensor([[0.], [1.], [2.]])
    assert 'hh' not in g.ndata

    sg = dgl.to_simple(g, writeback_mapping=False, copy_ndata=False)
    assert 'h' not in sg.ndata
    assert 'h' not in sg.edata

811
812
813
814
815
816
817
818
    # test coalesce edge feature
    sg = dgl.to_simple(g, copy_edata=True, aggregator='arbitrary')
    assert F.allclose(sg.edata['h'][1], F.tensor([4.]))
    sg = dgl.to_simple(g, copy_edata=True, aggregator='sum')
    assert F.allclose(sg.edata['h'][1], F.tensor([10.]))
    sg = dgl.to_simple(g, copy_edata=True, aggregator='mean')
    assert F.allclose(sg.edata['h'][1], F.tensor([5.]))

819
    # heterogeneous graph
820
    g = dgl.heterograph({
821
822
823
        ('user', 'follow', 'user'): ([0, 1, 2, 1, 1, 1],
                                     [1, 3, 2, 3, 4, 4]),
        ('user', 'plays', 'game'): ([3, 2, 1, 1, 3, 2, 2], [5, 3, 4, 4, 5, 3, 3])},
824
        idtype=idtype, device=F.ctx())
825
826
827
828
829
    g.nodes['user'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    g.nodes['user'].data['hh'] = F.tensor([0, 1, 2, 3, 4])
    g.edges['follow'].data['h'] = F.tensor([0, 1, 2, 3, 4, 5])
    sg, wb = dgl.to_simple(g, return_counts='weights', writeback_mapping=True, copy_edata=True)
    g.nodes['game'].data['h'] = F.tensor([0, 1, 2, 3, 4, 5])
830
831
832
833
834
835

    for etype in g.canonical_etypes:
        u, v = g.all_edges(form='uv', order='eid', etype=etype)
        u = F.asnumpy(u).tolist()
        v = F.asnumpy(v).tolist()
        uv = list(zip(u, v))
836
        eid_map = F.asnumpy(wb[etype])
837
838
839
840
841
842
843
844
845
846
847
848

        su, sv = sg.all_edges(form='uv', order='eid', etype=etype)
        su = F.asnumpy(su).tolist()
        sv = F.asnumpy(sv).tolist()
        suv = list(zip(su, sv))
        sw = F.asnumpy(sg.edges[etype].data['weights'])

        assert set(uv) == set(suv)
        for i, e in enumerate(suv):
            assert sw[i] == sum(e == _e for _e in uv)
        for i, e in enumerate(uv):
            assert eid_map[i] == suv.index(e)
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
    # shared ndata
    assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
    assert F.array_equal(sg.nodes['user'].data['hh'], g.nodes['user'].data['hh'])
    assert 'h' not in sg.nodes['game'].data
    # new ndata to sg
    sg.nodes['user'].data['hhh'] = F.tensor([0, 1, 2, 3, 4])
    assert 'hhh' not in g.nodes['user'].data
    # share edata
    feat_idx = F.asnumpy(wb[('user', 'follow', 'user')])
    _, indices = np.unique(feat_idx, return_index=True)
    assert np.array_equal(F.asnumpy(sg.edges['follow'].data['h']),
                          F.asnumpy(g.edges['follow'].data['h'])[indices])

    sg = dgl.to_simple(g, writeback_mapping=False, copy_ndata=False)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)
    assert 'h' not in sg.nodes['user'].data
    assert 'hh' not in sg.nodes['user'].data
867

868
869
870
871
872
873
874
875
876
877
    # verify DGLGraph.edge_ids() after dgl.to_simple()
    # in case ids are not initialized in underlying coo2csr()
    u = F.tensor([0, 1, 2])
    v = F.tensor([1, 2, 3])
    eids = F.tensor([0, 1, 2])
    g = dgl.graph((u, v))
    assert F.array_equal(g.edge_ids(u, v), eids)
    sg = dgl.to_simple(g)
    assert F.array_equal(sg.edge_ids(u, v), eids)

878
@parametrize_dtype
879
def test_to_block(idtype):
880
    def check(g, bg, ntype, etype, dst_nodes, include_dst_in_src=True):
881
882
883
        if dst_nodes is not None:
            assert F.array_equal(bg.dstnodes[ntype].data[dgl.NID], dst_nodes)
        n_dst_nodes = bg.number_of_nodes('DST/' + ntype)
884
885
886
887
        if include_dst_in_src:
            assert F.array_equal(
                bg.srcnodes[ntype].data[dgl.NID][:n_dst_nodes],
                bg.dstnodes[ntype].data[dgl.NID])
888
889
890
891
892
893

        g = g[etype]
        bg = bg[etype]
        induced_src = bg.srcdata[dgl.NID]
        induced_dst = bg.dstdata[dgl.NID]
        induced_eid = bg.edata[dgl.EID]
894

895
896
897
898
899
900
901
902
903
904
905
        bg_src, bg_dst = bg.all_edges(order='eid')
        src_ans, dst_ans = g.all_edges(order='eid')

        induced_src_bg = F.gather_row(induced_src, bg_src)
        induced_dst_bg = F.gather_row(induced_dst, bg_dst)
        induced_src_ans = F.gather_row(src_ans, induced_eid)
        induced_dst_ans = F.gather_row(dst_ans, induced_eid)

        assert F.array_equal(induced_src_bg, induced_src_ans)
        assert F.array_equal(induced_dst_bg, induced_dst_ans)

906
    def checkall(g, bg, dst_nodes, include_dst_in_src=True):
907
908
        for etype in g.etypes:
            ntype = g.to_canonical_etype(etype)[2]
909
            if dst_nodes is not None and ntype in dst_nodes:
910
                check(g, bg, ntype, etype, dst_nodes[ntype], include_dst_in_src)
911
            else:
912
                check(g, bg, ntype, etype, None, include_dst_in_src)
913
914

    g = dgl.heterograph({
915
916
        ('A', 'AA', 'A'): ([0, 2, 1, 3], [1, 3, 2, 4]),
        ('A', 'AB', 'B'): ([0, 1, 3, 1], [1, 3, 5, 6]),
917
        ('B', 'BA', 'A'): ([2, 3], [3, 2])}, idtype=idtype, device=F.ctx())
918
919
920
921
922
    g.nodes['A'].data['x'] = F.randn((5, 10))
    g.nodes['B'].data['x'] = F.randn((7, 5))
    g.edges['AA'].data['x'] = F.randn((4, 3))
    g.edges['AB'].data['x'] = F.randn((4, 3))
    g.edges['BA'].data['x'] = F.randn((2, 3))
923
924
    g_a = g['AA']

925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
    def check_features(g, bg):
        for ntype in bg.srctypes:
            for key in g.nodes[ntype].data:
                assert F.array_equal(
                    bg.srcnodes[ntype].data[key],
                    F.gather_row(g.nodes[ntype].data[key], bg.srcnodes[ntype].data[dgl.NID]))
        for ntype in bg.dsttypes:
            for key in g.nodes[ntype].data:
                assert F.array_equal(
                    bg.dstnodes[ntype].data[key],
                    F.gather_row(g.nodes[ntype].data[key], bg.dstnodes[ntype].data[dgl.NID]))
        for etype in bg.canonical_etypes:
            for key in g.edges[etype].data:
                assert F.array_equal(
                    bg.edges[etype].data[key],
                    F.gather_row(g.edges[etype].data[key], bg.edges[etype].data[dgl.EID]))

942
943
    bg = dgl.to_block(g_a)
    check(g_a, bg, 'A', 'AA', None)
944
    check_features(g_a, bg)
945
946
947
948
949
    assert bg.number_of_src_nodes() == 5
    assert bg.number_of_dst_nodes() == 4

    bg = dgl.to_block(g_a, include_dst_in_src=False)
    check(g_a, bg, 'A', 'AA', None, False)
950
    check_features(g_a, bg)
951
952
    assert bg.number_of_src_nodes() == 4
    assert bg.number_of_dst_nodes() == 4
953

954
    dst_nodes = F.tensor([4, 3, 2, 1], dtype=idtype)
955
956
    bg = dgl.to_block(g_a, dst_nodes)
    check(g_a, bg, 'A', 'AA', dst_nodes)
957
    check_features(g_a, bg)
958
959
960
961

    g_ab = g['AB']

    bg = dgl.to_block(g_ab)
962
    assert bg.idtype == idtype
963
964
965
    assert bg.number_of_nodes('SRC/B') == 4
    assert F.array_equal(bg.srcnodes['B'].data[dgl.NID], bg.dstnodes['B'].data[dgl.NID])
    assert bg.number_of_nodes('DST/A') == 0
966
    checkall(g_ab, bg, None)
967
    check_features(g_ab, bg)
968

969
    dst_nodes = {'B': F.tensor([5, 6, 3, 1], dtype=idtype)}
970
    bg = dgl.to_block(g, dst_nodes)
971
    assert bg.number_of_nodes('SRC/B') == 4
972
973
974
    assert F.array_equal(bg.srcnodes['B'].data[dgl.NID], bg.dstnodes['B'].data[dgl.NID])
    assert bg.number_of_nodes('DST/A') == 0
    checkall(g, bg, dst_nodes)
975
    check_features(g, bg)
976

977
    dst_nodes = {'A': F.tensor([4, 3, 2, 1], dtype=idtype), 'B': F.tensor([3, 5, 6, 1], dtype=idtype)}
978
979
    bg = dgl.to_block(g, dst_nodes=dst_nodes)
    checkall(g, bg, dst_nodes)
980
    check_features(g, bg)
981

982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
    # test specifying lhs_nodes with include_dst_in_src
    src_nodes = {}
    for ntype in dst_nodes.keys():
        # use the previous run to get the list of source nodes
        src_nodes[ntype] = bg.srcnodes[ntype].data[dgl.NID]
    bg = dgl.to_block(g, dst_nodes=dst_nodes, src_nodes=src_nodes)
    checkall(g, bg, dst_nodes)
    check_features(g, bg)

    # test without include_dst_in_src
    dst_nodes = {'A': F.tensor([4, 3, 2, 1], dtype=idtype), 'B': F.tensor([3, 5, 6, 1], dtype=idtype)}
    bg = dgl.to_block(g, dst_nodes=dst_nodes, include_dst_in_src=False)
    checkall(g, bg, dst_nodes, False)
    check_features(g, bg)

    # test specifying lhs_nodes without include_dst_in_src
    src_nodes = {}
    for ntype in dst_nodes.keys():
        # use the previous run to get the list of source nodes
        src_nodes[ntype] = bg.srcnodes[ntype].data[dgl.NID]
    bg = dgl.to_block(g, dst_nodes=dst_nodes, include_dst_in_src=False,
        src_nodes=src_nodes)
    checkall(g, bg, dst_nodes, False)
    check_features(g, bg)


1008
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
1009
@parametrize_dtype
1010
def test_remove_edges(idtype):
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
    def check(g1, etype, g, edges_removed):
        src, dst, eid = g.edges(etype=etype, form='all')
        src1, dst1 = g1.edges(etype=etype, order='eid')
        if etype is not None:
            eid1 = g1.edges[etype].data[dgl.EID]
        else:
            eid1 = g1.edata[dgl.EID]
        src1 = F.asnumpy(src1)
        dst1 = F.asnumpy(dst1)
        eid1 = F.asnumpy(eid1)
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        eid = F.asnumpy(eid)
        sde_set = set(zip(src, dst, eid))

        for s, d, e in zip(src1, dst1, eid1):
            assert (s, d, e) in sde_set
        assert not np.isin(edges_removed, eid1).any()
1029
        assert g1.idtype == g.idtype
1030
1031
1032

    for fmt in ['coo', 'csr', 'csc']:
        for edges_to_remove in [[2], [2, 2], [3, 2], [1, 3, 1, 2]]:
1033
            g = dgl.graph(([0, 2, 1, 3], [1, 3, 2, 4]), idtype=idtype).formats(fmt)
1034
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove, idtype))
1035
1036
            check(g1, None, g, edges_to_remove)

1037
            g = dgl.from_scipy(
1038
                spsp.csr_matrix(([1, 1, 1, 1], ([0, 2, 1, 3], [1, 3, 2, 4])), shape=(5, 5)),
1039
1040
                idtype=idtype).formats(fmt)
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove, idtype))
1041
1042
1043
            check(g1, None, g, edges_to_remove)

    g = dgl.heterograph({
1044
1045
1046
        ('A', 'AA', 'A'): ([0, 2, 1, 3], [1, 3, 2, 4]),
        ('A', 'AB', 'B'): ([0, 1, 3, 1], [1, 3, 5, 6]),
        ('B', 'BA', 'A'): ([2, 3], [3, 2])}, idtype=idtype)
1047
    g2 = dgl.remove_edges(g, {'AA': F.tensor([2], idtype), 'AB': F.tensor([3], idtype), 'BA': F.tensor([1], idtype)})
1048
1049
1050
    check(g2, 'AA', g, [2])
    check(g2, 'AB', g, [3])
    check(g2, 'BA', g, [1])
1051

1052
    g3 = dgl.remove_edges(g, {'AA': F.tensor([], idtype), 'AB': F.tensor([3], idtype), 'BA': F.tensor([1], idtype)})
1053
1054
1055
1056
    check(g3, 'AA', g, [])
    check(g3, 'AB', g, [3])
    check(g3, 'BA', g, [1])

1057
    g4 = dgl.remove_edges(g, {'AB': F.tensor([3, 1, 2, 0], idtype)})
1058
    check(g4, 'AA', g, [])
1059
    check(g4, 'AB', g, [3, 1, 2, 0])
1060
1061
    check(g4, 'BA', g, [])

1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
@parametrize_dtype
def test_add_edges(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = 0
    v = 1
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
1086
1087
1088
1089
1090
1091
1092
1093
1094
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))
    g = dgl.add_edges(g, [], [])
    g = dgl.add_edges(g, 0, [])
    g = dgl.add_edges(g, [], 0)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([0, 0, 2, 2], dtype=idtype))

    # zero data graph
1127
    g = dgl.graph(([], []), num_nodes=0, idtype=idtype, device=F.ctx())
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 2], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 2
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([2, 2], dtype=idtype))

    # bipartite graph
1142
1143
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
    u = 0
    v = 1
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
1170
1171
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
1184
1185
1186
1187
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2, 0], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([0, 0, 2, 2], dtype=idtype))

    # heterogeneous graph
1206
    g = create_test_heterograph3(idtype)
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v, etype='plays')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 2
    assert g.number_of_edges('plays') == 6
    assert g.number_of_edges('develops') == 2
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([0, 1, 1, 2, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0, 1, 1, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 1, 1, 1, 0, 0], dtype=idtype))

    # add with feature
    e_feat = {'h': F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.nodes['game'].data['h'] =  F.copy_to(F.tensor([2, 2, 1, 1], dtype=idtype), ctx=F.ctx())
    g = dgl.add_edges(g, u, v, data=e_feat, etype='develops')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 3
    assert g.number_of_edges('plays') == 6
    assert g.number_of_edges('develops') == 4
    u, v = g.edges(form='uv', order='eid', etype='develops')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['develops'].data['h'], F.tensor([0, 0, 2, 2], dtype=idtype))

@parametrize_dtype
def test_add_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1], dtype=idtype), ctx=F.ctx())
    new_g = dgl.add_nodes(g, 1)
    assert g.number_of_nodes() == 3
    assert new_g.number_of_nodes() == 4
    assert F.array_equal(new_g.ndata['h'], F.tensor([1, 1, 1, 0], dtype=idtype))

    # zero node graph
1251
    g = dgl.graph(([], []), num_nodes=3, idtype=idtype, device=F.ctx())
1252
1253
1254
1255
1256
1257
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1], dtype=idtype), ctx=F.ctx())
    g = dgl.add_nodes(g, 1, data={'h' : F.copy_to(F.tensor([2],  dtype=idtype), ctx=F.ctx())})
    assert g.number_of_nodes() == 4
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 2], dtype=idtype))

    # bipartite graph
1258
1259
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1260
1261
1262
1263
1264
1265
1266
1267
1268
    g = dgl.add_nodes(g, 2, data={'h' : F.copy_to(F.tensor([2, 2],  dtype=idtype), ctx=F.ctx())}, ntype='user')
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 3
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([0, 0, 2, 2], dtype=idtype))
    g = dgl.add_nodes(g, 2, ntype='game')
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 5

    # heterogeneous graph
1269
    g = create_test_heterograph3(idtype)
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
    g = dgl.add_nodes(g, 1, ntype='user')
    g = dgl.add_nodes(g, 2, data={'h' : F.copy_to(F.tensor([2, 2],  dtype=idtype), ctx=F.ctx())}, ntype='game')
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 2
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2, 2], dtype=idtype))

@parametrize_dtype
def test_remove_edges(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = 0
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = [0]
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 0

    # has node data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 1)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.ndata['h'], F.tensor([1, 2, 3], dtype=idtype))

    # has edge data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 0)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.edata['h'], F.tensor([2], dtype=idtype))

    # invalid eid
    assert_fail = False
    try:
        g = dgl.remove_edges(g, 1)
    except:
        assert_fail = True
    assert assert_fail

    # bipartite graph
1322
1323
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1324
1325
1326
1327
1328
1329
    e = 0
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
1330
1331
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
    e = [0]
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 0

    # has data
1343
1344
1345
1346
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
1347
1348
1349
1350
1351
1352
1353
1354
    g.edata['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 1)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1], dtype=idtype))

    # heterogeneous graph
1355
    g = create_test_heterograph3(idtype)
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 1, etype='plays')
    assert g.number_of_edges('plays') == 3
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 3, 4], dtype=idtype))
    # remove all edges of 'develops'
    g = dgl.remove_edges(g, [0, 1], etype='develops')
    assert g.number_of_edges('develops') == 0
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3], dtype=idtype))

1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
    # batched graph
    ctx = F.ctx()
    g1 = dgl.graph(([0, 1], [1, 2]), num_nodes=5, idtype=idtype, device=ctx)
    g2 = dgl.graph(([], []), idtype=idtype, device=ctx)
    g3 = dgl.graph(([2, 3, 4], [3, 2, 1]), idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_edges(bg, 2)
    assert bg.batch_size == bg_r.batch_size
    assert F.array_equal(bg.batch_num_nodes(), bg_r.batch_num_nodes())
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([2, 0, 2], dtype=F.int64))

    bg_r = dgl.remove_edges(bg, [0, 2])
    assert bg.batch_size == bg_r.batch_size
    assert F.array_equal(bg.batch_num_nodes(), bg_r.batch_num_nodes())
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([1, 0, 2], dtype=F.int64))

    bg_r = dgl.remove_edges(bg, F.tensor([0, 2], dtype=idtype))
    assert bg.batch_size == bg_r.batch_size
    assert F.array_equal(bg.batch_num_nodes(), bg_r.batch_num_nodes())
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([1, 0, 2], dtype=F.int64))

    # batched heterogeneous graph
    g1 = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([1, 3], [0, 1])
    }, num_nodes_dict={'user': 4, 'game': 3}, idtype=idtype, device=ctx)
    g2 = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 2], [3, 4]),
        ('user', 'plays', 'game'): ([], [])
    }, num_nodes_dict={'user': 6, 'game': 2}, idtype=idtype, device=ctx)
    g3 = dgl.heterograph({
        ('user', 'follows', 'user'): ([], []),
        ('user', 'plays', 'game'): ([1, 2], [1, 2])
    }, idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_edges(bg, 1, etype='follows')
    assert bg.batch_size == bg_r.batch_size
    ntypes = bg.ntypes
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([1, 2, 0], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges('plays'), bg.batch_num_edges('plays'))

    bg_r = dgl.remove_edges(bg, 2, etype='plays')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([2, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_edges(bg, [0, 1, 3], etype='follows')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 1, 0], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('plays'), bg_r.batch_num_edges('plays'))

    bg_r = dgl.remove_edges(bg, [1, 2], etype='plays')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_edges(bg, F.tensor([0, 1, 3], dtype=idtype), etype='follows')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 1, 0], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('plays'), bg_r.batch_num_edges('plays'))

    bg_r = dgl.remove_edges(bg, F.tensor([1, 2], dtype=idtype), etype='plays')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
@parametrize_dtype
def test_remove_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = 0
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = [1]
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 0
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = F.tensor([2], dtype=idtype)
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))

    # invalid nid
    assert_fail = False
    try:
        g.remove_nodes(3)
    except:
        assert_fail = True
    assert assert_fail

    # has node and edge data
    g = dgl.graph(([0, 0, 2], [0, 1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['hv'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_nodes(g, F.tensor([0], dtype=idtype))
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    assert F.array_equal(g.ndata['hv'], F.tensor([2, 3], dtype=idtype))
    assert F.array_equal(g.edata['he'], F.tensor([3], dtype=idtype))

    # node id larger than current max node id
1495
1496
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1497
1498
1499
1500
1501
1502
1503
1504
    n = 0
    g = dgl.remove_nodes(g, n, ntype='user')
    assert g.number_of_nodes('user') == 1
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
1505
1506
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1507
1508
1509
1510
1511
1512
1513
1514
    n = [1]
    g = dgl.remove_nodes(g, n, ntype='user')
    assert g.number_of_nodes('user') == 1
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
1515
1516
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
    n = F.tensor([0], dtype=idtype)
    g = dgl.remove_nodes(g, n, ntype='game')
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges() == 2
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0 ,1], dtype=idtype))

    # heterogeneous graph
1527
    g = create_test_heterograph3(idtype)
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_nodes(g, 0, ntype='game')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 1
    assert g.number_of_nodes('developer') == 2
    assert g.number_of_edges('plays') == 2
    assert g.number_of_edges('develops') == 1
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3], dtype=idtype))
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([3, 4], dtype=idtype))
    u, v = g.edges(form='uv', order='eid', etype='develops')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0], dtype=idtype))

1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
    # batched graph
    ctx = F.ctx()
    g1 = dgl.graph(([0, 1], [1, 2]), num_nodes=5, idtype=idtype, device=ctx)
    g2 = dgl.graph(([], []), idtype=idtype, device=ctx)
    g3 = dgl.graph(([2, 3, 4], [3, 2, 1]), idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_nodes(bg, 1)
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes(), F.tensor([4, 0, 5], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([0, 0, 3], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, [1, 7])
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes(), F.tensor([4, 0, 4], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([0, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, F.tensor([1, 7], dtype=idtype))
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes(), F.tensor([4, 0, 4], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges(), F.tensor([0, 0, 1], dtype=F.int64))

    # batched heterogeneous graph
    g1 = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([1, 3], [0, 1])
    }, num_nodes_dict={'user': 4, 'game': 3}, idtype=idtype, device=ctx)
    g2 = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 2], [3, 4]),
        ('user', 'plays', 'game'): ([], [])
    }, num_nodes_dict={'user': 6, 'game': 2}, idtype=idtype, device=ctx)
    g3 = dgl.heterograph({
        ('user', 'follows', 'user'): ([], []),
        ('user', 'plays', 'game'): ([1, 2], [1, 2])
    }, idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_nodes(bg, 1, ntype='user')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes('user'), F.tensor([3, 6, 3], dtype=F.int64))
    assert F.array_equal(bg.batch_num_nodes('game'), bg_r.batch_num_nodes('game'))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 2, 0], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 2], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, 6, ntype='game')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg.batch_num_nodes('user'), bg_r.batch_num_nodes('user'))
    assert F.array_equal(bg_r.batch_num_nodes('game'), F.tensor([3, 2, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([2, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, [1, 5, 6, 11], ntype='user')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes('user'), F.tensor([3, 4, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_nodes('game'), bg_r.batch_num_nodes('game'))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 1, 0], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, [0, 3, 4, 7], ntype='game')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg.batch_num_nodes('user'), bg_r.batch_num_nodes('user'))
    assert F.array_equal(bg_r.batch_num_nodes('game'), F.tensor([2, 0, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, F.tensor([1, 5, 6, 11], dtype=idtype), ntype='user')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg_r.batch_num_nodes('user'), F.tensor([3, 4, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_nodes('game'), bg_r.batch_num_nodes('game'))
    assert F.array_equal(bg_r.batch_num_edges('follows'), F.tensor([0, 1, 0], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, F.tensor([0, 3, 4, 7], dtype=idtype), ntype='game')
    assert bg_r.batch_size == bg.batch_size
    assert F.array_equal(bg.batch_num_nodes('user'), bg_r.batch_num_nodes('user'))
    assert F.array_equal(bg_r.batch_num_nodes('game'), F.tensor([2, 0, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('follows'), bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'), F.tensor([1, 0, 1], dtype=F.int64))

1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
@parametrize_dtype
def test_add_selfloop(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 0, 2], [2, 1, 0]), idtype=idtype, device=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.ndata['hn'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.add_self_loop(g)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 6
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 0, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 1, 0, 0, 1, 2], dtype=idtype))
    assert F.array_equal(g.edata['he'], F.tensor([1, 2, 3, 0, 0, 0], dtype=idtype))

    # bipartite graph
1638
1639
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1, 2], [1, 2, 2])}, idtype=idtype, device=F.ctx())
1640
1641
1642
1643
1644
1645
1646
1647
    # nothing will happend
    raise_error = False
    try:
        g = dgl.add_self_loop(g)
    except:
        raise_error = True
    assert raise_error

1648
    g = create_test_heterograph5(idtype)
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
    g = dgl.add_self_loop(g, etype='follows')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('follows') == 5
    assert g.number_of_edges('plays') == 2
    u, v = g.edges(form='uv', order='eid', etype='follows')
    assert F.array_equal(u, F.tensor([1, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 0, 1, 2], dtype=idtype))
    assert F.array_equal(g.edges['follows'].data['h'], F.tensor([1, 2, 0, 0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 2], dtype=idtype))

    raise_error = False
    try:
        g = dgl.add_self_loop(g, etype='plays')
    except:
        raise_error = True
    assert raise_error

@parametrize_dtype
def test_remove_selfloop(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 0, 0, 1], [1, 0, 0, 2]), idtype=idtype, device=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_self_loop(g)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 2
    assert F.array_equal(g.edata['he'], F.tensor([1, 4], dtype=idtype))

    # bipartite graph
1678
1679
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1, 2], [1, 2, 2])}, idtype=idtype, device=F.ctx())
1680
1681
1682
1683
1684
1685
1686
1687
    # nothing will happend
    raise_error = False
    try:
        g = dgl.remove_self_loop(g, etype='plays')
    except:
        raise_error = True
    assert raise_error

1688
    g = create_test_heterograph4(idtype)
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
    g = dgl.remove_self_loop(g, etype='follows')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('follows') == 2
    assert g.number_of_edges('plays') == 2
    u, v = g.edges(form='uv', order='eid', etype='follows')
    assert F.array_equal(u, F.tensor([1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(g.edges['follows'].data['h'], F.tensor([2, 4], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 2], dtype=idtype))

    raise_error = False
    try:
        g = dgl.remove_self_loop(g, etype='plays')
    except:
        raise_error = True
    assert raise_error
1706

1707
1708

@parametrize_dtype
1709
def test_reorder_graph(idtype):
1710
1711
1712
1713
1714
    g = dgl.graph(([0, 1, 2, 3, 4], [2, 2, 3, 2, 3]),
                  idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.randn((g.num_nodes(), 3)), ctx=F.ctx())
    g.edata['w'] = F.copy_to(F.randn((g.num_edges(), 2)), ctx=F.ctx())

1715
    # call with default: node_permute_algo=None, edge_permute_algo='src'
1716
    rg = dgl.reorder_graph(g)
1717
1718
1719
1720
1721
1722
    assert dgl.EID in rg.edata.keys()
    src = F.asnumpy(rg.edges()[0])
    assert np.array_equal(src, np.sort(src))

    # call with 'rcmk' node_permute_algo
    rg = dgl.reorder_graph(g, node_permute_algo='rcmk')
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
    assert dgl.NID in rg.ndata.keys()
    assert dgl.EID in rg.edata.keys()
    src = F.asnumpy(rg.edges()[0])
    assert np.array_equal(src, np.sort(src))

    # call with 'dst' edge_permute_algo
    rg = dgl.reorder_graph(g, edge_permute_algo='dst')
    dst = F.asnumpy(rg.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    # call with unknown edge_permute_algo
    raise_error = False
    try:
        dgl.reorder_graph(g, edge_permute_algo='none')
    except:
        raise_error = True
    assert raise_error
1740
1741

    # reorder back to original according to stored ids
1742
    rg = dgl.reorder_graph(g, node_permute_algo='rcmk')
1743
1744
    rg2 = dgl.reorder_graph(rg, 'custom', permute_config={
        'nodes_perm': np.argsort(F.asnumpy(rg.ndata[dgl.NID]))})
1745
1746
1747
1748
    assert F.array_equal(g.ndata['h'], rg2.ndata['h'])
    assert F.array_equal(g.edata['w'], rg2.edata['w'])

    # do not store ids
1749
    rg = dgl.reorder_graph(g, store_ids=False)
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
    assert not dgl.NID in rg.ndata.keys()
    assert not dgl.EID in rg.edata.keys()

    # metis does not work on windows.
    if os.name == 'nt':
        pass
    else:
        # metis_partition may fail for small graph.
        mg = create_large_graph(1000).to(F.ctx())

        # call with metis strategy, but k is not specified
        raise_error = False
        try:
1763
            dgl.reorder_graph(mg, node_permute_algo='metis')
1764
1765
1766
1767
1768
1769
1770
        except:
            raise_error = True
        assert raise_error

        # call with metis strategy, k is specified
        raise_error = False
        try:
1771
1772
            dgl.reorder_graph(mg,
                              node_permute_algo='metis', permute_config={'k': 2})
1773
1774
1775
1776
1777
1778
1779
1780
        except:
            raise_error = True
        assert not raise_error

    # call with qualified nodes_perm specified
    nodes_perm = np.random.permutation(g.num_nodes())
    raise_error = False
    try:
1781
1782
        dgl.reorder_graph(g, node_permute_algo='custom', permute_config={
            'nodes_perm': nodes_perm})
1783
1784
1785
1786
1787
1788
1789
    except:
        raise_error = True
    assert not raise_error

    # call with unqualified nodes_perm specified
    raise_error = False
    try:
1790
1791
        dgl.reorder_graph(g, node_permute_algo='custom', permute_config={
            'nodes_perm':  nodes_perm[:g.num_nodes() - 1]})
1792
1793
1794
1795
1796
1797
1798
    except:
        raise_error = True
    assert raise_error

    # call with unsupported strategy
    raise_error = False
    try:
1799
        dgl.reorder_graph(g, node_permute_algo='cmk')
1800
1801
1802
1803
1804
1805
1806
1807
1808
    except:
        raise_error = True
    assert raise_error

    # heterograph: not supported
    raise_error = False
    try:
        hg = dgl.heterogrpah({('user', 'follow', 'user'): (
            [0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1809
        dgl.reorder_graph(hg)
1810
1811
1812
1813
    except:
        raise_error = True
    assert raise_error

1814
1815
1816
1817
1818
1819
    # TODO: shall we fix them?
    # add 'csc' format if needed
    #fg = g.formats('csr')
    #assert 'csc' not in sum(fg.formats().values(), [])
    #rfg = dgl.reorder_graph(fg)
    #assert 'csc' in sum(rfg.formats().values(), [])
1820

Mufei Li's avatar
Mufei Li committed
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support a slicing operation")
@parametrize_dtype
def test_norm_by_dst(idtype):
    # Case1: A homogeneous graph
    g = dgl.graph(([0, 1, 1], [1, 1, 2]), idtype=idtype, device=F.ctx())
    eweight = dgl.norm_by_dst(g)
    assert F.allclose(eweight, F.tensor([0.5, 0.5, 1.0]))

    # Case2: A heterogeneous graph
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 1], [1, 1, 2])
    }, idtype=idtype, device=F.ctx())
    eweight = dgl.norm_by_dst(g, etype=('user', 'plays', 'game'))
    assert F.allclose(eweight, F.tensor([0.5, 0.5, 1.0]))

1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
@parametrize_dtype
def test_module_add_self_loop(idtype):
    g = dgl.graph(([1, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((g.num_nodes(), 2))
    g.edata['w'] = F.randn((g.num_edges(), 3))

    # Case1: add self-loops with the default setting
    transform = dgl.AddSelfLoop()
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_nodes()
    assert new_g.num_edges() == 4
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (1, 2), (2, 2)}
    assert 'h' in new_g.ndata
    assert 'w' in new_g.edata

    # Case2: Remove self-loops first to avoid duplicate ones
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_nodes()
    assert new_g.num_edges() == 5
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (1, 2), (2, 2)}
    assert 'h' in new_g.ndata
    assert 'w' in new_g.edata

    # Create a heterogeneous graph
    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0], [1]),
        ('user', 'follows', 'user'): ([1], [3])
    }, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h1'] = F.randn((4, 2))
    g.edges['plays'].data['w1'] = F.randn((1, 3))
    g.nodes['game'].data['h2'] = F.randn((2, 4))
    g.edges['follows'].data['w2'] = F.randn((1, 5))

    # Case3: add self-loops for a heterogeneous graph
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
    assert new_g.num_edges('plays') == 1
    assert new_g.num_edges('follows') == 5
    assert 'h1' in new_g.nodes['user'].data
    assert 'h2' in new_g.nodes['game'].data
    assert 'w1' in new_g.edges['plays'].data
    assert 'w2' in new_g.edges['follows'].data

    # Case4: add self-etypes for a heterogeneous graph
    transform = dgl.AddSelfLoop(new_etypes=True)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert set(new_g.canonical_etypes) == {
        ('user', 'plays', 'game'), ('user', 'follows', 'user'),
        ('user', 'self', 'user'), ('game', 'self', 'game')
    }
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
    assert new_g.num_edges('plays') == 1
    assert new_g.num_edges('follows') == 5
    assert new_g.num_edges(('user', 'self', 'user')) == 4
    assert new_g.num_edges(('game', 'self', 'game')) == 2
    assert 'h1' in new_g.nodes['user'].data
    assert 'h2' in new_g.nodes['game'].data
    assert 'w1' in new_g.edges['plays'].data
    assert 'w2' in new_g.edges['follows'].data

@parametrize_dtype
def test_module_remove_self_loop(idtype):
    transform = dgl.RemoveSelfLoop()

    # Case1: homogeneous graph
    g = dgl.graph(([1, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((g.num_nodes(), 2))
    g.edata['w'] = F.randn((g.num_edges(), 3))
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_nodes()
    assert new_g.num_edges() == 1
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 2)}
    assert 'h' in new_g.ndata
    assert 'w' in new_g.edata

    # Case2: heterogeneous graph
    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1], [1, 1]),
        ('user', 'follows', 'user'): ([1, 2], [2, 2])
    }, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h1'] = F.randn((3, 2))
    g.edges['plays'].data['w1'] = F.randn((2, 3))
    g.nodes['game'].data['h2'] = F.randn((2, 4))
    g.edges['follows'].data['w2'] = F.randn((2, 5))

    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
    assert new_g.num_edges('plays') == 2
    assert new_g.num_edges('follows') == 1
    assert 'h1' in new_g.nodes['user'].data
    assert 'h2' in new_g.nodes['game'].data
    assert 'w1' in new_g.edges['plays'].data
    assert 'w2' in new_g.edges['follows'].data

@parametrize_dtype
def test_module_add_reverse(idtype):
    transform = dgl.AddReverse()

    # Case1: Add reverse edges for a homogeneous graph
    g = dgl.graph(([0], [1]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((g.num_nodes(), 3))
    g.edata['w'] = F.randn((g.num_edges(), 2))
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert g.num_nodes() == new_g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 0)}
    assert F.allclose(g.ndata['h'], new_g.ndata['h'])
    assert F.allclose(g.edata['w'], F.narrow_row(new_g.edata['w'], 0, 1))
    assert F.allclose(F.narrow_row(new_g.edata['w'], 1, 2), F.zeros((1, 2), F.float32, F.ctx()))

    # Case2: Add reverse edges for a homogeneous graph and copy edata
    transform = dgl.AddReverse(copy_edata=True)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert g.num_nodes() == new_g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 0)}
    assert F.allclose(g.ndata['h'], new_g.ndata['h'])
    assert F.allclose(g.edata['w'], F.narrow_row(new_g.edata['w'], 0, 1))
    assert F.allclose(g.edata['w'], F.narrow_row(new_g.edata['w'], 1, 2))

    # Case3: Add reverse edges for a heterogeneous graph
    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1], [1, 1]),
        ('user', 'follows', 'user'): ([1, 2], [2, 2])
    }, device=F.ctx())
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert g.ntypes == new_g.ntypes
    assert set(new_g.canonical_etypes) == {
        ('user', 'plays', 'game'), ('user', 'follows', 'user'), ('game', 'rev_plays', 'user')}
    for nty in g.ntypes:
        assert g.num_nodes(nty) == new_g.num_nodes(nty)

    src, dst = new_g.edges(etype='plays')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

    src, dst = new_g.edges(etype='follows')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 2), (2, 2), (2, 1)}

    src, dst = new_g.edges(etype='rev_plays')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 1), (1, 0)}

    # Case4: Enforce reverse edge types for symmetric canonical edge types
    transform = dgl.AddReverse(sym_new_etype=True)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert g.ntypes == new_g.ntypes
    assert set(new_g.canonical_etypes) == {
        ('user', 'plays', 'game'), ('user', 'follows', 'user'),
        ('game', 'rev_plays', 'user'), ('user', 'rev_follows', 'user')}
    for nty in g.ntypes:
        assert g.num_nodes(nty) == new_g.num_nodes(nty)

    src, dst = new_g.edges(etype='plays')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

    src, dst = new_g.edges(etype='follows')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 2), (2, 2)}

    src, dst = new_g.edges(etype='rev_plays')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 1), (1, 0)}

    src, dst = new_g.edges(etype='rev_follows')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(2, 1), (2, 2)}

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not supported for to_simple")
@parametrize_dtype
def test_module_to_simple(idtype):
    transform = dgl.ToSimple()
    g = dgl.graph(([0, 1, 1], [1, 2, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((g.num_nodes(), 2))
    g.edata['w'] = F.tensor([[0.1], [0.2], [0.3]])
    sg = transform(g)
    assert sg.device == g.device
    assert sg.idtype == g.idtype
    assert sg.num_nodes() == g.num_nodes()
    assert sg.num_edges() == 2
    src, dst = sg.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 2)}
    assert F.allclose(sg.edata['count'], F.tensor([1, 2]))
    assert F.allclose(sg.ndata['h'], g.ndata['h'])

    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 1], [1, 2, 2]),
        ('user', 'plays', 'game'): ([0, 1, 0], [1, 1, 1])
    })
    sg = transform(g)
    assert sg.device == g.device
    assert sg.idtype == g.idtype
    assert sg.ntypes == g.ntypes
    assert sg.canonical_etypes == g.canonical_etypes
    for nty in sg.ntypes:
        assert sg.num_nodes(nty) == g.num_nodes(nty)
    for ety in sg.canonical_etypes:
        assert sg.num_edges(ety) == 2

    src, dst = sg.edges(etype='follows')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 2)}

    src, dst = sg.edges(etype='plays')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

@parametrize_dtype
def test_module_line_graph(idtype):
    transform = dgl.LineGraph()
    g = dgl.graph(([0, 1, 1], [1, 0, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['w'] = F.tensor([[0.], [0.1], [0.2]])
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_edges()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (0, 2), (1, 0)}

    transform = dgl.LineGraph(backtracking=False)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_edges()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 2)}

@parametrize_dtype
def test_module_khop_graph(idtype):
    transform = dgl.KHopGraph(2)
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((g.num_nodes(), 2))
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_nodes()
    assert F.allclose(g.ndata['h'], new_g.ndata['h'])
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 2)}

@parametrize_dtype
def test_module_add_metapaths(idtype):
    g = dgl.heterograph({
        ('person', 'author', 'paper'): ([0, 0, 1], [1, 2, 2]),
        ('paper', 'accepted', 'venue'): ([1], [0]),
        ('paper', 'rejected', 'venue'): ([2], [1])
    }, idtype=idtype, device=F.ctx())
    g.nodes['venue'].data['h'] = F.randn((g.num_nodes('venue'), 2))
    g.edges['author'].data['h'] = F.randn((g.num_edges('author'), 3))

    # Case1: keep_orig_edges is True
    metapaths = {
        'accepted': [('person', 'author', 'paper'), ('paper', 'accepted', 'venue')],
        'rejected': [('person', 'author', 'paper'), ('paper', 'rejected', 'venue')]
    }
    transform = dgl.AddMetaPaths(metapaths)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert set(new_g.canonical_etypes) == {
        ('person', 'author', 'paper'), ('paper', 'accepted', 'venue'),
        ('paper', 'rejected', 'venue'), ('person', 'accepted', 'venue'),
        ('person', 'rejected', 'venue')
    }
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
    for ety in g.canonical_etypes:
        assert new_g.num_edges(ety) == g.num_edges(ety)
    assert F.allclose(g.nodes['venue'].data['h'], new_g.nodes['venue'].data['h'])
    assert F.allclose(g.edges['author'].data['h'], new_g.edges['author'].data['h'])

    src, dst = new_g.edges(etype=('person', 'accepted', 'venue'))
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0)}

    src, dst = new_g.edges(etype=('person', 'rejected', 'venue'))
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

    # Case2: keep_orig_edges is False
    transform = dgl.AddMetaPaths(metapaths, keep_orig_edges=False)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert len(new_g.canonical_etypes) == 2
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
    assert F.allclose(g.nodes['venue'].data['h'], new_g.nodes['venue'].data['h'])

    src, dst = new_g.edges(etype=('person', 'accepted', 'venue'))
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0)}

    src, dst = new_g.edges(etype=('person', 'rejected', 'venue'))
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

@parametrize_dtype
def test_module_compose(idtype):
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    transform = dgl.Compose([dgl.AddReverse(), dgl.AddSelfLoop()])
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_edges() == 7

    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 2), (1, 0), (2, 1), (0, 0), (1, 1), (2, 2)}

2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
@parametrize_dtype
def test_module_gcnnorm(idtype):
    g = dgl.heterograph({
        ('A', 'r1', 'A'): ([0, 1, 2], [0, 0, 1]),
        ('A', 'r2', 'B'): ([0, 0], [1, 1]),
        ('B', 'r3', 'B'): ([0, 1, 2], [0, 0, 1])
    }, idtype=idtype, device=F.ctx())
    g.edges['r3'].data['w'] = F.tensor([0.1, 0.2, 0.3])
    transform = dgl.GCNNorm()
    new_g = transform(g)
    assert 'w' not in new_g.edges[('A', 'r2', 'B')].data
    assert F.allclose(new_g.edges[('A', 'r1', 'A')].data['w'],
                      F.tensor([1./2, 1./math.sqrt(2), 0.]))
    assert F.allclose(new_g.edges[('B', 'r3', 'B')].data['w'], F.tensor([1./3, 2./3, 0.]))

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
@parametrize_dtype
def test_module_ppr(idtype):
    g = dgl.graph(([0, 1, 2, 3, 4], [2, 3, 4, 5, 3]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((6, 2))
    transform = dgl.PPR(avg_degree=2)
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.num_nodes() == g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (0, 2), (0, 4), (1, 1), (1, 3), (1, 5), (2, 2),
                    (2, 3), (2, 4), (3, 3), (3, 5), (4, 3), (4, 4), (4, 5), (5, 5)}
    assert F.allclose(g.ndata['h'], new_g.ndata['h'])
    assert 'w' in new_g.edata

    # Prior edge weights
    g.edata['w'] = F.tensor([0.1, 0.2, 0.3, 0.4, 0.5])
    new_g = transform(g)
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (1, 3), (2, 2), (2, 3), (2, 4),
                    (3, 3), (3, 5), (4, 3), (4, 4), (4, 5), (5, 5)}

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
@parametrize_dtype
def test_module_heat_kernel(idtype):
    # Case1: directed graph
    g = dgl.graph(([0, 1, 2, 3, 4], [2, 3, 4, 5, 3]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((6, 2))
    transform = dgl.HeatKernel(avg_degree=1)
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.num_nodes() == g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 2), (0, 4), (1, 3), (1, 5), (2, 3), (2, 4), (3, 5), (4, 5)}
    assert F.allclose(g.ndata['h'], new_g.ndata['h'])
    assert 'w' in new_g.edata

    # Case2: weighted undirected graph
    g = dgl.graph(([0, 1, 2, 3], [1, 0, 3, 2]), idtype=idtype, device=F.ctx())
    g.edata['w'] = F.tensor([0.1, 0.2, 0.3, 0.4])
    new_g = transform(g)
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (2, 2), (3, 3)}

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
@parametrize_dtype
def test_module_gdc(idtype):
    transform = dgl.GDC([0.1, 0.2, 0.1], avg_degree=1)
    g = dgl.graph(([0, 1, 2, 3, 4], [2, 3, 4, 5, 3]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((6, 2))
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.num_nodes() == g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (0, 2), (0, 4), (1, 1), (1, 3), (1, 5), (2, 2), (2, 3),
                    (2, 4), (3, 3), (3, 5), (4, 3), (4, 4), (4, 5), (5, 5)}
    assert F.allclose(g.ndata['h'], new_g.ndata['h'])
    assert 'w' in new_g.edata

    # Prior edge weights
    g.edata['w'] = F.tensor([0.1, 0.2, 0.3, 0.4, 0.5])
    new_g = transform(g)
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (2, 2), (3, 3), (4, 3), (4, 4), (5, 5)}

@parametrize_dtype
def test_module_node_shuffle(idtype):
    transform = dgl.NodeShuffle()
    g = dgl.heterograph({
        ('A', 'r', 'B'): ([0, 1], [1, 2]),
    }, idtype=idtype, device=F.ctx())
    new_g = transform(g)

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
@parametrize_dtype
def test_module_drop_node(idtype):
    transform = dgl.DropNode()
    g = dgl.heterograph({
        ('A', 'r', 'B'): ([0, 1], [1, 2]),
    }, idtype=idtype, device=F.ctx())
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
@parametrize_dtype
def test_module_drop_edge(idtype):
    transform = dgl.DropEdge()
    g = dgl.heterograph({
        ('A', 'r1', 'B'): ([0, 1], [1, 2]),
        ('C', 'r2', 'C'): ([3, 4, 5], [6, 7, 8])
    }, idtype=idtype, device=F.ctx())
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes

@parametrize_dtype
def test_module_add_edge(idtype):
    transform = dgl.AddEdge()
    g = dgl.heterograph({
        ('A', 'r1', 'B'): ([0, 1, 2, 3, 4], [1, 2, 3, 4, 5]),
        ('C', 'r2', 'C'): ([0, 1, 2, 3, 4], [1, 2, 3, 4, 5])
    }, idtype=idtype, device=F.ctx())
    new_g = transform(g)
    assert new_g.num_edges(('A', 'r1', 'B')) == 6
    assert new_g.num_edges(('C', 'r2', 'C')) == 6
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes

2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
@parametrize_dtype
def test_module_random_walk_pe(idtype):
    transform = dgl.RandomWalkPE(2, 'rwpe')
    g = dgl.graph(([0, 1, 1], [1, 1, 0]), idtype=idtype, device=F.ctx())
    new_g = transform(g)
    tgt = F.copy_to(F.tensor([[0., 0.5],[0.5, 0.75]]), g.device)
    assert F.allclose(new_g.ndata['rwpe'], tgt)

@parametrize_dtype
def test_module_laplacian_pe(idtype):
    transform = dgl.LaplacianPE(2, 'lappe')
    g = dgl.graph(([2, 1, 0, 3, 1, 1],[3, 0, 1, 3, 3, 1]), idtype=idtype, device=F.ctx())
    new_g = transform(g)
    tgt = F.copy_to(F.tensor([[ 0.24971116, 0.],
        [ 0.11771496, 0.],
        [ 0.83237050, 1.],
        [ 0.48056933, 0.]]), g.device)
    # tensorflow has no abs() api
    if dgl.backend.backend_name == 'tensorflow':
        assert F.allclose(new_g.ndata['lappe'].__abs__(), tgt)
    # pytorch & mxnet
    else:
        assert F.allclose(new_g.ndata['lappe'].abs(), tgt)

2356
if __name__ == '__main__':
2357
    test_partition_with_halo()
2358
    test_module_heat_kernel(F.int32)