kernels.cu 128 KB
Newer Older
1
2
3
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
Tim Dettmers's avatar
Tim Dettmers committed
4
5
// LICENSE file in the root directory of this source tree.

6
#include "common.cuh"
7
#include "kernels.cuh"
Tim Dettmers's avatar
Tim Dettmers committed
8
#include <cub/block/block_discontinuity.cuh>
9
10
#include <cub/block/block_load.cuh>
#include <cub/block/block_radix_sort.cuh>
Tim Dettmers's avatar
Tim Dettmers committed
11
#include <cub/block/block_reduce.cuh>
12
#include <cub/block/block_store.cuh>
Tim Dettmers's avatar
Tim Dettmers committed
13
#include <cub/cub.cuh>
14
15
#include <cub/warp/warp_reduce.cuh>
#include <cuda_fp16.h>
Tim Dettmers's avatar
Tim Dettmers committed
16
#include <math_constants.h>
Tim Dettmers's avatar
Tim Dettmers committed
17
#include <mma.h>
Tim Dettmers's avatar
Tim Dettmers committed
18

19
20
21
22
23
24
25
26
#if CCCL_VERSION >= 2008002
#include <cuda/std/functional>
#define CUB_REDUCTIONOP_MAX                                                                                            \
    cuda::maximum<> {}
#else
#define CUB_REDUCTIONOP_MAX cub::Max()
#endif

Tim Dettmers's avatar
Tim Dettmers committed
27
28
29
30
#define HLF_MAX 65504
#define TH 1024
#define NUM 4
#define NUM_BLOCK 4096
31
#define DU_WARP_SIZE warpSize
Tim Dettmers's avatar
Tim Dettmers committed
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
__device__ static float fp4_dequantization_lut[8] = {
    0.0f,            // 0b000
    0.005208333333f, // 0b001
    0.66666667f,     // 0b010
    1.0f,            // 0b011
    0.33333333f,     // 0b100
    0.5f,            // 0b101
    0.16666667f,     // 0b110
    0.25f            // 0b111
};

__device__ static float nf4_dequantization_lut[16] = {
    -1.0f,                 // 0b0000
    -0.6961928009986877f,  // 0b0001
    -0.5250730514526367f,  // 0b0010
    -0.39491748809814453f, // 0b0011
    -0.28444138169288635f, // 0b0100
    -0.18477343022823334f, // 0b0101
    -0.09105003625154495f, // 0b0110
    0.0f,                  // 0b0111
    0.07958029955625534f,  // 0b1000
    0.16093020141124725f,  // 0b1001
    0.24611230194568634f,  // 0b1010
    0.33791524171829224f,  // 0b1011
    0.44070982933044434f,  // 0b1100
    0.5626170039176941f,   // 0b1101
    0.7229568362236023f,   // 0b1110
    1.0f                   // 0b1111
61
};
Tim Dettmers's avatar
Tim Dettmers committed
62

Tim Dettmers's avatar
Tim Dettmers committed
63
64
// source: https://stackoverflow.com/questions/17399119/how-do-i-use-atomicmax-on-floating-point-values-in-cuda
__device__ float atomicMax(float* address, float val) {
65
66
67
68
69
70
71
    int* address_as_i = reinterpret_cast<int*>(address);
    int old = *address_as_i, assumed;
    do {
        assumed = old;
        old = atomicCAS(reinterpret_cast<int*>(address), assumed, __float_as_int(fmaxf(val, __int_as_float(assumed))));
    } while (assumed != old);
    return __int_as_float(old);
Tim Dettmers's avatar
Tim Dettmers committed
72
73
}

74
75
76
__device__ __forceinline__ float dDequantizeFP4Tree(unsigned char val) {
    float sign = 1.0f - 2 * ((val & 0b1000) >> 3);
    return fp4_dequantization_lut[val & 0b111] * sign;
Tim Dettmers's avatar
Tim Dettmers committed
77
78
}

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
__device__ unsigned char dQuantizeFP4(float x) {
    // FP4 with bias of 3
    // first bit is a sign
    // subnormals
    // 0b000 = 0
    // 0b001 = 0.0625
    // 0b110 = 2
    // 0b111 = 3
    // 0b100 = 4
    // 0b101 = 6
    // 0b010 = 8
    // 0b011 = 12

    // we do a binary search
    // the pivots are divided by 12 (the FP4 absmax)
    // since we assume input data is in [-1.0, 1.0]

    // !be careful here, its easy to make a mistake
    // that is difficult to notice if you add an extra
    // zero somewhere!

    int sign = x < 0 ? 0b1000 : 0b0000;
    x = fabsf(x);
    if (x > 0.29166667f)
        if (x > 0.583333f)
            if (x > 0.8333333f)
                return 0b0011 + sign;
            else
                return 0b0010 + sign;
        else if (x > 0.4166667f)
            return 0b101 + sign;
        else
            return 0b100 + sign;
    else if (x > 0.0859375f)
        if (x > 0.20833333f)
            return 0b0111 + sign;
        else
            return 0b0110 + sign;
    else if (x > 0.00260417f)
        return 0b0001 + sign;
Tim Dettmers's avatar
Tim Dettmers committed
119
    else
120
        return 0b0000 + sign;
Tim Dettmers's avatar
Tim Dettmers committed
121
122
}

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
// __device__ __forceinline__ float dDequantizeNF4(unsigned char val) { return nf4_dequantization_lut[val & 0x0F]; }

__device__ __forceinline__ float dDequantizeNF4(unsigned char val)
{

  // the values for this tree was generated by test_normal_map_tree
  // in the file tests/test_functional.py
  if((val & 0b1000) == 8)
    if((val & 0b0100) == 4) // 1
      if((val & 0b0010) == 2) // 11
        if((val & 0b0001) == 1) // 111
          return 1.0f;
        else
          return 0.7229568362236023f;
      else
        if((val & 0b0001) == 1) // 110
          return 0.5626170039176941f;
        else
          return 0.44070982933044434f;
    else
      if((val & 0b0010) == 2) //10
        if((val & 0b0001) == 1) // 101
          return 0.33791524171829224f;
        else
          return 0.24611230194568634f;
      else
        if((val & 0b0001) == 1) // 100
          return 0.16093020141124725f;
        else
          return 0.07958029955625534f;

  else
    if((val & 0b0100) == 4) // 0
      if((val & 0b0010) == 2) //01
        if((val & 0b0001) == 1) // 011
          return 0.0f;
        else
          return -0.09105003625154495f;
      else
        if((val & 0b0001) == 1) // 010
          return -0.18477343022823334f;
        else
          return -0.28444138169288635f;
    else
      if((val & 0b0010) == 2) //00
        if((val & 0b0001) == 1) // 001
          return -0.39491748809814453f;
        else
          return -0.5250730514526367f;
      else
        if((val & 0b0001) == 1) // 000
          return -0.6961928009986877f;
        else
          return -1.0f;

}
Tim Dettmers's avatar
Tim Dettmers committed
179

180
__device__ unsigned char dQuantizeNF4(float x) {
Tim Dettmers's avatar
Tim Dettmers committed
181

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    // the values for this tree was generated by test_normal_map_tree
    // in the file tests/test_functional.py
    if (x > 0.03979014977812767f)
        if (x > 0.3893125355243683f)         // 1
            if (x > 0.6427869200706482f)     // 11
                if (x > 0.8614784181118011f) // 111
                    return 0b1111;
                else
                    return 0b1110;
            else if (x > 0.5016634166240692f) // 110
                return 0b1101;
            else
                return 0b1100;
        else if (x > 0.2035212516784668f) // 10
            if (x > 0.2920137718319893f)  // 101
                return 0b1011;
            else
                return 0b1010;
        else if (x > 0.1202552504837513f) // 100
            return 0b1001;
Tim Dettmers's avatar
Tim Dettmers committed
202
        else
203
204
205
206
207
208
209
210
211
            return 0b1000;
    else if (x > -0.33967943489551544f)     // 0
        if (x > -0.13791173323988914f)      // 01
            if (x > -0.045525018125772476f) // 011
                return 0b0111;
            else
                return 0b0110;
        else if (x > -0.23460740596055984f) // 010
            return 0b0101;
Tim Dettmers's avatar
Tim Dettmers committed
212
        else
213
214
215
216
            return 0b0100;
    else if (x > -0.6106329262256622f) // 00
        if (x > -0.4599952697753906f)  // 001
            return 0b0011;
Tim Dettmers's avatar
Tim Dettmers committed
217
        else
218
219
220
            return 0b0010;
    else if (x > -0.8480964004993439f) // 000
        return 0b0001;
221
    else
222
        return 0b0000;
223
}
224

225
226
227
// sign function for lion
// taken from https://stackoverflow.com/a/4609795, but not sure if there's a proper way to do this in CUDA

228
template <typename T> __device__ int sgn(T val) { return (T(0) < val) - (val < T(0)); }
229

230
template <int STOCHASTIC> __device__ unsigned char dQuantize(float* smem_code, const float rand, float x) {
Tim Dettmers's avatar
Tim Dettmers committed
231
232
233
234
235
236
237
238
239
    int pivot = 127;
    int upper_pivot = 255;
    int lower_pivot = 0;

    float lower = -1.0f;
    float upper = 1.0f;

    float val = smem_code[pivot];
    // i>>=1 = {32, 16, 8, 4, 2, 1}
240
241
    for (int i = 64; i > 0; i >>= 1) {
        if (x > val) {
Tim Dettmers's avatar
Tim Dettmers committed
242
243
            lower_pivot = pivot;
            lower = val;
244
245
            pivot += i;
        } else {
Tim Dettmers's avatar
Tim Dettmers committed
246
247
            upper_pivot = pivot;
            upper = val;
248
            pivot -= i;
Tim Dettmers's avatar
Tim Dettmers committed
249
250
251
252
        }
        val = smem_code[pivot];
    }

253
    if (upper_pivot == 255)
Tim Dettmers's avatar
Tim Dettmers committed
254
        upper = smem_code[upper_pivot];
255
    if (lower_pivot == 0)
Tim Dettmers's avatar
Tim Dettmers committed
256
257
        lower = smem_code[lower_pivot];

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    if (!STOCHASTIC) {
        if (x > val) {
            float midpoint = (upper + val) * 0.5f;
            if (x > midpoint) {
                return upper_pivot;
            } else
                return pivot;
        } else {
            float midpoint = (lower + val) * 0.5f;
            if (x < midpoint)
                return lower_pivot;
            else
                return pivot;
        }
    } else {
        if (x > val) {
            float dist_to_upper = fabsf(upper - x);
            float dist_full = upper - val;
            if (rand >= dist_to_upper / dist_full)
                return upper_pivot;
            else
                return pivot;
        } else {
            float dist_to_lower = fabsf(lower - x);
            float dist_full = val - lower;
            if (rand >= dist_to_lower / dist_full)
                return lower_pivot;
            else
                return pivot;
Tim Dettmers's avatar
Tim Dettmers committed
287
288
289
290
291
        }
    }
}

template <int SIGNED>
292
293
__device__ __forceinline__ unsigned char
    quantize_2D(float* __restrict__ quadrants, float* __restrict__ const smem_code, float x) {
Tim Dettmers's avatar
Tim Dettmers committed
294
295
296
297
298
299
300
301
302
303
304
305
    int pivot = 127;
    int upper_pivot = 255;
    int lower_pivot = 0;

    float lower = SIGNED ? -1.0f : 0.0f;
    float upper = 1.0f;
    float midpoint;
    float val = quadrants[1];
    int local_pivot = 1;
    int offset = 1;

    // i>>=1 = {32, 16, 8, 4, 2, 1}
306
307
    for (int i = 64; i > 0; i >>= 1) {
        if (x > val) {
Tim Dettmers's avatar
Tim Dettmers committed
308
309
            lower_pivot = pivot;
            lower = val;
310
311
            pivot += i;
            // val = i == 64 ? quadrants[2] : smem_code[pivot];
Tim Dettmers's avatar
Tim Dettmers committed
312
            local_pivot += offset;
313
        } else {
Tim Dettmers's avatar
Tim Dettmers committed
314
315
            upper_pivot = pivot;
            upper = val;
316
317
            pivot -= i;
            // val = i == 64 ? quadrants[0] : smem_code[pivot];
Tim Dettmers's avatar
Tim Dettmers committed
318
319
320
321
322
323
            local_pivot -= offset;
        }
        val = i >= 64 ? quadrants[local_pivot] : smem_code[pivot];
        offset -= 1;
    }

324
325
326
327
328
329
330
331
332
333
334
335
    if (x > val) {
        midpoint = (upper + val) * 0.5f;
        if (x > midpoint)
            return upper_pivot;
        else
            return pivot;
    } else {
        midpoint = (lower + val) * 0.5f;
        if (x < midpoint)
            return lower_pivot;
        else
            return pivot;
Tim Dettmers's avatar
Tim Dettmers committed
336
337
338
    }
}

339
340
341
342
343
__launch_bounds__(TH, 4) __global__
    void kQuantize(float* code, float* __restrict__ const A, unsigned char* out, const int n) {
    const int n_full = (NUM_BLOCK * (n / NUM_BLOCK)) + (n % NUM_BLOCK == 0 ? 0 : NUM_BLOCK);
    int valid_items = (blockIdx.x + 1 == gridDim.x) ? n - (blockIdx.x * NUM_BLOCK) : NUM_BLOCK;
    const int base_idx = (blockIdx.x * NUM_BLOCK);
Tim Dettmers's avatar
Tim Dettmers committed
344

345
346
347
    float vals[NUM];
    unsigned char qvals[NUM];
    // const int lane_id = threadIdx.x % 2;
Tim Dettmers's avatar
Tim Dettmers committed
348

349
350
    typedef cub::BlockLoad<float, TH, NUM, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockStore<unsigned char, TH, NUM, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
Tim Dettmers's avatar
Tim Dettmers committed
351

352
353
354
355
    __shared__ typename LoadFloat::TempStorage loadf;
    __shared__ typename StoreChar::TempStorage storec;
    __shared__ float smem_code[256];
    //__shared__ float smem_code[2][257];
Tim Dettmers's avatar
Tim Dettmers committed
356

357
358
359
360
361
    if (threadIdx.x < 256) {
        smem_code[threadIdx.x] = code[threadIdx.x];
        // smem_code[0][threadIdx.x] = code[threadIdx.x];
        // smem_code[1][threadIdx.x] = smem_code[0][threadIdx.x];
    }
Tim Dettmers's avatar
Tim Dettmers committed
362

363
364
365
366
367
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * NUM_BLOCK) {
        // number of values already processed in blocks +
        // number of values already processed in this block +
        // rand_offset % mod value
        valid_items = n - i > NUM_BLOCK ? NUM_BLOCK : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
368

369
370
        __syncthreads();
        LoadFloat(loadf).Load(&(A[i]), vals, valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
371

372
373
374
#pragma unroll 4
        for (int j = 0; j < NUM; j++)
            qvals[j] = dQuantize<0>(smem_code, 0.0f, vals[j]);
Tim Dettmers's avatar
Tim Dettmers committed
375

376
377
378
        __syncthreads();
        StoreChar(storec).Store(&(out[i]), qvals, valid_items);
    }
Tim Dettmers's avatar
Tim Dettmers committed
379
380
}

381
template <typename T, int BLOCK_SIZE, int NUM_PER_TH, int STOCHASTIC, int DATA_TYPE>
382
//__launch_bounds__(TH, 4)
383
__global__ __launch_bounds__(1024) void kQuantizeBlockwise(
384
385
386
387
388
389
    float* code, T* __restrict__ const A, float* absmax, unsigned char* out, float* __restrict__ const rand,
    const int rand_offset, const int n
) {
    const int n_full = gridDim.x * BLOCK_SIZE;
    int valid_items = 0;
    const int base_idx = (blockIdx.x * BLOCK_SIZE);
Tim Dettmers's avatar
Tim Dettmers committed
390

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
    T vals[NUM_PER_TH];
    float rand_vals[NUM_PER_TH];
    unsigned char qvals[(DATA_TYPE > 0) ? NUM_PER_TH / 2 : NUM_PER_TH];
    // float local_abs_max = -FLT_MAX;
    float local_abs_max = 0.0f;
    int local_rand_idx = 0;

    typedef cub::BlockLoad<T, BLOCK_SIZE / NUM_PER_TH, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockStore<
        unsigned char, BLOCK_SIZE / NUM_PER_TH, (DATA_TYPE > 0) ? NUM_PER_TH / 2 : NUM_PER_TH,
        cub::BLOCK_STORE_WARP_TRANSPOSE>
        StoreChar;
    typedef cub::BlockReduce<float, BLOCK_SIZE / NUM_PER_TH> BlockReduce;
    typedef cub::BlockLoad<float, BLOCK_SIZE / NUM_PER_TH, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;

    __shared__ typename LoadT::TempStorage loadt;
    __shared__ typename LoadFloat::TempStorage loadf;
    __shared__ typename StoreChar::TempStorage storec;
    __shared__ typename BlockReduce::TempStorage reduce;
    __shared__ float smem_code[256];
    __shared__ float smem_absmax_value[1];

    if (DATA_TYPE == General8bit)
        for (int i = threadIdx.x; i < 256; i += blockDim.x)
            smem_code[i] = code[i];

    for (int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
        valid_items = n - i > BLOCK_SIZE ? BLOCK_SIZE : n - i;
        local_abs_max = -FLT_MAX;
Tim Dettmers's avatar
Tim Dettmers committed
420

421
422
        __syncthreads();
        LoadT(loadt).Load(&(A[i]), vals, valid_items, (T)0.0f);
Tim Dettmers's avatar
Tim Dettmers committed
423

424
425
426
        // 1. compute local max
        // 2. broadcast local max
        // 3. normalize inputs and quantize
Tim Dettmers's avatar
Tim Dettmers committed
427

428
429
430
#pragma unroll NUM_PER_TH
        for (int j = 0; j < NUM_PER_TH; j++)
            local_abs_max = fmaxf(local_abs_max, fabsf((float)vals[j]));
Tim Dettmers's avatar
Tim Dettmers committed
431

432
        local_abs_max = BlockReduce(reduce).Reduce(local_abs_max, CUB_REDUCTIONOP_MAX, valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
433

434
435
436
437
438
        if (threadIdx.x == 0) {
            smem_absmax_value[0] = 1.0f / local_abs_max;
            absmax[i / BLOCK_SIZE] = local_abs_max;
        }
        __syncthreads();
Tim Dettmers's avatar
Tim Dettmers committed
439

440
        local_abs_max = smem_absmax_value[0];
Tim Dettmers's avatar
Tim Dettmers committed
441

442
443
444
445
446
447
        if (STOCHASTIC) {
            local_rand_idx = ((blockIdx.x * NUM_BLOCK) + (threadIdx.x * NUM) + rand_offset) % (1024 - 4);
            LoadFloat(loadf).Load(&rand[local_rand_idx], rand_vals, BLOCK_SIZE, 0);
        }

        switch (DATA_TYPE) {
Tim Dettmers's avatar
Tim Dettmers committed
448
        case General8bit:
449
450
451
452
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH; j++) {
                if (!STOCHASTIC)
                    qvals[j] = dQuantize<0>(smem_code, 0.0f, ((float)vals[j]) * local_abs_max);
Tim Dettmers's avatar
Tim Dettmers committed
453
                else
454
                    qvals[j] = dQuantize<1>(smem_code, rand_vals[j], ((float)vals[j]) * local_abs_max);
Tim Dettmers's avatar
Tim Dettmers committed
455
456
457
            }
            break;
        case FP4:
458
459
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH / 2; j++) {
460
461
                qvals[j] = dQuantizeFP4(((float)vals[2 * j]) * local_abs_max) << 4;
                qvals[j] |= dQuantizeFP4(((float)vals[2 * j + 1]) * local_abs_max);
Tim Dettmers's avatar
Tim Dettmers committed
462
463
464
            }
            break;
        case NF4:
465
466
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH / 2; j++) {
467
468
                qvals[j] = dQuantizeNF4(((float)vals[2 * j]) * local_abs_max) << 4;
                qvals[j] |= dQuantizeNF4(((float)vals[2 * j + 1]) * local_abs_max);
Tim Dettmers's avatar
Tim Dettmers committed
469
470
            }
            break;
471
        }
Tim Dettmers's avatar
Tim Dettmers committed
472

473
474
475
476
477
        __syncthreads();
        StoreChar(storec).Store(
            &(out[(DATA_TYPE > 0) ? i / 2 : i]), qvals, (DATA_TYPE > 0) ? (valid_items + 1) / 2 : valid_items
        );
    }
Tim Dettmers's avatar
Tim Dettmers committed
478
479
}

480
template <typename T, int TILE_SIZE, int THREADS, int NUM_PER_TH, int DATA_TYPE>
481
__global__ __launch_bounds__(1024) void
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
    kDequantizeBlockwise(float* code, unsigned char* A, float* absmax, T* out, const int blocksize, const int n) {

    const int n_load = (gridDim.x * TILE_SIZE);
    int valid_items_load = 0;
    int valid_items_store = 0;
    const int base_idx = (blockIdx.x * TILE_SIZE);

    T vals[NUM_PER_TH * ((DATA_TYPE > 0) ? 2 : 1)];
    unsigned char qvals[NUM_PER_TH];
    float local_abs_max = -FLT_MAX;

    typedef cub::BlockLoad<unsigned char, THREADS, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;
    typedef cub::BlockStore<T, THREADS, NUM_PER_TH*((DATA_TYPE > 0) ? 2 : 1), cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ typename LoadChar::TempStorage loadchar;
    __shared__ typename StoreT::TempStorage storet;

    for (int i = base_idx; i < n_load; i += gridDim.x * TILE_SIZE) {
        if (DATA_TYPE > 0) {
            valid_items_load = min(TILE_SIZE, (n + 1) / 2 - i);
            valid_items_store = min(TILE_SIZE * 2, n - i * 2);
        } else {
            valid_items_load = min(TILE_SIZE, n - i);
            valid_items_store = valid_items_load;
        }
Tim Dettmers's avatar
Tim Dettmers committed
507

508
509
510
511
        // Since blocksize will always be a power-of-2, we avoid more expensive
        // division by the blocksize and instead use a shift operation.
        // This is equivalent to (i+threadId.x*NUM_PER_TH)/blocksize.
        local_abs_max = __ldg(&absmax[(i + threadIdx.x * NUM_PER_TH) >> (31 - __clz(blocksize))]);
Tim Dettmers's avatar
Tim Dettmers committed
512

513
514
        __syncthreads();
        LoadChar(loadchar).Load(&(A[i]), qvals, valid_items_load, 128);
Tim Dettmers's avatar
Tim Dettmers committed
515

516
517
518
519
520
521
522
523
524
525
        switch (DATA_TYPE) {
        case General8bit:
// load code through read-only cache via __ldg
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH; j++)
                vals[j] = __ldg(&code[qvals[j]]) * local_abs_max;
            break;
        case FP4:
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH; j++) {
526
527
                vals[j * 2] = dDequantizeFP4Tree(qvals[j] >> 4) * local_abs_max;
                vals[j * 2 + 1] = dDequantizeFP4Tree(qvals[j] & 0x0F) * local_abs_max;
528
529
530
531
532
533
534
535
536
537
            }
            break;
        case NF4:
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH; j++) {
                vals[j * 2] = dDequantizeNF4(qvals[j] >> 4) * local_abs_max;
                vals[j * 2 + 1] = dDequantizeNF4(qvals[j] & 0x0F) * local_abs_max;
            }
            break;
        }
Tim Dettmers's avatar
Tim Dettmers committed
538

539
540
        __syncthreads();
        StoreT(storet).Store(&(out[(DATA_TYPE > 0) ? i * 2 : i]), vals, valid_items_store);
541
    }
542
}
543

544
545
546
__global__ void kDequantize(float* code, unsigned char* A, float* out, const int n) {
    const unsigned int numThreads = blockDim.x * gridDim.x;
    const int idx = (blockIdx.x * blockDim.x) + threadIdx.x;
Tim Dettmers's avatar
Tim Dettmers committed
547

548
549
550
    __shared__ float smem_code[256];
    if (threadIdx.x < 256) {
        smem_code[threadIdx.x] = code[threadIdx.x];
551
    }
Tim Dettmers's avatar
Tim Dettmers committed
552

553
    __syncthreads();
554
555
556
557

    for (int i = idx; i < n; i += numThreads) {
        out[i] = smem_code[A[i]];
    }
Tim Dettmers's avatar
Tim Dettmers committed
558
559
}

560
561
562
563
564
565
566
567
568
569
570
template <typename T, int OPTIMIZER, int BLOCK_SIZE, int NUM_VALS>
__launch_bounds__(BLOCK_SIZE / NUM_VALS, 1) __global__ void kPreconditionOptimizer32bit2State(
    T* g, T* p, float* state1, float* state2, float* unorm, const float beta1, const float beta2, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const int n
) {

    const int n_full = (BLOCK_SIZE * (n / BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
    const int base_idx = (blockIdx.x * blockDim.x * NUM_VALS);
    int valid_items = 0;

    T g_vals[NUM_VALS];
Tim Dettmers's avatar
Tim Dettmers committed
571

572
573
    float s1_vals[NUM_VALS];
    float s2_vals[NUM_VALS];
Tim Dettmers's avatar
Tim Dettmers committed
574

575
576
    const float correction1 = 1.0f / (1.0f - powf(beta1, step));
    const float correction2 = 1.0f / (1.0f - powf(beta2, step));
Tim Dettmers's avatar
Tim Dettmers committed
577

578
579
580
    typedef cub::BlockLoad<T, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
    typedef cub::BlockLoad<float, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockReduce<float, BLOCK_SIZE / NUM_VALS> BlockReduce;
Tim Dettmers's avatar
Tim Dettmers committed
581

582
583
584
585
586
    __shared__ union {
        typename Load::TempStorage load;
        typename LoadFloat::TempStorage loadf;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;
Tim Dettmers's avatar
Tim Dettmers committed
587

588
589
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
        valid_items = n - i >= (BLOCK_SIZE) ? (BLOCK_SIZE) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
590

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
        __syncthreads();
        Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items, 0.0f);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items, 0.0f);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state2[i]), s2_vals, valid_items, 0.0f);

#pragma unroll NUM_VALS
        for (unsigned int j = 0; j < NUM_VALS; j++)
            g_vals[j] = gnorm_scale * ((float)g_vals[j]);

#pragma unroll NUM_VALS
        for (unsigned int j = 0; j < NUM_VALS; j++) {
            switch (OPTIMIZER) {
            case ADAM:
                s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * ((float)g_vals[j]));
                s2_vals[j] = s2_vals[j] * beta2 + ((1.0f - beta2) * (((float)g_vals[j]) * ((float)g_vals[j])));
                s1_vals[j] *= correction1;
                s2_vals[j] *= correction2;
                s1_vals[j] = s1_vals[j] / (sqrtf(s2_vals[j]) + eps); // update
                s1_vals[j] *= s1_vals[j];                            // update l2 norm (update*update)
                break;
            }
        }

#pragma unroll NUM_VALS - 1
        for (unsigned int j = 1; j < NUM_VALS; j++)
            s1_vals[0] += s1_vals[j];
Tim Dettmers's avatar
Tim Dettmers committed
619

620
621
        __syncthreads();
        s1_vals[0] = BlockReduce(temp_storage.reduce).Sum(s1_vals[0]);
Tim Dettmers's avatar
Tim Dettmers committed
622

623
624
625
626
627
628
        if (threadIdx.x == 0)
            atomicAdd(&unorm[0], s1_vals[0]);

        __syncwarp();
    }
}
Tim Dettmers's avatar
Tim Dettmers committed
629
630
631

#define NUM_PER_THREAD 4

632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
template <typename T, int OPTIMIZER>
__launch_bounds__(TH, 1) __global__ void kOptimizer32bit2State(
    T* g, T* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
) {

    const int n_full = ((TH * NUM_PER_THREAD) * (n / (TH * NUM_PER_THREAD))) +
                       (n % (TH * NUM_PER_THREAD) == 0 ? 0 : (TH * NUM_PER_THREAD));
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
    int valid_items = 0;
    float update_scale = 0.0f;
    T g_vals[NUM_PER_THREAD];
    T p_vals[NUM_PER_THREAD];

    float s1_vals[NUM_PER_THREAD];
    float s2_vals[NUM_PER_THREAD];

    // AdEMAMix has an additional state buffer, which we packed
    // into state1. We need thread-local storage here for these.
    // TODO: Mark with [[maybe_unused]] after upgrade to min compiler.
    float s3_vals[NUM_PER_THREAD];

    const float correction1 = 1.0f - powf(beta1, step);
    const float correction2 = sqrtf(1.0f - powf(beta2, step));
    const float step_size = -lr * correction2 / correction1;

    if (max_unorm > 0.0f) {
        update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
        if (update_scale > max_unorm * param_norm) {
            update_scale = (max_unorm * param_norm) / update_scale;
        } else {
            update_scale = 1.0f;
        }
    } else {
        update_scale = 1.0f;
    }

    typedef cub::BlockLoad<T, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
    typedef cub::BlockStore<T, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> Store;

    typedef cub::BlockLoad<float, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockStore<float, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreFloat;

    __shared__ union {
        typename Load::TempStorage load;
        typename Store::TempStorage store;
        typename LoadFloat::TempStorage loadf;
        typename StoreFloat::TempStorage storef;
    } temp_storage;

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * TH * NUM_PER_THREAD) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;

        __syncthreads();
        Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items);
691
        __syncthreads();
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
        LoadFloat(temp_storage.loadf).Load(&(state2[i]), s2_vals, valid_items);
        __syncthreads();
        Load(temp_storage.load).Load(&(p[i]), p_vals, valid_items);

        // Load additional state1 data for AdEMAMix
        // TODO: Make constexpr after updating min compiler
        if (OPTIMIZER == ADEMAMIX) {
            __syncthreads();
            LoadFloat(temp_storage.loadf).Load(&(state1[n + i]), s3_vals, valid_items);
        }

#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD; j++)
            g_vals[j] = gnorm_scale * ((float)g_vals[j]);

#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD; j++) {
            switch (OPTIMIZER) {
            case ADEMAMIX:
711
712
713
714
715
716
717
718
719
                // m1 update: m1 = beta1 * m1 + (1-beta1) * g
                s1_vals[j] = (s1_vals[j] * beta1) + ((1.0f - beta1) * (float)g_vals[j]);

                // m2 update: m2 = m2 * beta3 + (1-beta3) * g
                s3_vals[j] = (s3_vals[j] * beta3) + ((1.0f - beta3) * (float)g_vals[j]);

                // nu update: nu = beta2 * nu + (1-beta2) * g^2
                s2_vals[j] = (s2_vals[j] * beta2) + ((1.0f - beta2) * (float)g_vals[j] * (float)g_vals[j]);

720
721
                p_vals[j] = (float)p_vals[j] - lr * (((s1_vals[j] / correction1) + (alpha * s3_vals[j])) /
                                                     ((sqrtf(s2_vals[j]) / correction2) + eps));
722
723
724
725

                if (weight_decay > 0.0f)
                    p_vals[j] = ((float)p_vals[j]) * (1.0f - (lr * weight_decay));

726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
                break;
            case ADAM:

                if (!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f))) {
                    s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * ((float)g_vals[j]));
                    s2_vals[j] = s2_vals[j] * beta2 + ((1.0f - beta2) * (((float)g_vals[j]) * ((float)g_vals[j])));
                    p_vals[j] = ((float)p_vals[j]) +
                                (update_scale * step_size * (s1_vals[j] / (sqrtf(s2_vals[j]) + (eps * correction2))));

                    if (weight_decay > 0.0f)
                        p_vals[j] = ((float)p_vals[j]) * (1.0f - (lr * weight_decay));
                }
                break;
            }
        }

742
        __syncthreads();
743
744
745
746
747
748
749
750
751
752
753
        Store(temp_storage.store).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreFloat(temp_storage.storef).Store(&(state1[i]), s1_vals, valid_items);
        __syncthreads();
        StoreFloat(temp_storage.storef).Store(&(state2[i]), s2_vals, valid_items);

        if (OPTIMIZER == ADEMAMIX) {
            __syncthreads();
            StoreFloat(temp_storage.storef).Store(&(state1[n + i]), s3_vals, valid_items);
        }
    }
Tim Dettmers's avatar
Tim Dettmers committed
754
755
}

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
template <typename T, int OPTIMIZER, int BLOCK_SIZE, int NUM_VALS>
__launch_bounds__(BLOCK_SIZE / NUM_VALS, 1) __global__ void kPreconditionOptimizer32bit1State(
    T* g, T* p, float* state1, float* unorm, const float beta1, const float beta2, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const int n
) {

    const int n_full = (BLOCK_SIZE * (n / BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
    const int base_idx = (blockIdx.x * blockDim.x * NUM_VALS);
    int valid_items = 0;

    T g_vals[NUM_VALS];

    float s1_vals[NUM_VALS];

    typedef cub::BlockLoad<T, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
    typedef cub::BlockLoad<float, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockReduce<float, BLOCK_SIZE / NUM_VALS> BlockReduce;

    __shared__ union {
        typename Load::TempStorage load;
        typename LoadFloat::TempStorage loadf;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
        valid_items = n - i >= (BLOCK_SIZE) ? (BLOCK_SIZE) : n - i;

        __syncthreads();
        Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items, 0.0f);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items, 0.0f);

#pragma unroll NUM_VALS
        for (unsigned int j = 0; j < NUM_VALS; j++)
            g_vals[j] = gnorm_scale * ((float)g_vals[j]);

#pragma unroll NUM_VALS
        for (unsigned int j = 0; j < NUM_VALS; j++) {
            switch (OPTIMIZER) {
            case MOMENTUM:
                if (step == 1)
Tim Dettmers's avatar
Tim Dettmers committed
797
                    s1_vals[j] = (float)g_vals[j]; // state update
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
                else
                    s1_vals[j] = s1_vals[j] * beta1 + ((float)g_vals[j]); // state update
                s1_vals[j] = s1_vals[j] * s1_vals[j];                     // update norm
                break;
            case LION:
                s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * (float)g_vals[j]); // state update
                break;
            case RMSPROP:
                s1_vals[j] =
                    s1_vals[j] * beta1 + ((1.0f - beta1) * ((float)g_vals[j]) * ((float)g_vals[j])); // state update
                s1_vals[j] = __fdividef((float)g_vals[j], sqrtf(s1_vals[j]) + eps);                  // update value
                s1_vals[j] = s1_vals[j] * s1_vals[j];                                                // update norm
                break;
            case ADAGRAD:
                s1_vals[j] = s1_vals[j] + ((float)g_vals[j]) * ((float)g_vals[j]);  // state update
                s1_vals[j] = __fdividef((float)g_vals[j], sqrtf(s1_vals[j]) + eps); // update value
                s1_vals[j] = s1_vals[j] * s1_vals[j];                               // update norm
                break;
            }
        }
Tim Dettmers's avatar
Tim Dettmers committed
818

819
820
821
822
823
824
825
826
827
828
829
830
#pragma unroll
        for (unsigned int j = 1; j < NUM_VALS; j++)
            s1_vals[0] += s1_vals[j];

        __syncthreads();
        s1_vals[0] = BlockReduce(temp_storage.reduce).Sum(s1_vals[0], valid_items);

        if (threadIdx.x == 0)
            atomicAdd(&unorm[0], s1_vals[0]);

        __syncwarp();
    }
Tim Dettmers's avatar
Tim Dettmers committed
831
832
}

833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
template <typename T, int OPTIMIZER>
__launch_bounds__(TH, 1) __global__ void kOptimizer32bit1State(
    T* g, T* p, float* state1, float* unorm, const float max_unorm, const float param_norm, const float beta1,
    const float beta2, const float eps, const float weight_decay, const int step, const float lr,
    const float gnorm_scale, const bool skip_zeros, const int n
) {

    const int n_full = ((TH * NUM_PER_THREAD) * (n / (TH * NUM_PER_THREAD))) +
                       (n % (TH * NUM_PER_THREAD) == 0 ? 0 : (TH * NUM_PER_THREAD));
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
    int valid_items = 0;
    float update_scale = 0.0f;

    if (max_unorm > 0.0f) {
        update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
        if (update_scale > max_unorm * param_norm + eps) {
            update_scale = (max_unorm * param_norm + eps) / update_scale;
        } else {
            update_scale = 1.0f;
        }
    } else {
        update_scale = 1.0f;
    }

    T g_vals[NUM_PER_THREAD];
    T p_vals[NUM_PER_THREAD];

    float s1_vals[NUM_PER_THREAD];

    typedef cub::BlockLoad<T, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
    typedef cub::BlockStore<T, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> Store;

    typedef cub::BlockLoad<float, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockStore<float, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreFloat;

    __shared__ union {
        typename Load::TempStorage load;
        typename Store::TempStorage store;
        typename LoadFloat::TempStorage loadf;
        typename StoreFloat::TempStorage storef;
    } temp_storage;

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * TH * NUM_PER_THREAD) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;

        __syncthreads();
        Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items);
        __syncthreads();
        Load(temp_storage.load).Load(&(p[i]), p_vals, valid_items);

#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD; j++) {
            g_vals[j] = gnorm_scale * ((float)g_vals[j]);
            if (weight_decay > 0.0f)
                g_vals[j] = (float)g_vals[j] + (((float)p_vals[j]) * weight_decay);
        }

#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD; j++) {
            if (!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f))) {
                switch (OPTIMIZER) {
                case MOMENTUM:
                    if (step == 1)
                        s1_vals[j] = (float)g_vals[j];
                    else
                        s1_vals[j] = s1_vals[j] * beta1 + ((float)g_vals[j]);

                    p_vals[j] = ((float)p_vals[j]) + update_scale * (-lr * (s1_vals[j]));
                    break;
                case LION:
                    p_vals[j] =
                        ((float)p_vals[j]) -
                        update_scale * (lr * sgn(((float)s1_vals[j]) * beta1 + ((1.0f - beta1) * ((float)g_vals[j]))));
                    s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * ((float)g_vals[j]));
                    break;
                case RMSPROP:
                    s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * ((float)g_vals[j]) * ((float)g_vals[j]));
                    p_vals[j] = ((float)p_vals[j]) -
                                update_scale * (lr * __fdividef((float)g_vals[j], sqrtf((float)s1_vals[j]) + eps));
                    break;
                case ADAGRAD:
                    s1_vals[j] = s1_vals[j] + ((float)g_vals[j]) * ((float)g_vals[j]);
                    p_vals[j] = ((float)p_vals[j]) - lr * __fdividef((float)g_vals[j], sqrtf((float)s1_vals[j]) + eps);
                    break;
                }
            }
        }

        __syncthreads();
        Store(temp_storage.store).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreFloat(temp_storage.storef).Store(&(state1[i]), s1_vals, valid_items);
    }
}
Tim Dettmers's avatar
Tim Dettmers committed
929
930
931
932
933

#define NUM8BIT 16
#define NUM_THREADS 256
#define NUM_PER_BLOCK 4096

934
935
936
937
938
939
940
template <typename T, int OPTIMIZER>
__global__ void __launch_bounds__(NUM_THREADS, 2) kPreconditionOptimizerStatic8bit2State(
    T* p, T* __restrict__ const g, unsigned char* __restrict__ const state1, unsigned char* __restrict__ const state2,
    float* unorm, const float beta1, const float beta2, const float eps, const int step,
    float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* max1, float* max2,
    float* new_max1, float* new_max2, const float gnorm_scale, const int n
) {
Tim Dettmers's avatar
Tim Dettmers committed
941
942
    const int n_full = gridDim.x * NUM_PER_BLOCK;
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
943
944
    int valid_items =
        n - (blockIdx.x * NUM_PER_BLOCK) > NUM_PER_BLOCK ? NUM_PER_BLOCK : n - (blockIdx.x * NUM_PER_BLOCK);
Tim Dettmers's avatar
Tim Dettmers committed
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
    float g_val = 0.0f;
    float local_max_s1 = -FLT_MAX;
    float local_max_s2 = -FLT_MAX;
    float local_unorm = 0.0f;

    float s2_vals[NUM8BIT];
    float s1_vals[NUM8BIT];
    T g_vals[NUM8BIT];
    unsigned char m_c1[NUM8BIT];
    unsigned char r_c2[NUM8BIT];

    typedef cub::BlockLoad<T, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadUInt8;
    typedef cub::BlockReduce<float, NUM_THREADS> BlockReduce;

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadUInt8::TempStorage loadc;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;

    __shared__ float smem_quantiles1[256];
    __shared__ float smem_quantiles2[256];

969
    if (threadIdx.x < 256) {
Tim Dettmers's avatar
Tim Dettmers committed
970
971
972
973
974
975
        smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
        smem_quantiles2[threadIdx.x] = quantiles2[threadIdx.x];
    }

    __syncthreads();

976
977
    for (unsigned int i = base_idx; i < n_full; i += NUM_THREADS * gridDim.x * NUM8BIT) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
978
979
980
981
982
983
984
985

        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadUInt8(temp_storage.loadc).Load(&(state1[i]), m_c1, valid_items, 128);
        __syncthreads();
        LoadUInt8(temp_storage.loadc).Load(&(state2[i]), r_c2, valid_items, 128);
        __syncthreads();

986
987
#pragma unroll 16
        for (int j = 0; j < NUM8BIT; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
988
989
            g_val = g_vals[j];
            g_val *= gnorm_scale;
990
991
            s1_vals[j] = smem_quantiles1[m_c1[j]] * max1[0] * beta1;
            s1_vals[j] += (1.0f - beta1) * g_val;
Tim Dettmers's avatar
Tim Dettmers committed
992
993
994
            local_max_s1 = fmaxf(local_max_s1, fabsf(s1_vals[j]));
        }

995
996
#pragma unroll 16
        for (int j = 0; j < NUM8BIT; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
997
998
            g_val = g_vals[j];
            g_val *= gnorm_scale;
999
1000
            s2_vals[j] = smem_quantiles2[r_c2[j]] * max2[0] * beta2;
            s2_vals[j] += (1.0f - beta2) * g_val * g_val;
Tim Dettmers's avatar
Tim Dettmers committed
1001
1002
1003
            local_max_s2 = fmaxf(local_max_s2, fabsf(s2_vals[j]));
        }

1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
        if (unorm != NULL) {
#pragma unroll 16
            for (int j = 0; j < NUM8BIT; j++) {
                float correction1 = __fdividef(1.0f, 1.0f - powf(beta1, step));
                float correction2 = __fdividef(1.0f, 1.0f - powf(beta2, step));
                s1_vals[j] *= correction1;
                s2_vals[j] *= correction2;
                float update_val = s1_vals[j] / (sqrtf(s2_vals[j]) + eps); // update
                local_unorm += update_val * update_val;
            }
Tim Dettmers's avatar
Tim Dettmers committed
1014
1015
1016
1017
        }
    }

    __syncthreads();
1018
    local_max_s1 = BlockReduce(temp_storage.reduce).Reduce(local_max_s1, CUB_REDUCTIONOP_MAX, valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
1019
    __syncthreads();
1020
    local_max_s2 = BlockReduce(temp_storage.reduce).Reduce(local_max_s2, CUB_REDUCTIONOP_MAX, valid_items);
1021
1022
    if (unorm != NULL) {
        __syncthreads();
1023
        local_unorm = BlockReduce(temp_storage.reduce).Sum(local_unorm, valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
1024
1025
    }

1026
    if (threadIdx.x == 0) {
Tim Dettmers's avatar
Tim Dettmers committed
1027
1028
        atomicMax(&new_max1[0], local_max_s1);
        atomicMax(&new_max2[0], local_max_s2);
1029
1030
1031
        if (unorm != NULL) {
            atomicAdd(&unorm[0], local_unorm);
        }
Tim Dettmers's avatar
Tim Dettmers committed
1032
1033
1034
1035
1036
1037
1038
    }
}

#define NUM_PER_THREAD2 4
#define NUM_THREADS2 1024
#define NUM_PER_BLOCK2 4096

1039
1040
1041
1042
1043
1044
1045
1046
1047
template <typename T, int OPTIMIZER>
__global__ void __launch_bounds__(NUM_THREADS2, 1) kOptimizerStatic8bit2State(
    T* p, T* const g, unsigned char* state1, unsigned char* state2, const float* unorm, const float max_unorm,
    const float param_norm, const float beta1, const float beta2, const float eps, const int step, const float lr,
    float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* max1, float* max2,
    float* new_max1, float* new_max2, float weight_decay, const float gnorm_scale, const int n
) {

    const int n_full = (blockDim.x * gridDim.x) * NUM_PER_THREAD2;
Tim Dettmers's avatar
Tim Dettmers committed
1048
1049
1050
1051
1052
1053
1054
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD2);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[NUM_PER_THREAD2];
    float s2_vals[NUM_PER_THREAD2];
    const float correction1 = 1.0f - powf(beta1, step);
    const float correction2 = sqrtf(1.0f - powf(beta2, step));
1055
1056
1057
1058
    const float step_size = -lr * correction2 / correction1;
    // const float step_size = -lr*correction2/correction1;
    float new_max_val1 = 1.0f / new_max1[0];
    float new_max_val2 = 1.0f / new_max2[0];
Tim Dettmers's avatar
Tim Dettmers committed
1059
1060
    float update_scale = 1.0f;

1061
1062
1063
1064
1065
1066
1067
1068
1069
    if (max_unorm > 0.0f) {
        update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
        if (update_scale > max_unorm * param_norm) {
            update_scale = (max_unorm * param_norm) / update_scale;
        } else {
            update_scale = 1.0f;
        }
    } else {
        update_scale = 1.0f;
Tim Dettmers's avatar
Tim Dettmers committed
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
    }

    unsigned char c1s[NUM_PER_THREAD2];
    unsigned char c2s[NUM_PER_THREAD2];
    T p_vals[NUM_PER_THREAD2];
    T g_vals[NUM_PER_THREAD2];
    typedef cub::BlockLoad<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;

    typedef cub::BlockStore<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ float smem_quantiles1[256];
    __shared__ float smem_quantiles2[256];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;

1092
1093
    if (threadIdx.x < 512) {
        if (threadIdx.x < 256)
Tim Dettmers's avatar
Tim Dettmers committed
1094
1095
            smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
        else
1096
            smem_quantiles2[threadIdx.x - 256] = quantiles2[threadIdx.x - 256];
Tim Dettmers's avatar
Tim Dettmers committed
1097
1098
1099
1100
    }

    __syncthreads();

1101
1102
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * NUM_THREADS2 * NUM_PER_THREAD2) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
1103
1104
1105
1106
1107
1108
1109
1110
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state2[i]), c2s, valid_items, 0);
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items);

1111
1112
1113
        if ((i + (threadIdx.x * NUM_PER_THREAD2) + NUM_PER_THREAD2) > n) {
            continue;
        }
Tim Dettmers's avatar
Tim Dettmers committed
1114

1115
1116
#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD2; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1117
1118
1119
            g_val = float(g_vals[j]);
            g_val *= gnorm_scale;
            s1_vals[j] = smem_quantiles1[c1s[j]];
1120
            s1_vals[j] = s1_vals[j] * max1[0];
Tim Dettmers's avatar
Tim Dettmers committed
1121

1122
            s1_vals[j] = (s1_vals[j] * beta1) + (((1.0f - beta1) * g_val));
Tim Dettmers's avatar
Tim Dettmers committed
1123

1124
            c1s[j] = dQuantize<0>(smem_quantiles1, 0.0f, s1_vals[j] * new_max_val1);
Tim Dettmers's avatar
Tim Dettmers committed
1125
1126
1127

            // make sure state1 term has still the same sign after quantization
            // (not needed for state2 term which has only positive values)
1128
1129
1130
1131
1132
            if (signbit(smem_quantiles1[c1s[j]]) != signbit(s1_vals[j])) {
                if (s1_vals[j] > 0.0f)
                    c1s[j] += 1;
                else
                    c1s[j] -= 1;
Tim Dettmers's avatar
Tim Dettmers committed
1133
1134
1135
            }

            s2_vals[j] = smem_quantiles2[c2s[j]];
1136
1137
1138
            s2_vals[j] = s2_vals[j] * max2[0];
            s2_vals[j] = (s2_vals[j] * beta2) + (((1.0f - beta2) * g_val * g_val));
            c2s[j] = dQuantize<0>(smem_quantiles2, 0.0f, s2_vals[j] * new_max_val2);
Tim Dettmers's avatar
Tim Dettmers committed
1139
1140
        }

1141
1142
1143
1144
1145
1146
#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD2; j++) {
            p_vals[j] = (T)(((float)p_vals[j]) +
                            ((update_scale * step_size * (s1_vals[j] / (sqrtf(s2_vals[j]) + (correction2 * eps))))));
            if (weight_decay > 0.0f)
                p_vals[j] = update_scale * ((float)p_vals[j]) * (1.0f - (lr * weight_decay));
Tim Dettmers's avatar
Tim Dettmers committed
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
        }

        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state2[i]), c2s, valid_items);
        __syncthreads();
    }
}

1158
1159
1160
1161
1162
1163
template <typename T, int OPTIMIZER>
__global__ void __launch_bounds__(NUM_THREADS, 2) kPreconditionOptimizerStatic8bit1State(
    T* p, T* __restrict__ const g, unsigned char* __restrict__ const state1, float* unorm, const float beta1,
    const float beta2, const float eps, const int step, float* __restrict__ const quantiles1, float* max1,
    float* new_max1, const float weight_decay, const float gnorm_scale, const int n
) {
Tim Dettmers's avatar
Tim Dettmers committed
1164
1165
    const int n_full = gridDim.x * NUM_PER_BLOCK;
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
1166
1167
    int valid_items =
        n - (blockIdx.x * NUM_PER_BLOCK) > NUM_PER_BLOCK ? NUM_PER_BLOCK : n - (blockIdx.x * NUM_PER_BLOCK);
Tim Dettmers's avatar
Tim Dettmers committed
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
    float g_val = 0.0f;
    float local_max_s1 = -FLT_MAX;
    float local_unorm = 0.0f;

    float s1_vals[NUM8BIT];
    T g_vals[NUM8BIT];
    unsigned char m_c1[NUM8BIT];

    typedef cub::BlockLoad<T, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadUInt8;
    typedef cub::BlockReduce<float, NUM_THREADS> BlockReduce;

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadUInt8::TempStorage loadc;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;

    __shared__ float smem_quantiles1[256];

1188
1189
    if (threadIdx.x < 256)
        smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
Tim Dettmers's avatar
Tim Dettmers committed
1190
1191
1192

    __syncthreads();

1193
1194
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * NUM_THREADS * NUM8BIT) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
1195
1196
1197
1198
1199
1200

        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadUInt8(temp_storage.loadc).Load(&(state1[i]), m_c1, valid_items, 128);

1201
1202
#pragma unroll 16
        for (int j = 0; j < NUM8BIT; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1203
1204
            g_val = g_vals[j];
            g_val *= gnorm_scale;
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
            s1_vals[j] = smem_quantiles1[m_c1[j]] * max1[0];
            switch (OPTIMIZER) {
            case ADAGRAD:
            case MOMENTUM:
                if (step == 1)
                    s1_vals[j] = (float)g_vals[j];
                else
                    s1_vals[j] = s1_vals[j] * beta1 + ((float)g_vals[j]);
                if (unorm != NULL)
                    local_unorm += s1_vals[j] * s1_vals[j];
                break;
            case LION:
                s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * g_val);
                break;
            case RMSPROP:
                s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * (g_val * g_val));
                break;
Tim Dettmers's avatar
Tim Dettmers committed
1222
1223
1224
1225
1226
1227
1228
            }

            local_max_s1 = fmaxf(local_max_s1, fabsf(s1_vals[j]));
        }
    }

    __syncthreads();
1229
    local_max_s1 = BlockReduce(temp_storage.reduce).Reduce(local_max_s1, CUB_REDUCTIONOP_MAX, valid_items);
1230
1231
1232
1233
1234
    if (threadIdx.x == 0) {
        atomicMax(&new_max1[0], local_max_s1);
    }
    if (unorm != NULL) {
        __syncthreads();
1235
        local_unorm = BlockReduce(temp_storage.reduce).Sum(local_unorm, valid_items);
1236
1237
1238
        if (threadIdx.x == 0) {
            atomicAdd(&unorm[0], local_unorm);
        }
Tim Dettmers's avatar
Tim Dettmers committed
1239
1240
1241
    }
}

1242
1243
1244
1245
1246
1247
1248
1249
1250
template <typename T, int OPTIMIZER>
__global__ void __launch_bounds__(1024, 1) kOptimizerStatic8bit1State(
    T* p, T* const g, unsigned char* state1, const float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float eps, const int step, const float lr,
    float* __restrict__ const quantiles1, float* max1, float* new_max1, float weight_decay, const float gnorm_scale,
    const int n
) {

    const int n_full = (blockDim.x * gridDim.x) * NUM_PER_THREAD2;
Tim Dettmers's avatar
Tim Dettmers committed
1251
1252
1253
1254
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD2);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[NUM_PER_THREAD2];
1255
    float new_max_val1 = 1.0f / new_max1[0];
Tim Dettmers's avatar
Tim Dettmers committed
1256
1257
    float update_scale = 1.0f;

1258
1259
1260
1261
1262
1263
1264
1265
1266
    if (max_unorm > 0.0f) {
        update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
        if (update_scale > max_unorm * param_norm) {
            update_scale = (max_unorm * param_norm) / update_scale;
        } else {
            update_scale = 1.0f;
        }
    } else {
        update_scale = 1.0f;
Tim Dettmers's avatar
Tim Dettmers committed
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
    }

    unsigned char c1s[NUM_PER_THREAD2];
    T p_vals[NUM_PER_THREAD2];
    T g_vals[NUM_PER_THREAD2];
    typedef cub::BlockLoad<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;

    typedef cub::BlockStore<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ float smem_quantiles1[256];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;

1287
    if (threadIdx.x < 256)
Tim Dettmers's avatar
Tim Dettmers committed
1288
1289
1290
1291
        smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];

    __syncthreads();

1292
1293
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * NUM_THREADS2 * NUM_PER_THREAD2) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
1294
1295
1296
1297
1298
1299
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items);

1300
1301
1302
        if ((i + (threadIdx.x * NUM_PER_THREAD2) + NUM_PER_THREAD2) > n) {
            continue;
        }
Tim Dettmers's avatar
Tim Dettmers committed
1303

1304
1305
#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD2; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1306
1307
            g_val = float(g_vals[j]);
            g_val *= gnorm_scale;
1308

1309
1310
1311
            if (weight_decay > 0.0f) {
                switch (OPTIMIZER) {
                case ADAGRAD:
1312
1313
                case MOMENTUM:
                case RMSPROP:
1314
1315
                    g_val += ((float)p_vals[j]) * weight_decay;
                    break;
1316
                case LION:
1317
1318
1319
                    p_vals[j] = ((float)p_vals[j]) * (1.0f - lr * weight_decay);
                    break;
                }
1320
1321
            }

1322
            s1_vals[j] = smem_quantiles1[c1s[j]] * max1[0];
Tim Dettmers's avatar
Tim Dettmers committed
1323

1324
1325
1326
1327
            switch (OPTIMIZER) {
            case ADAGRAD:
            case MOMENTUM:
                if (step == 1)
Tim Dettmers's avatar
Tim Dettmers committed
1328
                    s1_vals[j] = g_vals[j];
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
                else
                    s1_vals[j] = s1_vals[j] * beta1 + ((float)g_vals[j]);

                p_vals[j] = ((float)p_vals[j]) + (-lr * update_scale * (s1_vals[j]));
                break;
            case LION:
                p_vals[j] =
                    ((float)p_vals[j]) - (lr * sgn(((float)s1_vals[j]) * beta1 + ((1.0f - beta1) * ((float)g_val))));
                s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * g_val);
                break;
            case RMSPROP:
                s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * (g_val * g_val));
                p_vals[j] = ((float)p_vals[j]) - (lr * __fdividef(g_val, sqrtf(s1_vals[j]) + eps));
                break;
Tim Dettmers's avatar
Tim Dettmers committed
1343
1344
            }

1345
            c1s[j] = dQuantize<0>(smem_quantiles1, 0.0f, s1_vals[j] * new_max_val1);
Tim Dettmers's avatar
Tim Dettmers committed
1346
1347

            // make sure state1 term has still the same sign after quantization
1348
1349
1350
1351
1352
            if (signbit(smem_quantiles1[c1s[j]]) != signbit(s1_vals[j])) {
                if (s1_vals[j] > 0.0f)
                    c1s[j] += 1;
                else
                    c1s[j] -= 1;
Tim Dettmers's avatar
Tim Dettmers committed
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
            }
        }

        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
        __syncthreads();
    }
}

1363
1364
1365
1366
1367
1368
1369
template <typename T, int BLOCK_SIZE, int NUM_VALS>
__global__ void kPercentileClipping(T* __restrict__ g, float* gnorm_vec, int step, const int n) {
    const int n_full = (BLOCK_SIZE * (n / BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
    int valid_items = 0;

    typedef cub::BlockReduce<float, BLOCK_SIZE / NUM_VALS> BlockReduce;
    typedef cub::BlockLoad<T, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
Tim Dettmers's avatar
Tim Dettmers committed
1370

1371
    __shared__ typename BlockReduce::TempStorage reduce;
Tim Dettmers's avatar
Tim Dettmers committed
1372

1373
1374
1375
1376
1377
1378
1379
    __shared__ typename LoadT::TempStorage loadT;
    T vals[NUM_VALS];
    float local_sum = 0.0f;

    for (unsigned int i = (blockIdx.x * BLOCK_SIZE); i < n_full; i += gridDim.x * BLOCK_SIZE) {
        valid_items = n - i > BLOCK_SIZE ? BLOCK_SIZE : n - i;
        local_sum = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
1380

1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
        __syncthreads();
        LoadT(loadT).Load(&(g[i]), vals, valid_items, (T)0.0f);

#pragma unroll NUM_VALS
        for (int j = 0; j < NUM_VALS; j++)
            local_sum += ((float)vals[j]) * ((float)vals[j]);

        local_sum = BlockReduce(reduce).Sum(local_sum, valid_items);
        if (threadIdx.x == 0) {
            if (step == 1) {
                // initialize with the same norm for all positions
                // #pragma unroll 10
                for (int j = 0; j < 100; j++)
                    atomicAdd(&gnorm_vec[j], local_sum);
            } else
                atomicAdd(&gnorm_vec[step % 100], local_sum);
        }
    }
}
Tim Dettmers's avatar
Tim Dettmers committed
1400
1401
1402

#define LANES 2
#define QUAD 3
1403
1404
1405
1406
1407
1408
1409

template <typename T, int OPTIMIZER, int BLOCK_SIZE, int N_PER_TH>
__launch_bounds__(256, 3) __global__ void kOptimizerStatic8bit2StateBlockwise(
    T* p, T* __restrict__ const g, unsigned char* state1, unsigned char* state2, const float beta1, const float beta2,
    const float beta3, const float alpha, const float eps, const int step, const float lr,
    float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* absmax1, float* absmax2,
    float weight_decay, const float gnorm_scale, const bool skip_zeros, const int n
1410
) {
Tim Dettmers's avatar
Tim Dettmers committed
1411

1412
    // const int n_full = n + (n%BLOCK_SIZE);
Tim Dettmers's avatar
Tim Dettmers committed
1413
1414
1415
1416
1417
1418
    const int n_full = gridDim.x * BLOCK_SIZE;
    const int base_idx = (blockIdx.x * BLOCK_SIZE);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[N_PER_TH];
    float s2_vals[N_PER_TH];
1419
1420
    float s3_vals[N_PER_TH];

Tim Dettmers's avatar
Tim Dettmers committed
1421
1422
    // 2-5%
    const float correction1 = 1.0f - __powf(beta1, step);
1423
1424
    const float correction2 = sqrtf(1.0f - __powf(beta2, step));
    const float step_size = __fdividef(-lr * correction2, correction1);
Tim Dettmers's avatar
Tim Dettmers committed
1425
1426
1427
    const int lane_id = threadIdx.x % LANES;
    float new_local_abs_max1 = -FLT_MAX;
    float new_local_abs_max2 = -FLT_MAX;
1428
    float new_local_abs_max3 = -FLT_MAX;
Tim Dettmers's avatar
Tim Dettmers committed
1429
1430
1431
1432
1433
    float quadrants1[QUAD];
    float quadrants2[QUAD];

    unsigned char c1s[N_PER_TH];
    unsigned char c2s[N_PER_TH];
1434
1435
    unsigned char c3s[N_PER_TH];

Tim Dettmers's avatar
Tim Dettmers committed
1436
    T g_vals[N_PER_TH];
1437
    T p_vals[N_PER_TH];
1438
1439
    typedef cub::BlockLoad<T, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;
Tim Dettmers's avatar
Tim Dettmers committed
1440

1441
1442
    typedef cub::BlockStore<unsigned char, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;
Tim Dettmers's avatar
Tim Dettmers committed
1443
1444
1445

    __shared__ float smem_quantiles1[LANES][257];
    __shared__ float smem_quantiles2[LANES][257];
1446
1447
1448
    typedef cub::BlockReduce<float, BLOCK_SIZE / N_PER_TH> BlockReduce1;
    typedef cub::BlockReduce<float, BLOCK_SIZE / N_PER_TH> BlockReduce2;
    typedef cub::BlockReduce<float, BLOCK_SIZE / N_PER_TH> BlockReduce3;
Tim Dettmers's avatar
Tim Dettmers committed
1449
1450
    __shared__ typename BlockReduce1::TempStorage reduce1;
    __shared__ typename BlockReduce2::TempStorage reduce2;
1451
    __shared__ typename BlockReduce2::TempStorage reduce3;
Tim Dettmers's avatar
Tim Dettmers committed
1452
1453
    __shared__ float smem_exchange1[1];
    __shared__ float smem_exchange2[1];
1454
    __shared__ float smem_exchange3[1]; // [[maybe_unused]]
Tim Dettmers's avatar
Tim Dettmers committed
1455
1456
1457
1458
1459
1460
1461

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;
1462

Tim Dettmers's avatar
Tim Dettmers committed
1463
1464
1465
    // init: 0.2 -> 0.23

    // 0.23 -> 0.23
1466
1467
1468
1469
    smem_quantiles1[0][threadIdx.x] = quantiles1[threadIdx.x];
    smem_quantiles2[0][threadIdx.x] = quantiles2[threadIdx.x];
#pragma unroll
    for (unsigned int j = 1; j < LANES; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1470
1471
        smem_quantiles1[j][threadIdx.x] = smem_quantiles1[0][threadIdx.x];
        smem_quantiles2[j][threadIdx.x] = smem_quantiles2[0][threadIdx.x];
1472
    }
Tim Dettmers's avatar
Tim Dettmers committed
1473
1474
1475

    __syncthreads();

1476
1477
1478
1479
#pragma unroll
    for (int k = 0; k < QUAD; k++) {
        quadrants1[k] = smem_quantiles1[lane_id][(k * 256 / (QUAD + 1)) + (256 / (QUAD + 1) - 1)];
        quadrants2[k] = smem_quantiles2[lane_id][(k * 256 / (QUAD + 1)) + (256 / (QUAD + 1) - 1)];
Tim Dettmers's avatar
Tim Dettmers committed
1480
1481
    }

1482
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
Tim Dettmers's avatar
Tim Dettmers committed
1483
1484
1485
1486
1487
1488
1489
1490
1491
        // loads: 0.23 -> 0.85/1.44
        valid_items = n - i >= BLOCK_SIZE ? BLOCK_SIZE : n - i;
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state2[i]), c2s, valid_items, 0);

1492
1493
        // AdEMAMix has an additional state packed into state1.
        if (OPTIMIZER == ADEMAMIX) {
1494
1495
            __syncthreads();
            LoadChar(temp_storage.loadc).Load(&(state1[n + i]), c3s, valid_items, 128);
1496
1497
        }

Tim Dettmers's avatar
Tim Dettmers committed
1498
1499
        new_local_abs_max1 = -FLT_MAX;
        new_local_abs_max2 = -FLT_MAX;
1500
        new_local_abs_max3 = -FLT_MAX;
Tim Dettmers's avatar
Tim Dettmers committed
1501

1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
//  update: 2.48/1.57 -> 2.51/1.60
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            if (!isnan((float)g_vals[j]) && !isinf((float)g_vals[j])) {
                s2_vals[j] = smem_quantiles2[lane_id][c2s[j]] * absmax2[i / BLOCK_SIZE];
                g_val = g_vals[j];
                // float ratio = (g_val*g_val)/fmaxf(s2_vals[j], eps*eps);
                // g_val = ratio > 2.0f ? 2.0f*g_val/ratio : g_val;
                g_val *= gnorm_scale;

                s2_vals[j] = (s2_vals[j] * beta2) + (((1.0f - beta2) * g_val * g_val));

                s1_vals[j] = smem_quantiles1[lane_id][c1s[j]] * absmax1[i / BLOCK_SIZE];
                s1_vals[j] = (s1_vals[j] * beta1) + (((1.0f - beta1) * g_val));

                if (OPTIMIZER == ADEMAMIX) {
                    // The absmax for the third state is appended to absmax1
                    s3_vals[j] = smem_quantiles1[lane_id][c3s[j]] * absmax1[(n + i) / BLOCK_SIZE];
                    s3_vals[j] = (s3_vals[j] * beta3) + (((1.0f - beta3) * g_val));
                }
            } else {
                s1_vals[j] = 0.0f;
                s2_vals[j] = 0.0f;
1525

1526
1527
1528
                if (OPTIMIZER == ADEMAMIX) {
                    s3_vals[j] = 0.0f;
                }
1529
            }
Tim Dettmers's avatar
Tim Dettmers committed
1530
1531
1532

            new_local_abs_max1 = fmaxf(new_local_abs_max1, fabsf(s1_vals[j]));
            new_local_abs_max2 = fmaxf(new_local_abs_max2, fabsf(s2_vals[j]));
1533
1534

            if (OPTIMIZER == ADEMAMIX) {
1535
                new_local_abs_max3 = fmaxf(new_local_abs_max3, fabsf(s3_vals[j]));
1536
            }
Tim Dettmers's avatar
Tim Dettmers committed
1537
1538
1539
        }

        //  reduce: 2.51/1.60 -> 2.67/1.69
1540
1541
        new_local_abs_max1 = BlockReduce1(reduce1).Reduce(new_local_abs_max1, CUB_REDUCTIONOP_MAX);
        new_local_abs_max2 = BlockReduce2(reduce2).Reduce(new_local_abs_max2, CUB_REDUCTIONOP_MAX);
Tim Dettmers's avatar
Tim Dettmers committed
1542

1543
        if (OPTIMIZER == ADEMAMIX) {
1544
            new_local_abs_max3 = BlockReduce3(reduce3).Reduce(new_local_abs_max3, CUB_REDUCTIONOP_MAX);
1545
1546
        }

1547
1548
1549
        if (threadIdx.x == 0) {
            smem_exchange1[0] = new_local_abs_max1;
            smem_exchange2[0] = new_local_abs_max2;
1550

1551
1552
1553
            if (OPTIMIZER == ADEMAMIX) {
                smem_exchange3[0] = new_local_abs_max3;
            }
Tim Dettmers's avatar
Tim Dettmers committed
1554
1555
1556
1557
        }

        __syncthreads();

1558
1559
1560
        if (threadIdx.x == 0) {
            absmax1[i / BLOCK_SIZE] = new_local_abs_max1;
            absmax2[i / BLOCK_SIZE] = new_local_abs_max2;
1561

1562
1563
1564
1565
1566
1567
            if (OPTIMIZER == ADEMAMIX) {
                absmax1[(n + i) / BLOCK_SIZE] = new_local_abs_max3;
            }
        } else {
            new_local_abs_max1 = smem_exchange1[0];
            new_local_abs_max2 = smem_exchange2[0];
1568

1569
1570
1571
            if (OPTIMIZER == ADEMAMIX) {
                new_local_abs_max3 = smem_exchange3[0];
            }
Tim Dettmers's avatar
Tim Dettmers committed
1572
1573
1574
        }

        __syncthreads();
1575
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items, (T)0.0f);
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
//  reduce: 2.67/1.69 -> 2.67/1.70
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            // if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
            if (!isnan((float)g_vals[j]) && !isinf((float)g_vals[j])) {
                if (OPTIMIZER == ADEMAMIX) {
                    p_vals[j] =
                        T((float)p_vals[j] - lr * (((s1_vals[j] / correction1) + (alpha * s3_vals[j])) /
                                                   ((sqrtf(s2_vals[j]) / correction2) + eps)));
                } else {
                    p_vals[j] =
                        (T)(((float)p_vals[j]) +
                            ((step_size * (__fdividef(s1_vals[j], (sqrtf(s2_vals[j]) + (correction2 * eps)))))));
                }

                if (weight_decay > 0.0f)
                    p_vals[j] = ((float)p_vals[j]) * (1.0f - (lr * weight_decay));
            }
Tim Dettmers's avatar
Tim Dettmers committed
1594
1595
1596
1597
        }

        //  store: 0.85/1.44 -> 2.48/1.57
        __syncthreads();
1598
        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
1599

1600
1601
1602
1603
1604
//  quantizaztion: 2.67/1.70  -> 3.4/3.3
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            c1s[j] = quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s1_vals[j], new_local_abs_max1));
            c2s[j] = quantize_2D<0>(quadrants2, smem_quantiles2[lane_id], __fdividef(s2_vals[j], new_local_abs_max2));
Tim Dettmers's avatar
Tim Dettmers committed
1605
1606
1607

            // make sure state1 term has still the same sign after quantization
            // (not needed for state2 term which has only positive values)
1608
1609
1610
1611
1612
            if (signbit(smem_quantiles1[lane_id][c1s[j]]) != signbit(s1_vals[j])) {
                if (s1_vals[j] > 0.0f)
                    c1s[j] += 1;
                else
                    c1s[j] -= 1;
Tim Dettmers's avatar
Tim Dettmers committed
1613
            }
1614
1615

            if (OPTIMIZER == ADEMAMIX) {
1616
1617
                c3s[j] =
                    quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s3_vals[j], new_local_abs_max3));
1618

1619
1620
1621
                if (signbit(smem_quantiles1[lane_id][c3s[j]]) != signbit(s3_vals[j])) {
                    c3s[j] += (s3_vals[j] > 0.0f) ? 1 : -1;
                }
1622
            }
Tim Dettmers's avatar
Tim Dettmers committed
1623
1624
1625
1626
1627
1628
        }

        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state2[i]), c2s, valid_items);
1629
1630

        if (OPTIMIZER == ADEMAMIX) {
1631
1632
            __syncthreads();
            StoreChar(temp_storage.storec).Store(&(state1[n + i]), c3s, valid_items);
1633
        }
Tim Dettmers's avatar
Tim Dettmers committed
1634
1635
1636
1637
1638
    }
}

#define LANES 2
#define QUAD 3
1639
1640
1641
1642
1643
1644
1645
1646
1647

template <typename T, int OPTIMIZER, int BLOCK_SIZE, int N_PER_TH>
__launch_bounds__(256, 3) __global__ void kOptimizerStatic8bit1StateBlockwise(
    T* p, T* __restrict__ const g, unsigned char* state1, const float beta1, const float beta2, const float eps,
    const int step, const float lr, float* __restrict__ const quantiles1, float* absmax1, float weight_decay,
    const float gnorm_scale, const bool skip_zeros, const int n
) {

    // const int n_full = n + (n%BLOCK_SIZE);
Tim Dettmers's avatar
Tim Dettmers committed
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
    const int n_full = gridDim.x * BLOCK_SIZE;
    const int base_idx = (blockIdx.x * BLOCK_SIZE);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[N_PER_TH];
    // 2-5%
    const int lane_id = threadIdx.x % LANES;
    float new_local_abs_max1 = -FLT_MAX;
    float quadrants1[QUAD];

    unsigned char c1s[N_PER_TH];
    T g_vals[N_PER_TH];
1660
    T p_vals[N_PER_TH];
Tim Dettmers's avatar
Tim Dettmers committed
1661

1662
1663
    typedef cub::BlockLoad<T, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;
Tim Dettmers's avatar
Tim Dettmers committed
1664

1665
1666
    typedef cub::BlockStore<unsigned char, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;
Tim Dettmers's avatar
Tim Dettmers committed
1667
1668

    __shared__ float smem_quantiles1[LANES][257];
1669
    typedef cub::BlockReduce<float, BLOCK_SIZE / N_PER_TH> BlockReduce1;
Tim Dettmers's avatar
Tim Dettmers committed
1670
1671
1672
1673
1674
1675
1676
1677
1678
    __shared__ typename BlockReduce1::TempStorage reduce1;
    __shared__ float smem_exchange1[1];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;
1679

Tim Dettmers's avatar
Tim Dettmers committed
1680
1681
1682
    // init: 0.2 -> 0.23

    // 0.23 -> 0.23
1683
1684
1685
1686
    smem_quantiles1[0][threadIdx.x] = quantiles1[threadIdx.x];
#pragma unroll
    for (unsigned int j = 1; j < LANES; j++)
        smem_quantiles1[j][threadIdx.x] = smem_quantiles1[0][threadIdx.x];
Tim Dettmers's avatar
Tim Dettmers committed
1687
1688
1689

    __syncthreads();

1690
1691
1692
#pragma unroll
    for (int k = 0; k < QUAD; k++)
        quadrants1[k] = smem_quantiles1[lane_id][(k * 256 / (QUAD + 1)) + (256 / (QUAD + 1) - 1)];
Tim Dettmers's avatar
Tim Dettmers committed
1693

1694
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
Tim Dettmers's avatar
Tim Dettmers committed
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
        // loads: 0.23 -> 0.85/1.44
        valid_items = n - i >= BLOCK_SIZE ? BLOCK_SIZE : n - i;
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items, (T)0.0f);

        new_local_abs_max1 = -FLT_MAX;

1706
1707
1708
//  update: 2.48/1.57 -> 2.51/1.60
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1709
1710
            g_val = float(g_vals[j]);
            g_val *= gnorm_scale;
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
            if (!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f))) {
                if (weight_decay > 0.0f) {
                    switch (OPTIMIZER) {
                    case MOMENTUM:
                    case ADAGRAD:
                    case RMSPROP:
                        g_val += ((float)p_vals[j]) * weight_decay;
                        break;
                    case LION:
                        p_vals[j] = ((float)p_vals[j]) * (1.0f - lr * weight_decay);
                        break;
                    }
                }

                s1_vals[j] = smem_quantiles1[lane_id][c1s[j]] * absmax1[i / BLOCK_SIZE];

                switch (OPTIMIZER) {
                case MOMENTUM:
                    if (step == 1)
                        s1_vals[j] = g_val;
                    else
                        s1_vals[j] = (s1_vals[j] * beta1) + g_val;
                    break;
                case LION:
                    // here, using gvals[j] to store the gradient smoothed by beta1 for the following parameter update,
                    // before the momentum is updated by beta2
                    g_vals[j] = lr * sgn(((float)s1_vals[j]) * beta1 + ((1.0f - beta1) * g_val));
                    s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * g_val);
1739
                    break;
1740
1741
1742
1743
1744
                case RMSPROP:
                    s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * (g_val * g_val));
                    break;
                case ADAGRAD:
                    s1_vals[j] = s1_vals[j] + (g_val * g_val);
1745
1746
                    break;
                }
1747
            }
Tim Dettmers's avatar
Tim Dettmers committed
1748
1749
1750
1751
1752

            new_local_abs_max1 = fmaxf(new_local_abs_max1, fabsf(s1_vals[j]));
        }

        //  reduce: 2.51/1.60 -> 2.67/1.69
1753
        new_local_abs_max1 = BlockReduce1(reduce1).Reduce(new_local_abs_max1, CUB_REDUCTIONOP_MAX);
Tim Dettmers's avatar
Tim Dettmers committed
1754

1755
1756
        if (threadIdx.x == 0)
            smem_exchange1[0] = new_local_abs_max1;
Tim Dettmers's avatar
Tim Dettmers committed
1757
1758
1759

        __syncthreads();

1760
1761
        if (threadIdx.x == 0)
            absmax1[i / BLOCK_SIZE] = new_local_abs_max1;
Tim Dettmers's avatar
Tim Dettmers committed
1762
        else
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
            new_local_abs_max1 = smem_exchange1[0];

//  reduce: 2.67/1.69 -> 2.67/1.70
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            if (!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f))) {
                switch (OPTIMIZER) {
                case MOMENTUM:
                    p_vals[j] = ((float)p_vals[j]) - lr * (s1_vals[j]);
                    break;
                case LION:
                    p_vals[j] = ((float)p_vals[j]) - ((float)g_vals[j]);
                    break;
                case RMSPROP:
                    g_val = g_vals[j];
                    p_vals[j] = ((float)p_vals[j]) - lr * (__fdividef(g_val, sqrtf(s1_vals[j]) + eps));
                    break;
                case ADAGRAD:
                    g_val = g_vals[j];
                    p_vals[j] = ((float)p_vals[j]) - lr * (__fdividef(g_val, sqrtf(s1_vals[j]) + eps));
                    break;
                }
            }
        }
Tim Dettmers's avatar
Tim Dettmers committed
1787
1788
1789
1790
1791

        //  store: 0.85/1.44 -> 2.48/1.57
        __syncthreads();
        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);

1792
1793
1794
1795
//  quantizaztion: 2.67/1.70  -> 3.4/3.3
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            c1s[j] = quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s1_vals[j], new_local_abs_max1));
Tim Dettmers's avatar
Tim Dettmers committed
1796
1797
1798

            // make sure state1 term has still the same sign after quantization
            // (not needed for state2 term which has only positive values)
1799
1800
1801
1802
1803
            if (signbit(smem_quantiles1[lane_id][c1s[j]]) != signbit(s1_vals[j])) {
                if (s1_vals[j] > 0.0f)
                    c1s[j] += 1;
                else
                    c1s[j] -= 1;
Tim Dettmers's avatar
Tim Dettmers committed
1804
1805
1806
1807
1808
1809
1810
1811
            }
        }

        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
    }
}

1812
1813
1814
1815
1816
// Inputs:
//  A [rows, cols]
// Outputs:
//  rowStats [rows]
//  out [rows, cols]
1817
1818
1819
template <typename T, int THREADS, int SPARSE_DECOMP>
__launch_bounds__(1024, BNB_MAX_THREADS_PER_SM / 1024) __global__
    void kInt8VectorQuant(T* __restrict__ A, int8_t* out, float* rowStats, float threshold, int rows, int cols) {
1820

1821
1822
    // For sm50/sm52 and CUDA < 12.2 we need to do the reduction in fp32.
    // Otherwise `T` is `fp16`. This can be removed when Maxwell is dropped.
1823
#if (__CUDACC_VER_MAJOR__ >= 12 && __CUDACC_VER_MINOR >= 2) || BNB_FP16_AVAILABLE
1824
    using TReduction = T;
1825
#else
1826
    using TReduction = float;
1827
#endif
Tim Dettmers's avatar
Tim Dettmers committed
1828

1829
    using BlockReduceT = cub::BlockReduce<TReduction, THREADS>;
Tim Dettmers's avatar
Tim Dettmers committed
1830

1831
1832
1833
1834
1835
1836
    // One block per row.
    // Threads load column values in a striped arrangement.
    // e.g. t0 reads row[0], row[0+nthreads], ..
    // and  t1 reads row[1], row[1+nthreads], ..
    // Each thread will determine its local absmax.
    // We then do a blockwise reduction to determine the row's absmax.
Tim Dettmers's avatar
Tim Dettmers committed
1837

1838
1839
    __shared__ typename BlockReduceT::TempStorage temp_storage;
    __shared__ TReduction smem_row_absmax;
Tim Dettmers's avatar
Tim Dettmers committed
1840

1841
1842
    const int row_id = blockIdx.x;
    const T* row_data = A + (row_id * cols);
Tim Dettmers's avatar
Tim Dettmers committed
1843

1844
1845
1846
1847
    // Threads will read the row values in a striped access pattern and find a local absmax.
    TReduction row_local_absmax = -FLT_MIN;
    for (int i = threadIdx.x; i < cols; i += THREADS) {
        const TReduction absval = fabsf(__ldcs(&(row_data[i])));
Tim Dettmers's avatar
Tim Dettmers committed
1848

1849
1850
1851
1852
1853
1854
1855
        // For sparse decomposition, values outside of the threshold are not to be
        // included when calculating the row's absmax.
        if constexpr (SPARSE_DECOMP) {
            row_local_absmax = fmaxf(row_local_absmax, absval < TReduction(threshold) ? absval : row_local_absmax);
        } else {
            row_local_absmax = fmaxf(row_local_absmax, absval);
        }
Tim Dettmers's avatar
Tim Dettmers committed
1856
    }
1857

1858
    // Reduce thread-local absmax across the block.
1859
    const TReduction row_absmax = BlockReduceT(temp_storage).Reduce(row_local_absmax, CUB_REDUCTIONOP_MAX, cols);
1860
1861
1862
1863
1864
    if (threadIdx.x == 0) {
        // Save our block's absmax to shared memory for the quantization step.
        rowStats[row_id] = smem_row_absmax = row_absmax;
    }
    __syncthreads();
1865

1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
    // Quantize row-wise.
    const float scale = __fdividef(127.0f, smem_row_absmax);
    for (int i = threadIdx.x; i < cols; i += THREADS) {
        float val = row_data[i];

        if constexpr (SPARSE_DECOMP) {
            // For sparse decomposition, we do not want to quantize the outliers.
            // Instead they're zeroed out.
            out[row_id * cols + i] = fabs(val) < threshold ? __float2int_rn(val * scale) : 0;
        } else {
            out[row_id * cols + i] = __float2int_rn(val * scale);
        }
    }
}
1880

1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
template <typename T, int THREADS, int SPARSE_DECOMP>
__launch_bounds__(1024, BNB_MAX_THREADS_PER_SM / 1024) __global__
    void kgetRowStats(T* __restrict__ A, float* rowStats, float threshold, int rows, int cols) {
    using BlockReduceT = cub::BlockReduce<float, THREADS>;

    // One block per row.
    // Threads load column values in a striped arrangement.
    // e.g. t0 reads row[0], row[0+nthreads], ..
    // and  t1 reads row[1], row[1+nthreads], ..
    // Each thread will determine its local absmax.
    // We then do a blockwise reduction to determine the row's absmax.

    __shared__ typename BlockReduceT::TempStorage temp_storage;

    const int row_id = blockIdx.x;
    const T* __restrict__ row_data = A + (row_id * cols);

    // Threads will read the row values in a striped access pattern and find a local absmax.
    float row_local_absmax = -FLT_MIN;
    for (int i = threadIdx.x; i < cols; i += THREADS) {
        const float absval = fabsf(row_data[i]);

        // For sparse decomposition, values outside of the threshold are not to be
        // included when calculating the row's absmax.
        if constexpr (SPARSE_DECOMP) {
            row_local_absmax = fmaxf(row_local_absmax, absval < threshold ? absval : row_local_absmax);
        } else {
            row_local_absmax = fmaxf(row_local_absmax, absval);
        }
    }
1911

1912
1913
    // Reduce thread-local absmax across the block.
    // TODO: Consider algorithm BLOCK_REDUCE_RAKING_COMMUTATIVE_ONLY
1914
    const float row_absmax = BlockReduceT(temp_storage).Reduce(row_local_absmax, CUB_REDUCTIONOP_MAX, cols);
1915
1916
1917
    if (threadIdx.x == 0) {
        // Save our block's absmax to shared memory for the quantization step.
        rowStats[row_id] = row_absmax;
Tim Dettmers's avatar
Tim Dettmers committed
1918
    }
1919
}
Tim Dettmers's avatar
Tim Dettmers committed
1920

1921
1922
1923
1924
template __global__ void
    kgetRowStats<half, 1024, 0>(half* __restrict__ A, float* rowStats, float threshold, int rows, int cols);
template __global__ void
    kgetRowStats<half, 1024, 1>(half* __restrict__ A, float* rowStats, float threshold, int rows, int cols);
Tim Dettmers's avatar
Tim Dettmers committed
1925

1926
1927
1928
1929
1930
1931
template __global__ void kInt8VectorQuant<half, 1024, 0>(
    half* __restrict__ A, int8_t* out, float* rowStats, float threshold, int rows, int cols
);
template __global__ void kInt8VectorQuant<half, 1024, 1>(
    half* __restrict__ A, int8_t* out, float* rowStats, float threshold, int rows, int cols
);
Tim Dettmers's avatar
Tim Dettmers committed
1932

1933
#define MM_DEQUANT_CONST 6.200012e-05f // 1.0f/(127.0f*127.0f)
Tim Dettmers's avatar
Tim Dettmers committed
1934

1935
template <int ITEMS_PER_THREAD, int THREADS>
1936
__global__ __launch_bounds__(1024) void kdequant_mm_int32_fp16(
1937
1938
    int* __restrict__ const A, float* __restrict__ const rowStats, float* __restrict__ const colStats, half* out,
    half* __restrict__ const bias, const int numRows, const int numCols, const int n
1939
) {
1940
    const int n_out = numRows * numCols;
Tim Dettmers's avatar
Tim Dettmers committed
1941

1942
1943
    int block_offset = blockIdx.x * THREADS * ITEMS_PER_THREAD;
    int thread_offset = threadIdx.x * ITEMS_PER_THREAD;
Tim Dettmers's avatar
Tim Dettmers committed
1944

1945
1946
    int local_values[ITEMS_PER_THREAD];
    half local_output[ITEMS_PER_THREAD];
1947

1948
1949
1950
    float local_rowStats[ITEMS_PER_THREAD];
    float local_colStats[ITEMS_PER_THREAD];
    float local_biasValue[ITEMS_PER_THREAD];
Tim Dettmers's avatar
Tim Dettmers committed
1951

1952
1953
    typedef cub::BlockLoad<int, THREADS, ITEMS_PER_THREAD, cub::BLOCK_LOAD_VECTORIZE> LoadInt32;
    __shared__ typename LoadInt32::TempStorage loadint32;
Tim Dettmers's avatar
Tim Dettmers committed
1954

1955
    int row_idx, col_idx;
Tim Dettmers's avatar
Tim Dettmers committed
1956

1957
1958
#pragma unroll ITEMS_PER_THREAD
    for (int j = 0; j < ITEMS_PER_THREAD; ++j) {
Tim Dettmers's avatar
Tim Dettmers committed
1959

1960
1961
        row_idx = (block_offset + thread_offset + j) / numCols;
        col_idx = (block_offset + thread_offset + j) % numCols;
Tim Dettmers's avatar
Tim Dettmers committed
1962

1963
1964
1965
1966
        local_colStats[j] = col_idx >= numCols ? 0.0f : __ldg(&colStats[col_idx]);
        local_rowStats[j] = row_idx >= numRows ? 0.0f : __ldg(&rowStats[row_idx]);
        local_biasValue[j] = ((bias == nullptr) || col_idx >= numCols) ? 0.0f : __half2float(bias[col_idx]);
    }
Tim Dettmers's avatar
Tim Dettmers committed
1967

1968
1969
1970
1971
    // Each block loads THREADS * ITEMS_PER_THREAD values from A
    int valid_items =
        block_offset + THREADS * ITEMS_PER_THREAD < n_out ? THREADS * ITEMS_PER_THREAD : n_out - block_offset;
    LoadInt32(loadint32).Load(&(A[block_offset]), local_values, valid_items, 0);
Tim Dettmers's avatar
Tim Dettmers committed
1972

1973
1974
1975
1976
1977
1978
#pragma unroll ITEMS_PER_THREAD
    for (int j = 0; j < ITEMS_PER_THREAD; ++j) {
        local_output[j] = __float2half(
            fmaf(local_values[j] * local_rowStats[j] * local_colStats[j], MM_DEQUANT_CONST, local_biasValue[j])
        );
    }
Tim Dettmers's avatar
Tim Dettmers committed
1979

1980
1981
1982
1983
1984
1985
#pragma unroll ITEMS_PER_THREAD
    for (int j = 0; j < ITEMS_PER_THREAD; j++) {
        int outIdx = block_offset + thread_offset + j;
        if (outIdx < n_out) {
            out[outIdx] = local_output[j];
        }
Tim Dettmers's avatar
Tim Dettmers committed
1986
1987
1988
    }
}

1989
#define DENORM 1.0f / 127.0f
Tim Dettmers's avatar
Tim Dettmers committed
1990
#define MAX_SPARSE_COUNT 32
1991
1992
#define SMEM_SIZE 8 * 256

1993
template <typename T, int SPMM_ITEMS, int BITS>
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
__global__ void kspmm_coo_very_sparse_naive(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, T* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
) {

    // 0. load balancing: We process rows with most columns first (count_vec)and we process one row per block
    //    If a block finishes, the next one is scheduled. Since the last blocks like have fewer
    //    elements they finish faster "fillin up" the gaps left by larger blocks

    // without tensor cores
    // 1. use rowidx_length to find what to load (as many blocks as there are rows)
    // 2. Load A into registers
    // 3. each warp loads all required rows of B but each warp is offset by k
    // 4. Do mma operations that accumulate into registers
    // 5. Each warp stores its output row into matrix C

    const int count = max_count[blockIdx.x];
    const int local_max_idx = max_idx[blockIdx.x];
    const int offset = local_max_idx == 0 ? 0 : offset_rowidx[local_max_idx - 1];
    const int local_row_idx = rowidx[offset];

2015
2016
2017
    const int warp_id = threadIdx.x / DU_WARP_SIZE;
    const int warp_idx = threadIdx.x % DU_WARP_SIZE;
    const int warp_offset = (warp_id * DU_WARP_SIZE) * SPMM_ITEMS;
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
    const int num_items = BITS == 8 ? 8 : 8;
    int idx_col_B = warp_offset;
    int local_idx_col_B_offset = 0;

    half local_valA[MAX_SPARSE_COUNT];
    int local_colidxA[MAX_SPARSE_COUNT];
    half local_valC[SPMM_ITEMS];
    T local_valsB[num_items];
    half local_valOut[num_items];
    // 128 byte loads per warp == 4 bytes per thread

    // 2. Load A into registers
    for (int j = 0; j < MAX_SPARSE_COUNT; j++) {
        local_valA[j] = j < count ? values[offset + j] : __float2half(0.0f);
        local_colidxA[j] = j < count ? colidx[offset + j] : 0;
Tim Dettmers's avatar
Tim Dettmers committed
2033
2034
    }

2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
    // each thread processes SPMM_ITEMS=32 per iteration. We have 256 threads. 32*256=x192
    // we expect each warp to be SPMM_ITEMS*32 apart
    // we have a total of 128 bytes for the bank with a bank size of 4 bytes
    // added 3 bytes = 6 values between warps should reduce bank conflicts
    __shared__ half smem_dequant_stats[SMEM_SIZE];

    while (idx_col_B < colsB) {

        if (dequant_stats != NULL) {
            for (int i = threadIdx.x; i < SMEM_SIZE; i += blockDim.x)
                if ((idx_col_B + i - local_idx_col_B_offset) < colsB)
                    smem_dequant_stats[i] = dequant_stats[idx_col_B + i - local_idx_col_B_offset];

            __syncthreads();
        }

#pragma unroll SPMM_ITEMS
        for (int j = 0; j < SPMM_ITEMS; j++)
            local_valC[j] = 0.0f;

#pragma unroll
        for (int i = 0; i < count; i++) {
            // 3. each warp loads all required rows of B but each warp is offset by k
            int row_offset = colsB * local_colidxA[i];

#pragma unroll SPMM_ITEMS
            for (int j = 0; j < SPMM_ITEMS; j += num_items) {
                // 4. Multiply the tile -> accumulate outputs in shared memory until 128 bytes it reached
                int idx = idx_col_B + (warp_idx * SPMM_ITEMS) + j;
                if (idx >= colsB) {
                    break;
                }
                if ((idx + num_items < colsB)) {
                    if (BITS == 8)
                        reinterpret_cast<float2(&)[num_items]>(local_valsB)[0] =
                            reinterpret_cast<float2*>(B)[(row_offset + idx) / num_items];
                    else
                        reinterpret_cast<float4(&)[num_items]>(local_valsB)[0] =
                            reinterpret_cast<float4*>(B)[(row_offset + idx) / num_items];
                } else {
#pragma unroll num_items
                    for (int k = 0; k < num_items; k++)
                        if (idx + k < colsB)
                            local_valsB[k] = B[row_offset + idx + k];
                        else
                            local_valsB[k] = 0.0f;
                }
#pragma unroll num_items
                for (int k = 0; k < num_items; k++) {
                    if (BITS == 8 && dequant_stats != NULL)
                    // we do texture cache reads (__ldg) on dequant_stats which should be super fast
                    {
                        float valB = local_valsB[k];
                        float valA = local_valA[i];
                        if (valB != 0.0 && valA != 0.0)
                            local_valC[j + k] =
                                (float)local_valC[j + k] +
                                ((float)smem_dequant_stats[idx + k - local_idx_col_B_offset]) * DENORM * valB * valA;
                    } else
                        local_valC[j + k] = (float)local_valC[j + k] + (float)local_valsB[k] * (float)local_valA[i];
                }
Tim Dettmers's avatar
Tim Dettmers committed
2096
2097
2098
            }
        }

2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
        int idx_row_C = (colsB * local_row_idx);

#pragma unroll SPMM_ITEMS
        for (int j = 0; j < SPMM_ITEMS; j += num_items) {
            // int idx_col_C =  idx_col_B + (32*j) + warp_idx;
            int idx_col_C = idx_col_B + warp_idx * SPMM_ITEMS + j;
            int idx_val = idx_col_C + idx_row_C;

            if (idx_col_C + num_items < colsB) {

                // load outputs to do inplace addition
                reinterpret_cast<float4(&)[num_items / 4]>(local_valOut)[0] =
                    reinterpret_cast<float4*>(out)[idx_val / num_items];

#pragma unroll num_items
                for (int k = 0; k < num_items; k++)
                    local_valC[(j / num_items) + k] = (float)local_valC[(j / num_items) + k] + (float)local_valOut[k];

                reinterpret_cast<float4*>(out)[idx_val / num_items] =
                    reinterpret_cast<float4(&)[num_items]>(local_valC)[j / num_items];
            } else {
#pragma unroll num_items
                for (int k = 0; k < num_items; k++)
                    if (idx_col_C + k < colsB)
                        out[idx_val + k] = (float)out[idx_val + k] + (float)local_valC[j + k];
            }
        }
Tim Dettmers's avatar
Tim Dettmers committed
2126

2127
2128
2129
        idx_col_B += blockDim.x * SPMM_ITEMS;
        local_idx_col_B_offset += blockDim.x * SPMM_ITEMS;
    }
Tim Dettmers's avatar
Tim Dettmers committed
2130
2131
}

2132
#define WARPS 3
2133
2134
2135

template <typename T, int BITS, int THREADS>
__global__ void gemm_device(int M, int N, int K, T* __restrict__ const A, T* B, T* out, int lda, int ldb, int ldc) {
Tim Dettmers's avatar
Tim Dettmers committed
2136
2137

#if __CUDA_ARCH__ >= 750
2138
    using namespace nvcuda;
2139
2140
2141
2142
    int col_offset = blockIdx.x * DU_WARP_SIZE;
    const int warp_id = threadIdx.x / DU_WARP_SIZE;
    const int half_warp_id = threadIdx.x / (DU_WARP_SIZE / 2);
    const int half_warp_lane = threadIdx.x % (DU_WARP_SIZE / 2);
2143
    const int batch_size_warps = (WARPS - 1) * 2;
2144
    const int val_per_iter = blockDim.x - DU_WARP_SIZE;
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199

    T local_A[4];
    T local_B[128];

    const int a_tile_offset = 16;
    const int b_tile_offset = (16 * 32 + 16);

    __shared__ T smem_A[8 * 16 + (2 * 16 * (batch_size_warps - 1))];
    __shared__ T smem_B[2 * batch_size_warps * 16 * 32 + (2 * 16 * (batch_size_warps - 1))];
    //__shared__ T smem_C[8*32];

    wmma::fragment<wmma::matrix_a, 8, 32, 16, half, wmma::row_major> a_frag;
    wmma::fragment<wmma::matrix_b, 8, 32, 16, half, wmma::col_major> b_frag;
    wmma::fragment<wmma::accumulator, 8, 32, 16, half> c_frag;
    wmma::fill_fragment(c_frag, 0.0f);

    int ticktock = 0;
    int idx = 0 + threadIdx.x;
    int loaded_values = 0;
    // prefetch
    if (idx < K && warp_id < (WARPS - 1)) {
        if (loaded_values == 0) {
            local_A[0] = A[idx];
            local_A[1] = A[idx + (1 * val_per_iter)];
            local_A[2] = A[idx + (2 * val_per_iter)];
            local_A[3] = A[idx + (3 * val_per_iter)];

#pragma unroll 32
            for (int col = 0; col < 32; col++) {
                local_B[col] = B[(col_offset + col) * ldb + idx];
                local_B[col + 32] = B[(col_offset + col) * ldb + idx + (1 * val_per_iter)];
                local_B[col + 64] = B[(col_offset + col) * ldb + idx + (2 * val_per_iter)];
                local_B[col + 96] = B[(col_offset + col) * ldb + idx + (3 * val_per_iter)];
            }
            loaded_values = 3;
        } else {

            if (loaded_values == 3) {
                local_A[0] = local_A[1];
#pragma unroll 32
                for (int col = 0; col < 32; col++)
                    local_B[col] = local_B[col + (32)];
            } else if (loaded_values == 2) {
                local_A[0] = local_A[2];
#pragma unroll 32
                for (int col = 0; col < 32; col++)
                    local_B[col] = local_B[col + (64)];
            } else {
                local_A[0] = local_A[3];
#pragma unroll 32
                for (int col = 0; col < 32; col++)
                    local_B[col] = local_B[col + (96)];
            }
            loaded_values--;
        }
Tim Dettmers's avatar
Tim Dettmers committed
2200

2201
        smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = local_A[0];
Tim Dettmers's avatar
Tim Dettmers committed
2202

2203
2204
2205
2206
2207
2208
2209
#pragma unroll 32
        for (int col = 0; col < 32; col++)
            smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                local_B[col];
    } else if (warp_id < (WARPS - 1)) {
        local_A[0] = T(0.0);
        smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2210

2211
2212
2213
#pragma unroll 32
        for (int col = 0; col < 32; col++)
            local_B[col] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2214

2215
2216
2217
2218
2219
2220
#pragma unroll 32
        for (int col = 0; col < 32; col++)
            smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                0.0f;
    }
    ticktock = ticktock == 0 ? 1 : 0;
Tim Dettmers's avatar
Tim Dettmers committed
2221

2222
2223
2224
    // for(int base_idx = blockDim.x-32; base_idx < K; base_idx+=blockDim.x-32)
    for (int base_idx = blockDim.x - 32; base_idx < K; base_idx += blockDim.x - 32) {
        idx = base_idx + threadIdx.x;
Tim Dettmers's avatar
Tim Dettmers committed
2225

2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
        __syncthreads();
        if (idx < K && warp_id < (WARPS - 1)) {
            // local_A[0] = A[idx];

            // #pragma unroll 32
            // for(int col = 0; col < 32; col++)
            //   local_B[col] = B[(col_offset+col)*ldb+idx];
            if (loaded_values == 0) {
                local_A[0] = A[idx];
                local_A[1] = A[idx + (1 * val_per_iter)];
                local_A[2] = A[idx + (2 * val_per_iter)];
                local_A[3] = A[idx + (3 * val_per_iter)];

#pragma unroll 32
                for (int col = 0; col < 32; col++) {
                    local_B[col] = B[(col_offset + col) * ldb + idx];
                    local_B[col + 32] = B[(col_offset + col) * ldb + idx + (1 * val_per_iter)];
                    local_B[col + 64] = B[(col_offset + col) * ldb + idx + (2 * val_per_iter)];
                    local_B[col + 96] = B[(col_offset + col) * ldb + idx + (3 * val_per_iter)];
                }
                loaded_values = 3;

            } else {

                if (loaded_values == 3) {
                    local_A[0] = local_A[1];
#pragma unroll 32
                    for (int col = 0; col < 32; col++)
                        local_B[col] = local_B[col + (32)];
                } else if (loaded_values == 2) {
                    local_A[0] = local_A[2];
#pragma unroll 32
                    for (int col = 0; col < 32; col++)
                        local_B[col] = local_B[col + (64)];
                } else {
                    local_A[0] = local_A[3];
#pragma unroll 32
                    for (int col = 0; col < 32; col++)
                        local_B[col] = local_B[col + (96)];
                }
                loaded_values--;
            }

            smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = local_A[0];

#pragma unroll 32
            for (int col = 0; col < 32; col++)
                smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                    local_B[col];
        } else if (warp_id < (WARPS - 1)) {
            local_A[0] = T(0.0);
            smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2278

2279
2280
2281
#pragma unroll 32
            for (int col = 0; col < 32; col++)
                local_B[col] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2282

2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
#pragma unroll 32
            for (int col = 0; col < 32; col++)
                smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                    0.0f;
        }
        ticktock = ticktock == 0 ? 1 : 0;

        if (warp_id == (WARPS - 1))
            for (int k = 0; k < batch_size_warps; k++) {
                wmma::load_matrix_sync(
                    a_frag, &(smem_A[(ticktock * batch_size_warps + k) * a_tile_offset]), 16
                ); //  111 mu
                wmma::load_matrix_sync(
                    b_frag, &(smem_B[(ticktock * batch_size_warps + k) * b_tile_offset]), 16
                ); // 35 mu
                wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
            }
Tim Dettmers's avatar
Tim Dettmers committed
2300
    }
2301
2302
2303
2304

    __syncthreads();
    if (warp_id != (WARPS - 1)) {
        return;
Tim Dettmers's avatar
Tim Dettmers committed
2305
    }
2306
    // only warp_id == (WARPS-1) from here
2307
    int warp_lane = threadIdx.x % DU_WARP_SIZE;
Tim Dettmers's avatar
Tim Dettmers committed
2308

2309
2310
2311
2312
    ticktock = ticktock == 0 ? 1 : 0;
    for (int k = 0; k < batch_size_warps; k++) {
        wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock * batch_size_warps + k) * a_tile_offset]), 16); //  111 mu
        wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock * batch_size_warps + k) * b_tile_offset]), 16); // 35 mu
Tim Dettmers's avatar
Tim Dettmers committed
2313
        wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
2314
2315
2316
2317
2318
2319
2320
2321
    }

    // 129 mu
    if (warp_id == (WARPS - 1))
        wmma::store_matrix_sync(&(smem_A[0]), c_frag, 32, wmma::mem_row_major);

    if (col_offset + warp_lane < M)
        out[col_offset + warp_lane] = smem_A[warp_lane];
Tim Dettmers's avatar
Tim Dettmers committed
2322
#endif
Tim Dettmers's avatar
Tim Dettmers committed
2323
2324
}

2325
2326
2327
2328
template <typename T> __device__ void printnonzero(T* A, int num_values, const char* strval) {
    for (int i = 0; i < num_values; i++)
        if ((float)A[i] != 0.0)
            printf("%s %i %f\n", strval, i, (float)A[i]);
Tim Dettmers's avatar
Tim Dettmers committed
2329
2330
}

2331
2332
2333
2334
2335
template <typename T, int THREADS>
__global__ void kgemm_4bit_inference(
    int M, int N, int K, T* __restrict__ const A, unsigned char* B, float* absmax, T* out, int lda, int ldb, int ldc,
    int blocksize
) {
Tim Dettmers's avatar
Tim Dettmers committed
2336

2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
    //// element-wise kernel
    //// 1. Load batch x k into registers
    //// 2. Load k x k into registers
    //// 3. dequantize and store in second pair of k x k
    //// 4. matmul
    //// 5. sum with cub
    //// 6. store outputs
    //// TC kernel
    //// use k warps per thread block
    //// 1. threadblock use read-only cache to read in register tile for A into shared memory
    //// 2. each warp loops over shared memory tiles of A of size 8x16 and loads them into fragments
    //// 3. each warp reads a segment of values 16x32 from B
    //// 4. do dequantization from register of B into second pair of registers
    //// 5. store (4) into fragment
    //// 6. matmul aggregate into fragment C
    //// 7. aggregate files of C into shared memory block C
    //// 8. sum (7)
    //// 9. write outputs to matmul output matrix
2355
#if __CUDA_ARCH__ >= 750
2356
    using namespace nvcuda;
2357
2358
2359
2360
2361
    int col_offset = blockIdx.x * DU_WARP_SIZE;
    const int warp_id = threadIdx.x / DU_WARP_SIZE;
    const int warp_idx = threadIdx.x % DU_WARP_SIZE;
    const int half_warp_id = threadIdx.x / (DU_WARP_SIZE / 2);
    const int half_warp_lane = threadIdx.x % (DU_WARP_SIZE / 2);
2362
    const int batch_size_warps = (WARPS - 1) * 2;
Tim Dettmers's avatar
Tim Dettmers committed
2363

2364
2365
2366
2367
    T quant_map[16];

#pragma unroll 16
    for (int i = 0; i < 16; i++)
2368
        quant_map[i] = nf4_dequantization_lut[i];
2369
    //__shared__ T quant_map[16*160];
2370

2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
    T local_A[2];
    T local_B[64];
    unsigned char local_B_4bit[32];

    const int a_tile_offset = 16;
    const int b_tile_offset = (16 * 32 + 16);

    __shared__ T smem_A[8 * 16 + (16 * (batch_size_warps - 1))];
    __shared__ T smem_B[2 * batch_size_warps * 16 * 32 + (2 * 16 * (batch_size_warps - 1))];
    __shared__ T smem_C[8 * 32];

    wmma::fragment<wmma::matrix_a, 8, 32, 16, half, wmma::row_major> a_frag;
    wmma::fragment<wmma::matrix_b, 8, 32, 16, half, wmma::col_major> b_frag;
    wmma::fragment<wmma::accumulator, 8, 32, 16, half> c_frag;
    wmma::fill_fragment(c_frag, 0.0f);

    for (int i = threadIdx.x; i < (8 * 32); i += blockDim.x)
        smem_C[i] = 0.0f;

    __syncthreads();

    int ticktock = 0;
    int idx = 0 + threadIdx.x;
    int loaded_values = 0;
    // prefetch
    if (idx < K && warp_id < (WARPS - 1)) {
        if (loaded_values == 0) {
            local_A[0] = A[idx];
            local_A[1] = A[idx + blockDim.x - 32];

#pragma unroll 32
            for (int col = 0; col < 32; col++)
                local_B_4bit[col] = B[(col_offset + col) * ldb + idx];

            loaded_values = 1;
        } else {
            local_A[0] = local_A[1];
            loaded_values--;

#pragma unroll 64
            for (int col = 0; col < 64; col += 2) {
                // local_B[col] = dhDequantizeNF4(local_B_4bit[col/2] >> 4)*T(1.0f);
                // local_B[col+1] = dhDequantizeNF4(local_B_4bit[col/2] & 0x0F)*T(1.0f);
                // local_B[col] = d2DequantizeFP4(local_B_4bit[col/2] >> 4)*(float)(17.0);
                // local_B[col+1] = d2DequantizeFP4(local_B_4bit[col/2] & 0x0F)*(float)(17.0);
                // local_B[col] = 127*(local_B_4bit[col/2] >> 4)*(float)(17.0);
                // local_B[col+1] = 127*(local_B_4bit[col/2] & 0x0F)*(float)(17.0);

                // local_B[col] = quant_map[(local_B_4bit[col/2] >> 4)]*T(17.0);
                // local_B[col+1] = quant_map[(local_B_4bit[col/2] & 0x0F)]*T(17.0);
                local_B[col] = quant_map[160 * (local_B_4bit[col / 2] >> 4) + warp_idx] * T(17.0);
                local_B[col + 1] = quant_map[160 * (local_B_4bit[col / 2] & 0x0F) + warp_idx] * T(17.0);
            }
2424
        }
Tim Dettmers's avatar
Tim Dettmers committed
2425

2426
        smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = local_A[0];
2427

2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
#pragma unroll 32
        for (int col = 0; col < 32; col++)
            smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                local_B[col];
    } else if (warp_id < (WARPS - 1)) {
        local_A[0] = T(0.0);
        smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = 0.0f;

#pragma unroll 32
        for (int col = 0; col < 32; col++)
            local_B[col] = 0.0f;

#pragma unroll 32
        for (int col = 0; col < 32; col++)
            smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                0.0f;
2444
2445
    }
    ticktock = ticktock == 0 ? 1 : 0;
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
    // if(threadIdx.x == 0)
    // printf("aa %i %i\n", idx, loaded_values);

    // for(int base_idx = blockDim.x-32; base_idx < K; base_idx+=blockDim.x-32)
    for (int base_idx = blockDim.x - 32; base_idx < K; base_idx += blockDim.x - 32) {
        idx = base_idx + threadIdx.x;
        // if(threadIdx.x == 0)
        // printf("%i %i\n", idx, loaded_values);

        //__syncthreads();
        if (idx < K && warp_id < (WARPS - 1)) {
            if (loaded_values == 0) {
                local_A[0] = A[idx];
                local_A[1] = A[idx + blockDim.x - 32];

#pragma unroll 32
                for (int col = 0; col < 32; col++) {
                    local_B_4bit[col] = B[(col_offset + col) * ldb + idx];
                    local_B_4bit[col + 16] = B[(col_offset + col) * ldb + idx];
                }

                loaded_values = 1;
            } else {
                local_A[0] = local_A[1];
                loaded_values--;

                int absidx = (idx + col_offset) / blocksize;
                half local_absmax = __ldg(&(absmax[absidx]));

#pragma unroll 64
                for (int col = 0; col < 64; col += 2) {
                    // local_B[col] = dhDequantizeNF4(local_B_4bit[col/2] >> 4)*T(absidx);
                    // local_B[col+1] = dhDequantizeNF4(local_B_4bit[col/2] & 0x0F)*T(absidx);
                    // local_B[col] = T(127)*T(local_B_4bit[col/2] >> 4)*T(absidx);
                    // local_B[col+1] = T(127)*T(local_B_4bit[col/2] & 0x0F)*T(absidx);

                    // local_B[col] = quant_map[160*(local_B_4bit[col/2] >> 4)+warp_idx]*T(local_absmax);
                    // local_B[col+1] = quant_map[160*(local_B_4bit[col/2] & 0x0F)+warp_idx]*T(local_absmax);
                    local_B[col] = quant_map[(local_B_4bit[col / 2] >> 4)] * T(absidx);
                    local_B[col + 1] = quant_map[(local_B_4bit[col / 2] & 0x0F)] * T(absidx);
                }
                // printnonzero<T>(local_B, 128, "");
            }

            smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = local_A[0];
2491

2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
#pragma unroll 32
            for (int col = 0; col < 32; col++)
                smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                    local_B[col];
        } else if (warp_id < (WARPS - 1)) {
            local_A[0] = T(0.0);
            smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = 0.0f;

#pragma unroll 32
            for (int col = 0; col < 32; col++)
                local_B[col] = 0.0f;

#pragma unroll 32
            for (int col = 0; col < 32; col++)
                smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                    0.0f;
        }
        ticktock = ticktock == 0 ? 1 : 0;

        if (warp_id == (WARPS - 1))
            for (int k = 0; k < batch_size_warps; k++) {
                wmma::load_matrix_sync(
                    a_frag, &(smem_A[(ticktock * batch_size_warps + k) * a_tile_offset]), 16
                ); //  111 mu
                wmma::load_matrix_sync(
                    b_frag, &(smem_B[(ticktock * batch_size_warps + k) * b_tile_offset]), 16
                ); // 35 mu
                wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
            }
    }

    __syncthreads();
    // if(threadIdx.x == 0)
    //{
    //   printnonzero<T>(smem_A, 8*16 + (2*16*(batch_size_warps-1)), "A: ");
    //   printnonzero<T>(smem_B, 2*batch_size_warps*16*32 + (2*16*(batch_size_warps-1)), "B: ");
    // }
    if (warp_id != (WARPS - 1)) {
        return;
    }
    // only warp_id == (WARPS-1) from here
2533
    int warp_lane = threadIdx.x % DU_WARP_SIZE;
2534
2535
2536
2537
2538
2539
2540

    ticktock = ticktock == 0 ? 1 : 0;
    for (int k = 0; k < batch_size_warps; k++) {
        // if(warp_lane == 0)
        // printf("%i %i %i %i\n", (ticktock*batch_size_warps + k)*a_tile_offset, k, ticktock, threadIdx.x);
        wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock * batch_size_warps + k) * a_tile_offset]), 16); //  111 mu
        wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock * batch_size_warps + k) * b_tile_offset]), 16); // 35 mu
2541
        wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
    }

    // 129 mu
    if (warp_id == (WARPS - 1))
        wmma::store_matrix_sync(&(smem_C[0]), c_frag, 32, wmma::mem_row_major);

    // printnonzero<T>(smem_C, 32, "");

    if (col_offset + warp_lane < M)
        out[col_offset + warp_lane] = smem_C[warp_lane];
2552
#endif
Tim Dettmers's avatar
Tim Dettmers committed
2553
2554
}

2555
#define num_values_4bit 32
2556

2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
template <typename T, int THREADS, int BITS>
__global__ void kgemm_4bit_inference_naive(
    int M, int N, int K, T* __restrict__ const A, unsigned char* B, float* absmax, const float* datatype, T* out,
    int lda, int ldb, int ldc, int blocksize
) {

    // per threadblock:
    // load step-by-step in chunks of [32,warps]: 1x32 * [32,warps] -> [1,warps]
    // 4 warps -> 4 loads per iter
    // 1x32 * 32x4 -> 1x4 outputs per thread block
    typedef cub::WarpReduce<float> WarpReduce;
2568
    __shared__ typename WarpReduce::TempStorage temp_storage[THREADS / DU_WARP_SIZE];
2569

2570
2571
2572
    const int warp_idx = threadIdx.x / DU_WARP_SIZE;
    const int warp_lane = threadIdx.x % DU_WARP_SIZE;
    const int row_B = (THREADS / DU_WARP_SIZE) * blockIdx.x + warp_idx;
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
    const int offset_B = ldb * row_B;
    const int num_values_8bit = num_values_4bit / 2;
    float local_C = 0.0f;

    unsigned char local_B_4bit[num_values_8bit];
    T local_B[num_values_4bit / 4];
    T local_A[num_values_4bit / 4];
    __shared__ T quant_map[16];
    T local_absmax = T(0.0f);

    if (threadIdx.x < 16)
        quant_map[threadIdx.x] = T(__ldg(&datatype[threadIdx.x]));
    // for(int i = threadIdx.x; i < 16; i++)
    // quant_map[i] = T(__ldg(&datatype[i]));
    __syncthreads();

    // A: [1, K]
    // B: [N, K]
2591
    for (int inner_idx = warp_lane * num_values_4bit; inner_idx < K; inner_idx += warpSize * num_values_4bit) {
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
        const int inner_idx_halved = inner_idx / 2;

        // Since blocksize will always be a power-of-2, we avoid more expensive
        // division by the blocksize and instead use a shift operation.
        // This is equivalent to (i+threadId.x*NUM_PER_TH)/blocksize.
        const int absidx = ((2 * offset_B) + inner_idx) >> (31 - __clz(blocksize));

        local_absmax = __ldg(&(absmax[absidx]));

        if (row_B < M) {
            if ((inner_idx_halved + num_values_8bit) < (K / 2)) {
                // this is the most important for performance considerations
                reinterpret_cast<int4(&)[num_values_8bit]>(local_B_4bit)[0] =
                    reinterpret_cast<int4*>(B)[(offset_B + (inner_idx_halved)) / (num_values_8bit)];
            } else {
#pragma unroll
                for (int j = 0; j < (num_values_8bit); j++)
                    if ((inner_idx_halved) + j < (K / 2))
                        local_B_4bit[j] = B[offset_B + inner_idx_halved + j];
                    else
                        local_B_4bit[j] = 0b01110111;
            }
        } else {
#pragma unroll
            for (int j = 0; j < (num_values_8bit); j++)
                local_B_4bit[j] = 0b01110111;
Tim Dettmers's avatar
Tim Dettmers committed
2618
        }
2619

2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
        for (int i = 0; i < 4; i++) {
#pragma unroll
            for (int k = 0; k < num_values_8bit / 4; k++) {
#if BNB_BF16_AVAILABLE
                local_B[k * 2] = quant_map[local_B_4bit[(i * num_values_8bit / 4) + k] >> 4] * local_absmax;
                local_B[k * 2 + 1] = quant_map[local_B_4bit[(i * num_values_8bit / 4) + k] & 0x0F] * local_absmax;
#else
                // bf16 multipliation not supported
                local_B[k * 2] =
                    T((float)quant_map[local_B_4bit[(i * num_values_8bit / 4) + k] >> 4] * (float)local_absmax);
                local_B[k * 2 + 1] =
                    T((float)quant_map[local_B_4bit[(i * num_values_8bit / 4) + k] & 0x0F] * (float)local_absmax);
#endif
            }
2634

2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
            if (inner_idx + (num_values_4bit / 4) + (i * num_values_4bit / 4) < K) {
                // this is also relatively important for performance
                if (BITS == 16) {
                    reinterpret_cast<int4(&)[num_values_4bit]>(local_A)[0] =
                        reinterpret_cast<int4*>(A)[inner_idx / (num_values_4bit / 4) + i];
                } else {
                    reinterpret_cast<int4(&)[num_values_4bit]>(local_A)[0] =
                        reinterpret_cast<int4*>(A)[inner_idx / (num_values_4bit / 8) + (2 * i) + 0];
                    reinterpret_cast<int4(&)[num_values_4bit]>(local_A)[1] =
                        reinterpret_cast<int4*>(A)[inner_idx / (num_values_4bit / 8) + (2 * i) + 1];
                }
2646

2647
2648
2649
2650
2651
2652
2653
            } else
#pragma unroll
                for (int k = 0; k < num_values_4bit / 4; k++)
                    if (inner_idx + (i * num_values_4bit / 4) + k < K)
                        local_A[k] = A[inner_idx + k + (i * num_values_4bit / 4)];
                    else
                        local_A[k] = T(0.0f);
2654

2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
// accumulate in float; small performance hit for Ampere, but lower error for outputs
#pragma unroll
            for (int k = 0; k < num_values_4bit / 4; k++) {
#if BNB_BF16_AVAILABLE
                local_C += (float)(local_A[k] * local_B[k]);
#else
                // bf16 multipliation not supported
                local_C += ((float)local_A[k] * (float)local_B[k]);
#endif
            }
        }
    }

    local_C = WarpReduce(temp_storage[warp_idx]).Sum(local_C);

    if (row_B < M && warp_lane == 0)
        out[row_B] = T(local_C);
2672
2673
}

2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
template <typename T, int FUNC> __global__ void kfunc(T* A, T* B, T value, long n) {
    for (long i = (blockDim.x * blockIdx.x) + threadIdx.x; i < n; i += (blockDim.x * gridDim.x)) {
        switch (FUNC) {
        case FILL:
            A[i] = (T)value;
            break;
        case ARANGE:
            A[i] = (T)i;
            break;
        case _MUL:
            A[i] = A[i] * B[i];
            break;
        }
Tim Dettmers's avatar
Tim Dettmers committed
2687
2688
2689
    }
}

Tim Dettmers's avatar
Tim Dettmers committed
2690
2691
2692
2693
//==============================================================
//                   TEMPLATE DEFINITIONS
//==============================================================

2694
2695
2696
2697
template __global__ void kfunc<float, FILL>(float* A, float* B, float value, long n);
template __global__ void kfunc<unsigned char, FILL>(unsigned char* A, unsigned char* B, unsigned char value, long n);
template __global__ void kfunc<float, ARANGE>(float* A, float* B, float value, long n);
template __global__ void kfunc<float, _MUL>(float* A, float* B, float value, long n);
Tim Dettmers's avatar
Tim Dettmers committed
2698
2699

// these are not used and make no sense, but the compiler needs them
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
// template __global__ void gemm_device<float, 16, 128>(int M, int N, int K, float * __restrict__ const A,  float* B,
// float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 32, 256>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 192>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 160>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 128>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
// template __global__ void gemm_device<float, 16, 32>(int M, int N, int K, float * __restrict__ const A,  float* B,
// float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 32, 32>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 64>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 96>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
Tim Dettmers's avatar
Tim Dettmers committed
2725
2726
// these are not used and make no sense, but the compiler needs them

2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
// template __global__ void gemm_device<float, 32, 128>(int M, int N, int K, float * __restrict__ const A,  float* B,
// float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 16, 256>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 192>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 160>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 128>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
// template __global__ void gemm_device<float, 32, 32>(int M, int N, int K, float * __restrict__ const A,  float* B,
// float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 16, 32>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 64>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 96>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);

template __global__ void kgemm_4bit_inference<half, 96>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, half* out, int lda, int ldb,
    int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference<half, 128>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, half* out, int lda, int ldb,
    int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference<half, 160>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, half* out, int lda, int ldb,
    int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference<half, 256>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, half* out, int lda, int ldb,
    int ldc, int blocksize
);

template __global__ void kgemm_4bit_inference_naive<half, 128, 16>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, const float* datatype, half* out,
    int lda, int ldb, int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference_naive<__nv_bfloat16, 128, 16>(
    int M, int N, int K, __nv_bfloat16* __restrict__ const A, unsigned char* B, float* absmax, const float* datatype,
    __nv_bfloat16* out, int lda, int ldb, int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference_naive<float, 128, 32>(
    int M, int N, int K, float* __restrict__ const A, unsigned char* B, float* absmax, const float* datatype,
    float* out, int lda, int ldb, int ldc, int blocksize
);

template __global__ void kspmm_coo_very_sparse_naive<half, 8, 16>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, half* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<half, 16, 16>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, half* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<half, 32, 16>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, half* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<signed char, 8, 8>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, signed char* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<signed char, 16, 8>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, signed char* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<signed char, 32, 8>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, signed char* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);

template __global__ void kdequant_mm_int32_fp16<4, 512>(
    int* __restrict__ const A, float* __restrict__ const rowStats, float* __restrict__ const colStats, half* out,
    half* __restrict__ const bias, const int numRows, const int numCols, const int n
);
Tim Dettmers's avatar
Tim Dettmers committed
2812

Tim Dettmers's avatar
Tim Dettmers committed
2813
2814
2815
template __device__ unsigned char dQuantize<0>(float* smem_code, const float rand, float x);
template __device__ unsigned char dQuantize<1>(float* smem_code, const float rand, float x);

2816
2817
2818
2819
2820
#define MAKE_PreconditionOptimizer32bit1State(oname, gtype)                                                            \
    template __global__ void kPreconditionOptimizer32bit1State<gtype, oname, 4096, 8>(                                 \
        gtype * g, gtype * p, float* state1, float* unorm, const float beta1, const float beta2, const float eps,      \
        const float weight_decay, const int step, const float lr, const float gnorm_scale, const int n                 \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2821
2822
2823

MAKE_PreconditionOptimizer32bit1State(MOMENTUM, half)
MAKE_PreconditionOptimizer32bit1State(MOMENTUM, float)
2824
MAKE_PreconditionOptimizer32bit1State(MOMENTUM, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2825
2826
MAKE_PreconditionOptimizer32bit1State(RMSPROP, half)
MAKE_PreconditionOptimizer32bit1State(RMSPROP, float)
2827
MAKE_PreconditionOptimizer32bit1State(RMSPROP, __nv_bfloat16)
2828
2829
MAKE_PreconditionOptimizer32bit1State(LION, half)
MAKE_PreconditionOptimizer32bit1State(LION, float)
Tim Dettmers's avatar
Tim Dettmers committed
2830
MAKE_PreconditionOptimizer32bit1State(LION, __nv_bfloat16)
2831
2832
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, half)
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, float)
2833
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2834

2835
2836
2837
2838
2839
2840
#define MAKE_Optimizer32bit1State(oname, gtype)                                                                        \
    template __global__ void kOptimizer32bit1State<gtype, oname>(                                                      \
        gtype * g, gtype * p, float* state1, float* unorm, const float max_unorm, const float param_norm,              \
        const float beta1, const float beta2, const float eps, const float weight_decay, const int step,               \
        const float lr, const float gnorm_scale, const bool skip_zeros, const int n                                    \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2841
2842
2843

MAKE_Optimizer32bit1State(MOMENTUM, half)
MAKE_Optimizer32bit1State(MOMENTUM, float)
2844
MAKE_Optimizer32bit1State(MOMENTUM, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2845
2846
MAKE_Optimizer32bit1State(RMSPROP, half)
MAKE_Optimizer32bit1State(RMSPROP, float)
2847
MAKE_Optimizer32bit1State(RMSPROP, __nv_bfloat16)
2848
2849
MAKE_Optimizer32bit1State(LION, half)
MAKE_Optimizer32bit1State(LION, float)
Tim Dettmers's avatar
Tim Dettmers committed
2850
MAKE_Optimizer32bit1State(LION, __nv_bfloat16)
2851
2852
MAKE_Optimizer32bit1State(ADAGRAD, half)
MAKE_Optimizer32bit1State(ADAGRAD, float)
2853
MAKE_Optimizer32bit1State(ADAGRAD, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2854

2855
2856
2857
2858
2859
2860
#define MAKE_PreconditionOptimizer32bit2State(oname, gtype)                                                            \
    template __global__ void kPreconditionOptimizer32bit2State<gtype, oname, 4096, 8>(                                 \
        gtype * g, gtype * p, float* state1, float* state2, float* unorm, const float beta1, const float beta2,        \
        const float eps, const float weight_decay, const int step, const float lr, const float gnorm_scale,            \
        const int n                                                                                                    \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2861
2862

MAKE_PreconditionOptimizer32bit2State(ADAM, float)
2863
2864
MAKE_PreconditionOptimizer32bit2State(ADAM, half)
MAKE_PreconditionOptimizer32bit2State(ADAM, __nv_bfloat16)
2865
2866
2867
MAKE_PreconditionOptimizer32bit2State(ADEMAMIX, float)
MAKE_PreconditionOptimizer32bit2State(ADEMAMIX, half)
MAKE_PreconditionOptimizer32bit2State(ADEMAMIX, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2868

2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
template __global__ void kOptimizer32bit2State<float, ADAM>(
    float* g, float* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<half, ADAM>(
    half* g, half* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<__nv_bfloat16, ADAM>(
    __nv_bfloat16* g, __nv_bfloat16* p, float* state1, float* state2, float* unorm, const float max_unorm,
    const float param_norm, const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<float, ADEMAMIX>(
    float* g, float* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<half, ADEMAMIX>(
    half* g, half* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<__nv_bfloat16, ADEMAMIX>(
    __nv_bfloat16* g, __nv_bfloat16* p, float* state1, float* state2, float* unorm, const float max_unorm,
    const float param_norm, const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);

#define MAKE_PreconditionStatic8bit1State(oname, gtype)                                                                \
    template __global__ void kPreconditionOptimizerStatic8bit1State<gtype, oname>(                                     \
        gtype * p, gtype* __restrict__ const g, unsigned char* __restrict__ const state1, float* unorm,                \
        const float beta1, const float beta2, const float eps, const int step, float* __restrict__ const quantiles1,   \
        float* max1, float* new_max1, const float weight_decay, const float gnorm_scale, const int n                   \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2912
2913
2914
2915
2916

MAKE_PreconditionStatic8bit1State(MOMENTUM, half)
MAKE_PreconditionStatic8bit1State(MOMENTUM, float)
MAKE_PreconditionStatic8bit1State(RMSPROP, half)
MAKE_PreconditionStatic8bit1State(RMSPROP, float)
2917
2918
MAKE_PreconditionStatic8bit1State(LION, half)
MAKE_PreconditionStatic8bit1State(LION, float)
2919
2920
MAKE_PreconditionStatic8bit1State(ADAGRAD, half)
MAKE_PreconditionStatic8bit1State(ADAGRAD, float)
Tim Dettmers's avatar
Tim Dettmers committed
2921

2922
2923
2924
2925
2926
2927
2928
#define MAKE_optimizerStatic8bit1State(oname, gtype)                                                                   \
    template __global__ void kOptimizerStatic8bit1State<gtype, oname>(                                                 \
        gtype * p, gtype* const g, unsigned char* state1, const float* unorm, const float max_unorm,                   \
        const float param_norm, const float beta1, const float beta2, const float eps, const int step, const float lr, \
        float* __restrict__ const quantiles1, float* max1, float* new_max1, float weight_decay,                        \
        const float gnorm_scale, const int n                                                                           \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2929
2930
2931
2932
2933

MAKE_optimizerStatic8bit1State(MOMENTUM, half)
MAKE_optimizerStatic8bit1State(MOMENTUM, float)
MAKE_optimizerStatic8bit1State(RMSPROP, half)
MAKE_optimizerStatic8bit1State(RMSPROP, float)
2934
2935
MAKE_optimizerStatic8bit1State(LION, half)
MAKE_optimizerStatic8bit1State(LION, float)
2936
2937
2938
MAKE_optimizerStatic8bit1State(ADAGRAD, half)
MAKE_optimizerStatic8bit1State(ADAGRAD, float)

2939
2940
2941
2942
2943
2944
2945
#define MAKE_PreconditionStatic8bit2State(oname, gtype)                                                                \
    template __global__ void kPreconditionOptimizerStatic8bit2State<gtype, oname>(                                     \
        gtype * p, gtype* __restrict__ const g, unsigned char* __restrict__ const state1,                              \
        unsigned char* __restrict__ const state2, float* unorm, const float beta1, const float beta2, const float eps, \
        const int step, float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* max1,       \
        float* max2, float* new_max1, float* new_max2, const float gnorm_scale, const int n                            \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2946
2947
2948
2949

MAKE_PreconditionStatic8bit2State(ADAM, half)
MAKE_PreconditionStatic8bit2State(ADAM, float)

2950
2951
2952
2953
2954
2955
2956
2957
#define MAKE_optimizerStatic8bit2State(oname, gtype)                                                                   \
    template __global__ void kOptimizerStatic8bit2State<gtype, oname>(                                                 \
        gtype * p, gtype* const g, unsigned char* state1, unsigned char* state2, const float* unorm,                   \
        const float max_unorm, const float param_norm, const float beta1, const float beta2, const float eps,          \
        const int step, const float lr, float* __restrict__ const quantiles1, float* __restrict__ const quantiles2,    \
        float* max1, float* max2, float* new_max1, float* new_max2, float weight_decay, const float gnorm_scale,       \
        const int n                                                                                                    \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2958
2959
2960
2961

MAKE_optimizerStatic8bit2State(ADAM, half)
MAKE_optimizerStatic8bit2State(ADAM, float)

2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
template __global__ void
    kPercentileClipping<float, 2048, 4>(float* __restrict__ g, float* gnorm_vec, int step, const int n);
template __global__ void
    kPercentileClipping<half, 2048, 4>(half* __restrict__ g, float* gnorm_vec, int step, const int n);

#define MAKE_kQuantizeBlockwise(dtype, blocksize, num_per_thread, stochastic, data_type_name)                          \
    template __global__ void kQuantizeBlockwise<dtype, blocksize, num_per_thread, stochastic, data_type_name>(         \
        float* code, dtype* __restrict__ const A, float* absmax, unsigned char* out, float* __restrict__ const rand,   \
        const int rand_offset, const int n                                                                             \
    );

MAKE_kQuantizeBlockwise(half, 4096, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 4096, 4, 1, General8bit)
MAKE_kQuantizeBlockwise(half, 2048, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 1024, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 512, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 256, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 128, 2, 0, General8bit)
2980
// MAKE_kQuantizeBlockwise(half, 64, 2, 0, General8bit)
2981
2982
2983
2984
2985
2986
MAKE_kQuantizeBlockwise(half, 4096, 4, 0, FP4)
MAKE_kQuantizeBlockwise(half, 2048, 4, 0, FP4)
MAKE_kQuantizeBlockwise(half, 1024, 4, 0, FP4)
MAKE_kQuantizeBlockwise(half, 512, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half, 256, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half, 128, 2, 0, FP4)
2987
// MAKE_kQuantizeBlockwise(half, 64, 2, 0, FP4)
2988
2989
2990
2991
2992
2993
MAKE_kQuantizeBlockwise(half, 4096, 4, 0, NF4)
MAKE_kQuantizeBlockwise(half, 2048, 4, 0, NF4)
MAKE_kQuantizeBlockwise(half, 1024, 4, 0, NF4)
MAKE_kQuantizeBlockwise(half, 512, 2, 0, NF4)
MAKE_kQuantizeBlockwise(half, 256, 2, 0, NF4)
MAKE_kQuantizeBlockwise(half, 128, 2, 0, NF4)
2994
// MAKE_kQuantizeBlockwise(half, 64, 2, 0, NF4)
Tim Dettmers's avatar
Tim Dettmers committed
2995
2996
2997
2998
MAKE_kQuantizeBlockwise(float, 4096, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 4096, 4, 1, General8bit)
MAKE_kQuantizeBlockwise(float, 2048, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 1024, 4, 0, General8bit)
2999
3000
3001
MAKE_kQuantizeBlockwise(float, 512, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 256, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 128, 2, 0, General8bit)
3002
// MAKE_kQuantizeBlockwise(float, 64, 2, 0, General8bit)
Tim Dettmers's avatar
Tim Dettmers committed
3003
3004
3005
MAKE_kQuantizeBlockwise(float, 4096, 4, 0, FP4)
MAKE_kQuantizeBlockwise(float, 2048, 4, 0, FP4)
MAKE_kQuantizeBlockwise(float, 1024, 4, 0, FP4)
3006
3007
3008
MAKE_kQuantizeBlockwise(float, 512, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float, 256, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float, 128, 2, 0, FP4)
3009
// MAKE_kQuantizeBlockwise(float, 64, 2, 0, FP4)
Tim Dettmers's avatar
Tim Dettmers committed
3010
3011
3012
MAKE_kQuantizeBlockwise(float, 4096, 4, 0, NF4)
MAKE_kQuantizeBlockwise(float, 2048, 4, 0, NF4)
MAKE_kQuantizeBlockwise(float, 1024, 4, 0, NF4)
3013
3014
3015
MAKE_kQuantizeBlockwise(float, 512, 2, 0, NF4)
MAKE_kQuantizeBlockwise(float, 256, 2, 0, NF4)
MAKE_kQuantizeBlockwise(float, 128, 2, 0, NF4)
3016
// MAKE_kQuantizeBlockwise(float, 64, 2, 0, NF4)
Tim Dettmers's avatar
Tim Dettmers committed
3017

3018
3019
3020
3021
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 1, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 2048, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 1024, 4, 0, General8bit)
3022
3023
3024
MAKE_kQuantizeBlockwise(__nv_bfloat16, 512, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 256, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 128, 2, 0, General8bit)
3025
// MAKE_kQuantizeBlockwise(__nv_bfloat16, 64, 2, 0, General8bit)
3026
3027
3028
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 2048, 4, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 1024, 4, 0, FP4)
3029
3030
3031
MAKE_kQuantizeBlockwise(__nv_bfloat16, 512, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 256, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 128, 2, 0, FP4)
3032
// MAKE_kQuantizeBlockwise(__nv_bfloat16, 64, 2, 0, FP4)
3033
3034
3035
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 2048, 4, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 1024, 4, 0, NF4)
3036
3037
3038
MAKE_kQuantizeBlockwise(__nv_bfloat16, 512, 2, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 256, 2, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 128, 2, 0, NF4)
3039
// MAKE_kQuantizeBlockwise(__nv_bfloat16, 64, 2, 0, NF4)
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075

template __global__ void kDequantizeBlockwise<half, 512, 64, 8, FP4>(
    float* code, unsigned char* A, float* absmax, half* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<half, 512, 64, 8, General8bit>(
    float* code, unsigned char* A, float* absmax, half* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<half, 512, 64, 8, NF4>(
    float* code, unsigned char* A, float* absmax, half* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<float, 512, 64, 8, FP4>(
    float* code, unsigned char* A, float* absmax, float* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<float, 512, 64, 8, General8bit>(
    float* code, unsigned char* A, float* absmax, float* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<float, 512, 64, 8, NF4>(
    float* code, unsigned char* A, float* absmax, float* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, FP4>(
    float* code, unsigned char* A, float* absmax, __nv_bfloat16* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, General8bit>(
    float* code, unsigned char* A, float* absmax, __nv_bfloat16* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, NF4>(
    float* code, unsigned char* A, float* absmax, __nv_bfloat16* out, const int blocksize, const int n
);

#define MAKE_OptimizerStatic8bit2StateBlockwise(oname, gtype, block_size, num_per_thread)                              \
    template __global__ void kOptimizerStatic8bit2StateBlockwise<gtype, oname, block_size, num_per_thread>(            \
        gtype * p, gtype* __restrict__ const g, unsigned char* state1, unsigned char* state2, const float beta1,       \
        const float beta2, const float beta3, const float alpha, const float eps, const int step, const float lr,      \
        float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* absmax1, float* absmax2,    \
        float weight_decay, const float gnorm_scale, const bool skip_zeros, const int n                                \
    );
Tim Dettmers's avatar
Tim Dettmers committed
3076

3077
3078
3079
3080
3081
3082
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, float, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, half, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADEMAMIX, float, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADEMAMIX, half, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADEMAMIX, __nv_bfloat16, 256, 1)
Tim Dettmers's avatar
Tim Dettmers committed
3083

3084
3085
3086
3087
3088
3089
#define MAKE_OptimizerStatic8bit1StateBlockwise(oname, gtype, block_size, num_per_thread)                              \
    template __global__ void kOptimizerStatic8bit1StateBlockwise<gtype, oname, block_size, num_per_thread>(            \
        gtype * p, gtype* __restrict__ const g, unsigned char* state1, const float beta1, const float beta2,           \
        const float eps, const int step, const float lr, float* __restrict__ const quantiles1, float* absmax1,         \
        float weight_decay, const float gnorm_scale, const bool skip_zeros, const int n                                \
    );
Tim Dettmers's avatar
Tim Dettmers committed
3090

3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(LION, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(LION, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(LION, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, __nv_bfloat16, 256, 1)
3103

3104
3105
template __device__ void printnonzero<float>(float* A, int num_values, const char* strval);
template __device__ void printnonzero<half>(half* A, int num_values, const char* strval);