kernels.cu 125 KB
Newer Older
1
2
3
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
Tim Dettmers's avatar
Tim Dettmers committed
4
5
// LICENSE file in the root directory of this source tree.

6
#include "common.cuh"
7
#include "kernels.cuh"
Tim Dettmers's avatar
Tim Dettmers committed
8
#include <cub/block/block_discontinuity.cuh>
9
10
#include <cub/block/block_load.cuh>
#include <cub/block/block_radix_sort.cuh>
Tim Dettmers's avatar
Tim Dettmers committed
11
#include <cub/block/block_reduce.cuh>
12
#include <cub/block/block_store.cuh>
Tim Dettmers's avatar
Tim Dettmers committed
13
#include <cub/cub.cuh>
14
15
#include <cub/warp/warp_reduce.cuh>
#include <cuda_fp16.h>
Tim Dettmers's avatar
Tim Dettmers committed
16
#include <math_constants.h>
Tim Dettmers's avatar
Tim Dettmers committed
17
#include <mma.h>
Tim Dettmers's avatar
Tim Dettmers committed
18

Tim Dettmers's avatar
Tim Dettmers committed
19
20
21
22
23
#define HLF_MAX 65504
#define TH 1024
#define NUM 4
#define NUM_BLOCK 4096

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
__device__ static float fp4_dequantization_lut[8] = {
    0.0f,            // 0b000
    0.005208333333f, // 0b001
    0.66666667f,     // 0b010
    1.0f,            // 0b011
    0.33333333f,     // 0b100
    0.5f,            // 0b101
    0.16666667f,     // 0b110
    0.25f            // 0b111
};

__device__ static float nf4_dequantization_lut[16] = {
    -1.0f,                 // 0b0000
    -0.6961928009986877f,  // 0b0001
    -0.5250730514526367f,  // 0b0010
    -0.39491748809814453f, // 0b0011
    -0.28444138169288635f, // 0b0100
    -0.18477343022823334f, // 0b0101
    -0.09105003625154495f, // 0b0110
    0.0f,                  // 0b0111
    0.07958029955625534f,  // 0b1000
    0.16093020141124725f,  // 0b1001
    0.24611230194568634f,  // 0b1010
    0.33791524171829224f,  // 0b1011
    0.44070982933044434f,  // 0b1100
    0.5626170039176941f,   // 0b1101
    0.7229568362236023f,   // 0b1110
    1.0f                   // 0b1111
52
};
Tim Dettmers's avatar
Tim Dettmers committed
53

Tim Dettmers's avatar
Tim Dettmers committed
54
55
// source: https://stackoverflow.com/questions/17399119/how-do-i-use-atomicmax-on-floating-point-values-in-cuda
__device__ float atomicMax(float* address, float val) {
56
57
58
59
60
61
62
    int* address_as_i = reinterpret_cast<int*>(address);
    int old = *address_as_i, assumed;
    do {
        assumed = old;
        old = atomicCAS(reinterpret_cast<int*>(address), assumed, __float_as_int(fmaxf(val, __int_as_float(assumed))));
    } while (assumed != old);
    return __int_as_float(old);
Tim Dettmers's avatar
Tim Dettmers committed
63
64
}

65
66
67
__device__ __forceinline__ float dDequantizeFP4Tree(unsigned char val) {
    float sign = 1.0f - 2 * ((val & 0b1000) >> 3);
    return fp4_dequantization_lut[val & 0b111] * sign;
Tim Dettmers's avatar
Tim Dettmers committed
68
69
}

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
__device__ unsigned char dQuantizeFP4(float x) {
    // FP4 with bias of 3
    // first bit is a sign
    // subnormals
    // 0b000 = 0
    // 0b001 = 0.0625
    // 0b110 = 2
    // 0b111 = 3
    // 0b100 = 4
    // 0b101 = 6
    // 0b010 = 8
    // 0b011 = 12

    // we do a binary search
    // the pivots are divided by 12 (the FP4 absmax)
    // since we assume input data is in [-1.0, 1.0]

    // !be careful here, its easy to make a mistake
    // that is difficult to notice if you add an extra
    // zero somewhere!

    int sign = x < 0 ? 0b1000 : 0b0000;
    x = fabsf(x);
    if (x > 0.29166667f)
        if (x > 0.583333f)
            if (x > 0.8333333f)
                return 0b0011 + sign;
            else
                return 0b0010 + sign;
        else if (x > 0.4166667f)
            return 0b101 + sign;
        else
            return 0b100 + sign;
    else if (x > 0.0859375f)
        if (x > 0.20833333f)
            return 0b0111 + sign;
        else
            return 0b0110 + sign;
    else if (x > 0.00260417f)
        return 0b0001 + sign;
Tim Dettmers's avatar
Tim Dettmers committed
110
    else
111
        return 0b0000 + sign;
Tim Dettmers's avatar
Tim Dettmers committed
112
113
}

114
__device__ __forceinline__ float dDequantizeNF4(unsigned char val) { return nf4_dequantization_lut[val & 0x0F]; }
Tim Dettmers's avatar
Tim Dettmers committed
115

116
__device__ unsigned char dQuantizeNF4(float x) {
Tim Dettmers's avatar
Tim Dettmers committed
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    // the values for this tree was generated by test_normal_map_tree
    // in the file tests/test_functional.py
    if (x > 0.03979014977812767f)
        if (x > 0.3893125355243683f)         // 1
            if (x > 0.6427869200706482f)     // 11
                if (x > 0.8614784181118011f) // 111
                    return 0b1111;
                else
                    return 0b1110;
            else if (x > 0.5016634166240692f) // 110
                return 0b1101;
            else
                return 0b1100;
        else if (x > 0.2035212516784668f) // 10
            if (x > 0.2920137718319893f)  // 101
                return 0b1011;
            else
                return 0b1010;
        else if (x > 0.1202552504837513f) // 100
            return 0b1001;
Tim Dettmers's avatar
Tim Dettmers committed
138
        else
139
140
141
142
143
144
145
146
147
            return 0b1000;
    else if (x > -0.33967943489551544f)     // 0
        if (x > -0.13791173323988914f)      // 01
            if (x > -0.045525018125772476f) // 011
                return 0b0111;
            else
                return 0b0110;
        else if (x > -0.23460740596055984f) // 010
            return 0b0101;
Tim Dettmers's avatar
Tim Dettmers committed
148
        else
149
150
151
152
            return 0b0100;
    else if (x > -0.6106329262256622f) // 00
        if (x > -0.4599952697753906f)  // 001
            return 0b0011;
Tim Dettmers's avatar
Tim Dettmers committed
153
        else
154
155
156
            return 0b0010;
    else if (x > -0.8480964004993439f) // 000
        return 0b0001;
157
    else
158
        return 0b0000;
159
}
160

161
162
163
// sign function for lion
// taken from https://stackoverflow.com/a/4609795, but not sure if there's a proper way to do this in CUDA

164
template <typename T> __device__ int sgn(T val) { return (T(0) < val) - (val < T(0)); }
165

166
template <int STOCHASTIC> __device__ unsigned char dQuantize(float* smem_code, const float rand, float x) {
Tim Dettmers's avatar
Tim Dettmers committed
167
168
169
170
171
172
173
174
175
    int pivot = 127;
    int upper_pivot = 255;
    int lower_pivot = 0;

    float lower = -1.0f;
    float upper = 1.0f;

    float val = smem_code[pivot];
    // i>>=1 = {32, 16, 8, 4, 2, 1}
176
177
    for (int i = 64; i > 0; i >>= 1) {
        if (x > val) {
Tim Dettmers's avatar
Tim Dettmers committed
178
179
            lower_pivot = pivot;
            lower = val;
180
181
            pivot += i;
        } else {
Tim Dettmers's avatar
Tim Dettmers committed
182
183
            upper_pivot = pivot;
            upper = val;
184
            pivot -= i;
Tim Dettmers's avatar
Tim Dettmers committed
185
186
187
188
        }
        val = smem_code[pivot];
    }

189
    if (upper_pivot == 255)
Tim Dettmers's avatar
Tim Dettmers committed
190
        upper = smem_code[upper_pivot];
191
    if (lower_pivot == 0)
Tim Dettmers's avatar
Tim Dettmers committed
192
193
        lower = smem_code[lower_pivot];

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    if (!STOCHASTIC) {
        if (x > val) {
            float midpoint = (upper + val) * 0.5f;
            if (x > midpoint) {
                return upper_pivot;
            } else
                return pivot;
        } else {
            float midpoint = (lower + val) * 0.5f;
            if (x < midpoint)
                return lower_pivot;
            else
                return pivot;
        }
    } else {
        if (x > val) {
            float dist_to_upper = fabsf(upper - x);
            float dist_full = upper - val;
            if (rand >= dist_to_upper / dist_full)
                return upper_pivot;
            else
                return pivot;
        } else {
            float dist_to_lower = fabsf(lower - x);
            float dist_full = val - lower;
            if (rand >= dist_to_lower / dist_full)
                return lower_pivot;
            else
                return pivot;
Tim Dettmers's avatar
Tim Dettmers committed
223
224
225
226
227
        }
    }
}

template <int SIGNED>
228
229
__device__ __forceinline__ unsigned char
    quantize_2D(float* __restrict__ quadrants, float* __restrict__ const smem_code, float x) {
Tim Dettmers's avatar
Tim Dettmers committed
230
231
232
233
234
235
236
237
238
239
240
241
    int pivot = 127;
    int upper_pivot = 255;
    int lower_pivot = 0;

    float lower = SIGNED ? -1.0f : 0.0f;
    float upper = 1.0f;
    float midpoint;
    float val = quadrants[1];
    int local_pivot = 1;
    int offset = 1;

    // i>>=1 = {32, 16, 8, 4, 2, 1}
242
243
    for (int i = 64; i > 0; i >>= 1) {
        if (x > val) {
Tim Dettmers's avatar
Tim Dettmers committed
244
245
            lower_pivot = pivot;
            lower = val;
246
247
            pivot += i;
            // val = i == 64 ? quadrants[2] : smem_code[pivot];
Tim Dettmers's avatar
Tim Dettmers committed
248
            local_pivot += offset;
249
        } else {
Tim Dettmers's avatar
Tim Dettmers committed
250
251
            upper_pivot = pivot;
            upper = val;
252
253
            pivot -= i;
            // val = i == 64 ? quadrants[0] : smem_code[pivot];
Tim Dettmers's avatar
Tim Dettmers committed
254
255
256
257
258
259
            local_pivot -= offset;
        }
        val = i >= 64 ? quadrants[local_pivot] : smem_code[pivot];
        offset -= 1;
    }

260
261
262
263
264
265
266
267
268
269
270
271
    if (x > val) {
        midpoint = (upper + val) * 0.5f;
        if (x > midpoint)
            return upper_pivot;
        else
            return pivot;
    } else {
        midpoint = (lower + val) * 0.5f;
        if (x < midpoint)
            return lower_pivot;
        else
            return pivot;
Tim Dettmers's avatar
Tim Dettmers committed
272
273
274
    }
}

275
276
277
278
279
__launch_bounds__(TH, 4) __global__
    void kQuantize(float* code, float* __restrict__ const A, unsigned char* out, const int n) {
    const int n_full = (NUM_BLOCK * (n / NUM_BLOCK)) + (n % NUM_BLOCK == 0 ? 0 : NUM_BLOCK);
    int valid_items = (blockIdx.x + 1 == gridDim.x) ? n - (blockIdx.x * NUM_BLOCK) : NUM_BLOCK;
    const int base_idx = (blockIdx.x * NUM_BLOCK);
Tim Dettmers's avatar
Tim Dettmers committed
280

281
282
283
    float vals[NUM];
    unsigned char qvals[NUM];
    // const int lane_id = threadIdx.x % 2;
Tim Dettmers's avatar
Tim Dettmers committed
284

285
286
    typedef cub::BlockLoad<float, TH, NUM, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockStore<unsigned char, TH, NUM, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
Tim Dettmers's avatar
Tim Dettmers committed
287

288
289
290
291
    __shared__ typename LoadFloat::TempStorage loadf;
    __shared__ typename StoreChar::TempStorage storec;
    __shared__ float smem_code[256];
    //__shared__ float smem_code[2][257];
Tim Dettmers's avatar
Tim Dettmers committed
292

293
294
295
296
297
    if (threadIdx.x < 256) {
        smem_code[threadIdx.x] = code[threadIdx.x];
        // smem_code[0][threadIdx.x] = code[threadIdx.x];
        // smem_code[1][threadIdx.x] = smem_code[0][threadIdx.x];
    }
Tim Dettmers's avatar
Tim Dettmers committed
298

299
300
301
302
303
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * NUM_BLOCK) {
        // number of values already processed in blocks +
        // number of values already processed in this block +
        // rand_offset % mod value
        valid_items = n - i > NUM_BLOCK ? NUM_BLOCK : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
304

305
306
        __syncthreads();
        LoadFloat(loadf).Load(&(A[i]), vals, valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
307

308
309
310
#pragma unroll 4
        for (int j = 0; j < NUM; j++)
            qvals[j] = dQuantize<0>(smem_code, 0.0f, vals[j]);
Tim Dettmers's avatar
Tim Dettmers committed
311

312
313
314
        __syncthreads();
        StoreChar(storec).Store(&(out[i]), qvals, valid_items);
    }
Tim Dettmers's avatar
Tim Dettmers committed
315
316
}

317
template <typename T, int BLOCK_SIZE, int NUM_PER_TH, int STOCHASTIC, int DATA_TYPE>
318
//__launch_bounds__(TH, 4)
319
320
321
322
323
324
325
__global__ void kQuantizeBlockwise(
    float* code, T* __restrict__ const A, float* absmax, unsigned char* out, float* __restrict__ const rand,
    const int rand_offset, const int n
) {
    const int n_full = gridDim.x * BLOCK_SIZE;
    int valid_items = 0;
    const int base_idx = (blockIdx.x * BLOCK_SIZE);
Tim Dettmers's avatar
Tim Dettmers committed
326

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
    T vals[NUM_PER_TH];
    float rand_vals[NUM_PER_TH];
    unsigned char qvals[(DATA_TYPE > 0) ? NUM_PER_TH / 2 : NUM_PER_TH];
    // float local_abs_max = -FLT_MAX;
    float local_abs_max = 0.0f;
    int local_rand_idx = 0;

    typedef cub::BlockLoad<T, BLOCK_SIZE / NUM_PER_TH, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockStore<
        unsigned char, BLOCK_SIZE / NUM_PER_TH, (DATA_TYPE > 0) ? NUM_PER_TH / 2 : NUM_PER_TH,
        cub::BLOCK_STORE_WARP_TRANSPOSE>
        StoreChar;
    typedef cub::BlockReduce<float, BLOCK_SIZE / NUM_PER_TH> BlockReduce;
    typedef cub::BlockLoad<float, BLOCK_SIZE / NUM_PER_TH, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;

    __shared__ typename LoadT::TempStorage loadt;
    __shared__ typename LoadFloat::TempStorage loadf;
    __shared__ typename StoreChar::TempStorage storec;
    __shared__ typename BlockReduce::TempStorage reduce;
    __shared__ float smem_code[256];
    __shared__ float smem_absmax_value[1];

    if (DATA_TYPE == General8bit)
        for (int i = threadIdx.x; i < 256; i += blockDim.x)
            smem_code[i] = code[i];

    for (int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
        valid_items = n - i > BLOCK_SIZE ? BLOCK_SIZE : n - i;
        local_abs_max = -FLT_MAX;
Tim Dettmers's avatar
Tim Dettmers committed
356

357
358
        __syncthreads();
        LoadT(loadt).Load(&(A[i]), vals, valid_items, (T)0.0f);
Tim Dettmers's avatar
Tim Dettmers committed
359

360
361
362
        // 1. compute local max
        // 2. broadcast local max
        // 3. normalize inputs and quantize
Tim Dettmers's avatar
Tim Dettmers committed
363

364
365
366
#pragma unroll NUM_PER_TH
        for (int j = 0; j < NUM_PER_TH; j++)
            local_abs_max = fmaxf(local_abs_max, fabsf((float)vals[j]));
Tim Dettmers's avatar
Tim Dettmers committed
367

368
        local_abs_max = BlockReduce(reduce).Reduce(local_abs_max, cub::Max(), valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
369

370
371
372
373
374
        if (threadIdx.x == 0) {
            smem_absmax_value[0] = 1.0f / local_abs_max;
            absmax[i / BLOCK_SIZE] = local_abs_max;
        }
        __syncthreads();
Tim Dettmers's avatar
Tim Dettmers committed
375

376
        local_abs_max = smem_absmax_value[0];
Tim Dettmers's avatar
Tim Dettmers committed
377

378
379
380
381
382
383
        if (STOCHASTIC) {
            local_rand_idx = ((blockIdx.x * NUM_BLOCK) + (threadIdx.x * NUM) + rand_offset) % (1024 - 4);
            LoadFloat(loadf).Load(&rand[local_rand_idx], rand_vals, BLOCK_SIZE, 0);
        }

        switch (DATA_TYPE) {
Tim Dettmers's avatar
Tim Dettmers committed
384
        case General8bit:
385
386
387
388
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH; j++) {
                if (!STOCHASTIC)
                    qvals[j] = dQuantize<0>(smem_code, 0.0f, ((float)vals[j]) * local_abs_max);
Tim Dettmers's avatar
Tim Dettmers committed
389
                else
390
                    qvals[j] = dQuantize<1>(smem_code, rand_vals[j], ((float)vals[j]) * local_abs_max);
Tim Dettmers's avatar
Tim Dettmers committed
391
392
393
            }
            break;
        case FP4:
394
395
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH / 2; j++) {
396
397
                qvals[j] = dQuantizeFP4(((float)vals[2 * j]) * local_abs_max) << 4;
                qvals[j] |= dQuantizeFP4(((float)vals[2 * j + 1]) * local_abs_max);
Tim Dettmers's avatar
Tim Dettmers committed
398
399
400
            }
            break;
        case NF4:
401
402
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH / 2; j++) {
403
404
                qvals[j] = dQuantizeNF4(((float)vals[2 * j]) * local_abs_max) << 4;
                qvals[j] |= dQuantizeNF4(((float)vals[2 * j + 1]) * local_abs_max);
Tim Dettmers's avatar
Tim Dettmers committed
405
406
            }
            break;
407
        }
Tim Dettmers's avatar
Tim Dettmers committed
408

409
410
411
412
413
        __syncthreads();
        StoreChar(storec).Store(
            &(out[(DATA_TYPE > 0) ? i / 2 : i]), qvals, (DATA_TYPE > 0) ? (valid_items + 1) / 2 : valid_items
        );
    }
Tim Dettmers's avatar
Tim Dettmers committed
414
415
}

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
template <typename T, int TILE_SIZE, int THREADS, int NUM_PER_TH, int DATA_TYPE>
__global__ void
    kDequantizeBlockwise(float* code, unsigned char* A, float* absmax, T* out, const int blocksize, const int n) {

    const int n_load = (gridDim.x * TILE_SIZE);
    int valid_items_load = 0;
    int valid_items_store = 0;
    const int base_idx = (blockIdx.x * TILE_SIZE);

    T vals[NUM_PER_TH * ((DATA_TYPE > 0) ? 2 : 1)];
    unsigned char qvals[NUM_PER_TH];
    float local_abs_max = -FLT_MAX;

    typedef cub::BlockLoad<unsigned char, THREADS, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;
    typedef cub::BlockStore<T, THREADS, NUM_PER_TH*((DATA_TYPE > 0) ? 2 : 1), cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ typename LoadChar::TempStorage loadchar;
    __shared__ typename StoreT::TempStorage storet;

    for (int i = base_idx; i < n_load; i += gridDim.x * TILE_SIZE) {
        if (DATA_TYPE > 0) {
            valid_items_load = min(TILE_SIZE, (n + 1) / 2 - i);
            valid_items_store = min(TILE_SIZE * 2, n - i * 2);
        } else {
            valid_items_load = min(TILE_SIZE, n - i);
            valid_items_store = valid_items_load;
        }
Tim Dettmers's avatar
Tim Dettmers committed
443

444
445
446
447
        // Since blocksize will always be a power-of-2, we avoid more expensive
        // division by the blocksize and instead use a shift operation.
        // This is equivalent to (i+threadId.x*NUM_PER_TH)/blocksize.
        local_abs_max = __ldg(&absmax[(i + threadIdx.x * NUM_PER_TH) >> (31 - __clz(blocksize))]);
Tim Dettmers's avatar
Tim Dettmers committed
448

449
450
        __syncthreads();
        LoadChar(loadchar).Load(&(A[i]), qvals, valid_items_load, 128);
Tim Dettmers's avatar
Tim Dettmers committed
451

452
453
454
455
456
457
458
459
460
461
        switch (DATA_TYPE) {
        case General8bit:
// load code through read-only cache via __ldg
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH; j++)
                vals[j] = __ldg(&code[qvals[j]]) * local_abs_max;
            break;
        case FP4:
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH; j++) {
462
463
                vals[j * 2] = dDequantizeFP4Tree(qvals[j] >> 4) * local_abs_max;
                vals[j * 2 + 1] = dDequantizeFP4Tree(qvals[j] & 0x0F) * local_abs_max;
464
465
466
467
468
469
470
471
472
473
            }
            break;
        case NF4:
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH; j++) {
                vals[j * 2] = dDequantizeNF4(qvals[j] >> 4) * local_abs_max;
                vals[j * 2 + 1] = dDequantizeNF4(qvals[j] & 0x0F) * local_abs_max;
            }
            break;
        }
Tim Dettmers's avatar
Tim Dettmers committed
474

475
476
        __syncthreads();
        StoreT(storet).Store(&(out[(DATA_TYPE > 0) ? i * 2 : i]), vals, valid_items_store);
477
    }
478
}
479

480
481
482
__global__ void kDequantize(float* code, unsigned char* A, float* out, const int n) {
    const unsigned int numThreads = blockDim.x * gridDim.x;
    const int idx = (blockIdx.x * blockDim.x) + threadIdx.x;
Tim Dettmers's avatar
Tim Dettmers committed
483

484
485
486
    __shared__ float smem_code[256];
    if (threadIdx.x < 256) {
        smem_code[threadIdx.x] = code[threadIdx.x];
487
    }
Tim Dettmers's avatar
Tim Dettmers committed
488

489
    __syncthreads();
490
491
492
493

    for (int i = idx; i < n; i += numThreads) {
        out[i] = smem_code[A[i]];
    }
Tim Dettmers's avatar
Tim Dettmers committed
494
495
}

496
497
498
499
500
501
502
503
504
505
506
template <typename T, int OPTIMIZER, int BLOCK_SIZE, int NUM_VALS>
__launch_bounds__(BLOCK_SIZE / NUM_VALS, 1) __global__ void kPreconditionOptimizer32bit2State(
    T* g, T* p, float* state1, float* state2, float* unorm, const float beta1, const float beta2, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const int n
) {

    const int n_full = (BLOCK_SIZE * (n / BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
    const int base_idx = (blockIdx.x * blockDim.x * NUM_VALS);
    int valid_items = 0;

    T g_vals[NUM_VALS];
Tim Dettmers's avatar
Tim Dettmers committed
507

508
509
    float s1_vals[NUM_VALS];
    float s2_vals[NUM_VALS];
Tim Dettmers's avatar
Tim Dettmers committed
510

511
512
    const float correction1 = 1.0f / (1.0f - powf(beta1, step));
    const float correction2 = 1.0f / (1.0f - powf(beta2, step));
Tim Dettmers's avatar
Tim Dettmers committed
513

514
515
516
    typedef cub::BlockLoad<T, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
    typedef cub::BlockLoad<float, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockReduce<float, BLOCK_SIZE / NUM_VALS> BlockReduce;
Tim Dettmers's avatar
Tim Dettmers committed
517

518
519
520
521
522
    __shared__ union {
        typename Load::TempStorage load;
        typename LoadFloat::TempStorage loadf;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;
Tim Dettmers's avatar
Tim Dettmers committed
523

524
525
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
        valid_items = n - i >= (BLOCK_SIZE) ? (BLOCK_SIZE) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
526

527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
        __syncthreads();
        Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items, 0.0f);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items, 0.0f);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state2[i]), s2_vals, valid_items, 0.0f);

#pragma unroll NUM_VALS
        for (unsigned int j = 0; j < NUM_VALS; j++)
            g_vals[j] = gnorm_scale * ((float)g_vals[j]);

#pragma unroll NUM_VALS
        for (unsigned int j = 0; j < NUM_VALS; j++) {
            switch (OPTIMIZER) {
            case ADAM:
                s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * ((float)g_vals[j]));
                s2_vals[j] = s2_vals[j] * beta2 + ((1.0f - beta2) * (((float)g_vals[j]) * ((float)g_vals[j])));
                s1_vals[j] *= correction1;
                s2_vals[j] *= correction2;
                s1_vals[j] = s1_vals[j] / (sqrtf(s2_vals[j]) + eps); // update
                s1_vals[j] *= s1_vals[j];                            // update l2 norm (update*update)
                break;
            }
        }

#pragma unroll NUM_VALS - 1
        for (unsigned int j = 1; j < NUM_VALS; j++)
            s1_vals[0] += s1_vals[j];
Tim Dettmers's avatar
Tim Dettmers committed
555

556
557
        __syncthreads();
        s1_vals[0] = BlockReduce(temp_storage.reduce).Sum(s1_vals[0]);
Tim Dettmers's avatar
Tim Dettmers committed
558

559
560
561
562
563
564
        if (threadIdx.x == 0)
            atomicAdd(&unorm[0], s1_vals[0]);

        __syncwarp();
    }
}
Tim Dettmers's avatar
Tim Dettmers committed
565
566
567

#define NUM_PER_THREAD 4

568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
template <typename T, int OPTIMIZER>
__launch_bounds__(TH, 1) __global__ void kOptimizer32bit2State(
    T* g, T* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
) {

    const int n_full = ((TH * NUM_PER_THREAD) * (n / (TH * NUM_PER_THREAD))) +
                       (n % (TH * NUM_PER_THREAD) == 0 ? 0 : (TH * NUM_PER_THREAD));
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
    int valid_items = 0;
    float update_scale = 0.0f;
    T g_vals[NUM_PER_THREAD];
    T p_vals[NUM_PER_THREAD];

    float s1_vals[NUM_PER_THREAD];
    float s2_vals[NUM_PER_THREAD];

    // AdEMAMix has an additional state buffer, which we packed
    // into state1. We need thread-local storage here for these.
    // TODO: Mark with [[maybe_unused]] after upgrade to min compiler.
    float s3_vals[NUM_PER_THREAD];

    const float correction1 = 1.0f - powf(beta1, step);
    const float correction2 = sqrtf(1.0f - powf(beta2, step));
    const float step_size = -lr * correction2 / correction1;

    if (max_unorm > 0.0f) {
        update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
        if (update_scale > max_unorm * param_norm) {
            update_scale = (max_unorm * param_norm) / update_scale;
        } else {
            update_scale = 1.0f;
        }
    } else {
        update_scale = 1.0f;
    }

    typedef cub::BlockLoad<T, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
    typedef cub::BlockStore<T, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> Store;

    typedef cub::BlockLoad<float, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockStore<float, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreFloat;

    __shared__ union {
        typename Load::TempStorage load;
        typename Store::TempStorage store;
        typename LoadFloat::TempStorage loadf;
        typename StoreFloat::TempStorage storef;
    } temp_storage;

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * TH * NUM_PER_THREAD) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;

        __syncthreads();
        Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items);
627
        __syncthreads();
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
        LoadFloat(temp_storage.loadf).Load(&(state2[i]), s2_vals, valid_items);
        __syncthreads();
        Load(temp_storage.load).Load(&(p[i]), p_vals, valid_items);

        // Load additional state1 data for AdEMAMix
        // TODO: Make constexpr after updating min compiler
        if (OPTIMIZER == ADEMAMIX) {
            __syncthreads();
            LoadFloat(temp_storage.loadf).Load(&(state1[n + i]), s3_vals, valid_items);
        }

#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD; j++)
            g_vals[j] = gnorm_scale * ((float)g_vals[j]);

#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD; j++) {
            switch (OPTIMIZER) {
            case ADEMAMIX:
647
648
649
650
651
652
653
654
655
                // m1 update: m1 = beta1 * m1 + (1-beta1) * g
                s1_vals[j] = (s1_vals[j] * beta1) + ((1.0f - beta1) * (float)g_vals[j]);

                // m2 update: m2 = m2 * beta3 + (1-beta3) * g
                s3_vals[j] = (s3_vals[j] * beta3) + ((1.0f - beta3) * (float)g_vals[j]);

                // nu update: nu = beta2 * nu + (1-beta2) * g^2
                s2_vals[j] = (s2_vals[j] * beta2) + ((1.0f - beta2) * (float)g_vals[j] * (float)g_vals[j]);

656
657
                p_vals[j] = (float)p_vals[j] - lr * (((s1_vals[j] / correction1) + (alpha * s3_vals[j])) /
                                                     ((sqrtf(s2_vals[j]) / correction2) + eps));
658
659
660
661

                if (weight_decay > 0.0f)
                    p_vals[j] = ((float)p_vals[j]) * (1.0f - (lr * weight_decay));

662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
                break;
            case ADAM:

                if (!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f))) {
                    s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * ((float)g_vals[j]));
                    s2_vals[j] = s2_vals[j] * beta2 + ((1.0f - beta2) * (((float)g_vals[j]) * ((float)g_vals[j])));
                    p_vals[j] = ((float)p_vals[j]) +
                                (update_scale * step_size * (s1_vals[j] / (sqrtf(s2_vals[j]) + (eps * correction2))));

                    if (weight_decay > 0.0f)
                        p_vals[j] = ((float)p_vals[j]) * (1.0f - (lr * weight_decay));
                }
                break;
            }
        }

678
        __syncthreads();
679
680
681
682
683
684
685
686
687
688
689
        Store(temp_storage.store).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreFloat(temp_storage.storef).Store(&(state1[i]), s1_vals, valid_items);
        __syncthreads();
        StoreFloat(temp_storage.storef).Store(&(state2[i]), s2_vals, valid_items);

        if (OPTIMIZER == ADEMAMIX) {
            __syncthreads();
            StoreFloat(temp_storage.storef).Store(&(state1[n + i]), s3_vals, valid_items);
        }
    }
Tim Dettmers's avatar
Tim Dettmers committed
690
691
}

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
template <typename T, int OPTIMIZER, int BLOCK_SIZE, int NUM_VALS>
__launch_bounds__(BLOCK_SIZE / NUM_VALS, 1) __global__ void kPreconditionOptimizer32bit1State(
    T* g, T* p, float* state1, float* unorm, const float beta1, const float beta2, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const int n
) {

    const int n_full = (BLOCK_SIZE * (n / BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
    const int base_idx = (blockIdx.x * blockDim.x * NUM_VALS);
    int valid_items = 0;

    T g_vals[NUM_VALS];

    float s1_vals[NUM_VALS];

    typedef cub::BlockLoad<T, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
    typedef cub::BlockLoad<float, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockReduce<float, BLOCK_SIZE / NUM_VALS> BlockReduce;

    __shared__ union {
        typename Load::TempStorage load;
        typename LoadFloat::TempStorage loadf;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
        valid_items = n - i >= (BLOCK_SIZE) ? (BLOCK_SIZE) : n - i;

        __syncthreads();
        Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items, 0.0f);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items, 0.0f);

#pragma unroll NUM_VALS
        for (unsigned int j = 0; j < NUM_VALS; j++)
            g_vals[j] = gnorm_scale * ((float)g_vals[j]);

#pragma unroll NUM_VALS
        for (unsigned int j = 0; j < NUM_VALS; j++) {
            switch (OPTIMIZER) {
            case MOMENTUM:
                if (step == 1)
Tim Dettmers's avatar
Tim Dettmers committed
733
                    s1_vals[j] = (float)g_vals[j]; // state update
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
                else
                    s1_vals[j] = s1_vals[j] * beta1 + ((float)g_vals[j]); // state update
                s1_vals[j] = s1_vals[j] * s1_vals[j];                     // update norm
                break;
            case LION:
                s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * (float)g_vals[j]); // state update
                break;
            case RMSPROP:
                s1_vals[j] =
                    s1_vals[j] * beta1 + ((1.0f - beta1) * ((float)g_vals[j]) * ((float)g_vals[j])); // state update
                s1_vals[j] = __fdividef((float)g_vals[j], sqrtf(s1_vals[j]) + eps);                  // update value
                s1_vals[j] = s1_vals[j] * s1_vals[j];                                                // update norm
                break;
            case ADAGRAD:
                s1_vals[j] = s1_vals[j] + ((float)g_vals[j]) * ((float)g_vals[j]);  // state update
                s1_vals[j] = __fdividef((float)g_vals[j], sqrtf(s1_vals[j]) + eps); // update value
                s1_vals[j] = s1_vals[j] * s1_vals[j];                               // update norm
                break;
            }
        }
Tim Dettmers's avatar
Tim Dettmers committed
754

755
756
757
758
759
760
761
762
763
764
765
766
#pragma unroll
        for (unsigned int j = 1; j < NUM_VALS; j++)
            s1_vals[0] += s1_vals[j];

        __syncthreads();
        s1_vals[0] = BlockReduce(temp_storage.reduce).Sum(s1_vals[0], valid_items);

        if (threadIdx.x == 0)
            atomicAdd(&unorm[0], s1_vals[0]);

        __syncwarp();
    }
Tim Dettmers's avatar
Tim Dettmers committed
767
768
}

769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
template <typename T, int OPTIMIZER>
__launch_bounds__(TH, 1) __global__ void kOptimizer32bit1State(
    T* g, T* p, float* state1, float* unorm, const float max_unorm, const float param_norm, const float beta1,
    const float beta2, const float eps, const float weight_decay, const int step, const float lr,
    const float gnorm_scale, const bool skip_zeros, const int n
) {

    const int n_full = ((TH * NUM_PER_THREAD) * (n / (TH * NUM_PER_THREAD))) +
                       (n % (TH * NUM_PER_THREAD) == 0 ? 0 : (TH * NUM_PER_THREAD));
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
    int valid_items = 0;
    float update_scale = 0.0f;

    if (max_unorm > 0.0f) {
        update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
        if (update_scale > max_unorm * param_norm + eps) {
            update_scale = (max_unorm * param_norm + eps) / update_scale;
        } else {
            update_scale = 1.0f;
        }
    } else {
        update_scale = 1.0f;
    }

    T g_vals[NUM_PER_THREAD];
    T p_vals[NUM_PER_THREAD];

    float s1_vals[NUM_PER_THREAD];

    typedef cub::BlockLoad<T, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
    typedef cub::BlockStore<T, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> Store;

    typedef cub::BlockLoad<float, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockStore<float, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreFloat;

    __shared__ union {
        typename Load::TempStorage load;
        typename Store::TempStorage store;
        typename LoadFloat::TempStorage loadf;
        typename StoreFloat::TempStorage storef;
    } temp_storage;

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * TH * NUM_PER_THREAD) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;

        __syncthreads();
        Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items);
        __syncthreads();
        Load(temp_storage.load).Load(&(p[i]), p_vals, valid_items);

#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD; j++) {
            g_vals[j] = gnorm_scale * ((float)g_vals[j]);
            if (weight_decay > 0.0f)
                g_vals[j] = (float)g_vals[j] + (((float)p_vals[j]) * weight_decay);
        }

#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD; j++) {
            if (!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f))) {
                switch (OPTIMIZER) {
                case MOMENTUM:
                    if (step == 1)
                        s1_vals[j] = (float)g_vals[j];
                    else
                        s1_vals[j] = s1_vals[j] * beta1 + ((float)g_vals[j]);

                    p_vals[j] = ((float)p_vals[j]) + update_scale * (-lr * (s1_vals[j]));
                    break;
                case LION:
                    p_vals[j] =
                        ((float)p_vals[j]) -
                        update_scale * (lr * sgn(((float)s1_vals[j]) * beta1 + ((1.0f - beta1) * ((float)g_vals[j]))));
                    s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * ((float)g_vals[j]));
                    break;
                case RMSPROP:
                    s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * ((float)g_vals[j]) * ((float)g_vals[j]));
                    p_vals[j] = ((float)p_vals[j]) -
                                update_scale * (lr * __fdividef((float)g_vals[j], sqrtf((float)s1_vals[j]) + eps));
                    break;
                case ADAGRAD:
                    s1_vals[j] = s1_vals[j] + ((float)g_vals[j]) * ((float)g_vals[j]);
                    p_vals[j] = ((float)p_vals[j]) - lr * __fdividef((float)g_vals[j], sqrtf((float)s1_vals[j]) + eps);
                    break;
                }
            }
        }

        __syncthreads();
        Store(temp_storage.store).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreFloat(temp_storage.storef).Store(&(state1[i]), s1_vals, valid_items);
    }
}
Tim Dettmers's avatar
Tim Dettmers committed
865
866
867
868
869

#define NUM8BIT 16
#define NUM_THREADS 256
#define NUM_PER_BLOCK 4096

870
871
872
873
874
875
876
template <typename T, int OPTIMIZER>
__global__ void __launch_bounds__(NUM_THREADS, 2) kPreconditionOptimizerStatic8bit2State(
    T* p, T* __restrict__ const g, unsigned char* __restrict__ const state1, unsigned char* __restrict__ const state2,
    float* unorm, const float beta1, const float beta2, const float eps, const int step,
    float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* max1, float* max2,
    float* new_max1, float* new_max2, const float gnorm_scale, const int n
) {
Tim Dettmers's avatar
Tim Dettmers committed
877
878
    const int n_full = gridDim.x * NUM_PER_BLOCK;
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
879
880
    int valid_items =
        n - (blockIdx.x * NUM_PER_BLOCK) > NUM_PER_BLOCK ? NUM_PER_BLOCK : n - (blockIdx.x * NUM_PER_BLOCK);
Tim Dettmers's avatar
Tim Dettmers committed
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
    float g_val = 0.0f;
    float local_max_s1 = -FLT_MAX;
    float local_max_s2 = -FLT_MAX;
    float local_unorm = 0.0f;

    float s2_vals[NUM8BIT];
    float s1_vals[NUM8BIT];
    T g_vals[NUM8BIT];
    unsigned char m_c1[NUM8BIT];
    unsigned char r_c2[NUM8BIT];

    typedef cub::BlockLoad<T, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadUInt8;
    typedef cub::BlockReduce<float, NUM_THREADS> BlockReduce;

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadUInt8::TempStorage loadc;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;

    __shared__ float smem_quantiles1[256];
    __shared__ float smem_quantiles2[256];

905
    if (threadIdx.x < 256) {
Tim Dettmers's avatar
Tim Dettmers committed
906
907
908
909
910
911
        smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
        smem_quantiles2[threadIdx.x] = quantiles2[threadIdx.x];
    }

    __syncthreads();

912
913
    for (unsigned int i = base_idx; i < n_full; i += NUM_THREADS * gridDim.x * NUM8BIT) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
914
915
916
917
918
919
920
921

        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadUInt8(temp_storage.loadc).Load(&(state1[i]), m_c1, valid_items, 128);
        __syncthreads();
        LoadUInt8(temp_storage.loadc).Load(&(state2[i]), r_c2, valid_items, 128);
        __syncthreads();

922
923
#pragma unroll 16
        for (int j = 0; j < NUM8BIT; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
924
925
            g_val = g_vals[j];
            g_val *= gnorm_scale;
926
927
            s1_vals[j] = smem_quantiles1[m_c1[j]] * max1[0] * beta1;
            s1_vals[j] += (1.0f - beta1) * g_val;
Tim Dettmers's avatar
Tim Dettmers committed
928
929
930
            local_max_s1 = fmaxf(local_max_s1, fabsf(s1_vals[j]));
        }

931
932
#pragma unroll 16
        for (int j = 0; j < NUM8BIT; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
933
934
            g_val = g_vals[j];
            g_val *= gnorm_scale;
935
936
            s2_vals[j] = smem_quantiles2[r_c2[j]] * max2[0] * beta2;
            s2_vals[j] += (1.0f - beta2) * g_val * g_val;
Tim Dettmers's avatar
Tim Dettmers committed
937
938
939
            local_max_s2 = fmaxf(local_max_s2, fabsf(s2_vals[j]));
        }

940
941
942
943
944
945
946
947
948
949
        if (unorm != NULL) {
#pragma unroll 16
            for (int j = 0; j < NUM8BIT; j++) {
                float correction1 = __fdividef(1.0f, 1.0f - powf(beta1, step));
                float correction2 = __fdividef(1.0f, 1.0f - powf(beta2, step));
                s1_vals[j] *= correction1;
                s2_vals[j] *= correction2;
                float update_val = s1_vals[j] / (sqrtf(s2_vals[j]) + eps); // update
                local_unorm += update_val * update_val;
            }
Tim Dettmers's avatar
Tim Dettmers committed
950
951
952
953
954
955
956
        }
    }

    __syncthreads();
    local_max_s1 = BlockReduce(temp_storage.reduce).Reduce(local_max_s1, cub::Max(), valid_items);
    __syncthreads();
    local_max_s2 = BlockReduce(temp_storage.reduce).Reduce(local_max_s2, cub::Max(), valid_items);
957
958
959
    if (unorm != NULL) {
        __syncthreads();
        local_unorm = BlockReduce(temp_storage.reduce).Reduce(local_unorm, cub::Sum(), valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
960
961
    }

962
    if (threadIdx.x == 0) {
Tim Dettmers's avatar
Tim Dettmers committed
963
964
        atomicMax(&new_max1[0], local_max_s1);
        atomicMax(&new_max2[0], local_max_s2);
965
966
967
        if (unorm != NULL) {
            atomicAdd(&unorm[0], local_unorm);
        }
Tim Dettmers's avatar
Tim Dettmers committed
968
969
970
971
972
973
974
    }
}

#define NUM_PER_THREAD2 4
#define NUM_THREADS2 1024
#define NUM_PER_BLOCK2 4096

975
976
977
978
979
980
981
982
983
template <typename T, int OPTIMIZER>
__global__ void __launch_bounds__(NUM_THREADS2, 1) kOptimizerStatic8bit2State(
    T* p, T* const g, unsigned char* state1, unsigned char* state2, const float* unorm, const float max_unorm,
    const float param_norm, const float beta1, const float beta2, const float eps, const int step, const float lr,
    float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* max1, float* max2,
    float* new_max1, float* new_max2, float weight_decay, const float gnorm_scale, const int n
) {

    const int n_full = (blockDim.x * gridDim.x) * NUM_PER_THREAD2;
Tim Dettmers's avatar
Tim Dettmers committed
984
985
986
987
988
989
990
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD2);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[NUM_PER_THREAD2];
    float s2_vals[NUM_PER_THREAD2];
    const float correction1 = 1.0f - powf(beta1, step);
    const float correction2 = sqrtf(1.0f - powf(beta2, step));
991
992
993
994
    const float step_size = -lr * correction2 / correction1;
    // const float step_size = -lr*correction2/correction1;
    float new_max_val1 = 1.0f / new_max1[0];
    float new_max_val2 = 1.0f / new_max2[0];
Tim Dettmers's avatar
Tim Dettmers committed
995
996
    float update_scale = 1.0f;

997
998
999
1000
1001
1002
1003
1004
1005
    if (max_unorm > 0.0f) {
        update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
        if (update_scale > max_unorm * param_norm) {
            update_scale = (max_unorm * param_norm) / update_scale;
        } else {
            update_scale = 1.0f;
        }
    } else {
        update_scale = 1.0f;
Tim Dettmers's avatar
Tim Dettmers committed
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
    }

    unsigned char c1s[NUM_PER_THREAD2];
    unsigned char c2s[NUM_PER_THREAD2];
    T p_vals[NUM_PER_THREAD2];
    T g_vals[NUM_PER_THREAD2];
    typedef cub::BlockLoad<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;

    typedef cub::BlockStore<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ float smem_quantiles1[256];
    __shared__ float smem_quantiles2[256];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;

1028
1029
    if (threadIdx.x < 512) {
        if (threadIdx.x < 256)
Tim Dettmers's avatar
Tim Dettmers committed
1030
1031
            smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
        else
1032
            smem_quantiles2[threadIdx.x - 256] = quantiles2[threadIdx.x - 256];
Tim Dettmers's avatar
Tim Dettmers committed
1033
1034
1035
1036
    }

    __syncthreads();

1037
1038
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * NUM_THREADS2 * NUM_PER_THREAD2) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
1039
1040
1041
1042
1043
1044
1045
1046
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state2[i]), c2s, valid_items, 0);
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items);

1047
1048
1049
        if ((i + (threadIdx.x * NUM_PER_THREAD2) + NUM_PER_THREAD2) > n) {
            continue;
        }
Tim Dettmers's avatar
Tim Dettmers committed
1050

1051
1052
#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD2; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1053
1054
1055
            g_val = float(g_vals[j]);
            g_val *= gnorm_scale;
            s1_vals[j] = smem_quantiles1[c1s[j]];
1056
            s1_vals[j] = s1_vals[j] * max1[0];
Tim Dettmers's avatar
Tim Dettmers committed
1057

1058
            s1_vals[j] = (s1_vals[j] * beta1) + (((1.0f - beta1) * g_val));
Tim Dettmers's avatar
Tim Dettmers committed
1059

1060
            c1s[j] = dQuantize<0>(smem_quantiles1, 0.0f, s1_vals[j] * new_max_val1);
Tim Dettmers's avatar
Tim Dettmers committed
1061
1062
1063

            // make sure state1 term has still the same sign after quantization
            // (not needed for state2 term which has only positive values)
1064
1065
1066
1067
1068
            if (signbit(smem_quantiles1[c1s[j]]) != signbit(s1_vals[j])) {
                if (s1_vals[j] > 0.0f)
                    c1s[j] += 1;
                else
                    c1s[j] -= 1;
Tim Dettmers's avatar
Tim Dettmers committed
1069
1070
1071
            }

            s2_vals[j] = smem_quantiles2[c2s[j]];
1072
1073
1074
            s2_vals[j] = s2_vals[j] * max2[0];
            s2_vals[j] = (s2_vals[j] * beta2) + (((1.0f - beta2) * g_val * g_val));
            c2s[j] = dQuantize<0>(smem_quantiles2, 0.0f, s2_vals[j] * new_max_val2);
Tim Dettmers's avatar
Tim Dettmers committed
1075
1076
        }

1077
1078
1079
1080
1081
1082
#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD2; j++) {
            p_vals[j] = (T)(((float)p_vals[j]) +
                            ((update_scale * step_size * (s1_vals[j] / (sqrtf(s2_vals[j]) + (correction2 * eps))))));
            if (weight_decay > 0.0f)
                p_vals[j] = update_scale * ((float)p_vals[j]) * (1.0f - (lr * weight_decay));
Tim Dettmers's avatar
Tim Dettmers committed
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
        }

        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state2[i]), c2s, valid_items);
        __syncthreads();
    }
}

1094
1095
1096
1097
1098
1099
template <typename T, int OPTIMIZER>
__global__ void __launch_bounds__(NUM_THREADS, 2) kPreconditionOptimizerStatic8bit1State(
    T* p, T* __restrict__ const g, unsigned char* __restrict__ const state1, float* unorm, const float beta1,
    const float beta2, const float eps, const int step, float* __restrict__ const quantiles1, float* max1,
    float* new_max1, const float weight_decay, const float gnorm_scale, const int n
) {
Tim Dettmers's avatar
Tim Dettmers committed
1100
1101
    const int n_full = gridDim.x * NUM_PER_BLOCK;
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
1102
1103
    int valid_items =
        n - (blockIdx.x * NUM_PER_BLOCK) > NUM_PER_BLOCK ? NUM_PER_BLOCK : n - (blockIdx.x * NUM_PER_BLOCK);
Tim Dettmers's avatar
Tim Dettmers committed
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
    float g_val = 0.0f;
    float local_max_s1 = -FLT_MAX;
    float local_unorm = 0.0f;

    float s1_vals[NUM8BIT];
    T g_vals[NUM8BIT];
    unsigned char m_c1[NUM8BIT];

    typedef cub::BlockLoad<T, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadUInt8;
    typedef cub::BlockReduce<float, NUM_THREADS> BlockReduce;

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadUInt8::TempStorage loadc;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;

    __shared__ float smem_quantiles1[256];

1124
1125
    if (threadIdx.x < 256)
        smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
Tim Dettmers's avatar
Tim Dettmers committed
1126
1127
1128

    __syncthreads();

1129
1130
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * NUM_THREADS * NUM8BIT) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
1131
1132
1133
1134
1135
1136

        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadUInt8(temp_storage.loadc).Load(&(state1[i]), m_c1, valid_items, 128);

1137
1138
#pragma unroll 16
        for (int j = 0; j < NUM8BIT; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1139
1140
            g_val = g_vals[j];
            g_val *= gnorm_scale;
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
            s1_vals[j] = smem_quantiles1[m_c1[j]] * max1[0];
            switch (OPTIMIZER) {
            case ADAGRAD:
            case MOMENTUM:
                if (step == 1)
                    s1_vals[j] = (float)g_vals[j];
                else
                    s1_vals[j] = s1_vals[j] * beta1 + ((float)g_vals[j]);
                if (unorm != NULL)
                    local_unorm += s1_vals[j] * s1_vals[j];
                break;
            case LION:
                s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * g_val);
                break;
            case RMSPROP:
                s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * (g_val * g_val));
                break;
Tim Dettmers's avatar
Tim Dettmers committed
1158
1159
1160
1161
1162
1163
1164
1165
            }

            local_max_s1 = fmaxf(local_max_s1, fabsf(s1_vals[j]));
        }
    }

    __syncthreads();
    local_max_s1 = BlockReduce(temp_storage.reduce).Reduce(local_max_s1, cub::Max(), valid_items);
1166
1167
1168
1169
1170
1171
1172
1173
1174
    if (threadIdx.x == 0) {
        atomicMax(&new_max1[0], local_max_s1);
    }
    if (unorm != NULL) {
        __syncthreads();
        local_unorm = BlockReduce(temp_storage.reduce).Reduce(local_unorm, cub::Sum(), valid_items);
        if (threadIdx.x == 0) {
            atomicAdd(&unorm[0], local_unorm);
        }
Tim Dettmers's avatar
Tim Dettmers committed
1175
1176
1177
    }
}

1178
1179
1180
1181
1182
1183
1184
1185
1186
template <typename T, int OPTIMIZER>
__global__ void __launch_bounds__(1024, 1) kOptimizerStatic8bit1State(
    T* p, T* const g, unsigned char* state1, const float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float eps, const int step, const float lr,
    float* __restrict__ const quantiles1, float* max1, float* new_max1, float weight_decay, const float gnorm_scale,
    const int n
) {

    const int n_full = (blockDim.x * gridDim.x) * NUM_PER_THREAD2;
Tim Dettmers's avatar
Tim Dettmers committed
1187
1188
1189
1190
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD2);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[NUM_PER_THREAD2];
1191
    float new_max_val1 = 1.0f / new_max1[0];
Tim Dettmers's avatar
Tim Dettmers committed
1192
1193
    float update_scale = 1.0f;

1194
1195
1196
1197
1198
1199
1200
1201
1202
    if (max_unorm > 0.0f) {
        update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
        if (update_scale > max_unorm * param_norm) {
            update_scale = (max_unorm * param_norm) / update_scale;
        } else {
            update_scale = 1.0f;
        }
    } else {
        update_scale = 1.0f;
Tim Dettmers's avatar
Tim Dettmers committed
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
    }

    unsigned char c1s[NUM_PER_THREAD2];
    T p_vals[NUM_PER_THREAD2];
    T g_vals[NUM_PER_THREAD2];
    typedef cub::BlockLoad<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;

    typedef cub::BlockStore<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ float smem_quantiles1[256];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;

1223
    if (threadIdx.x < 256)
Tim Dettmers's avatar
Tim Dettmers committed
1224
1225
1226
1227
        smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];

    __syncthreads();

1228
1229
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * NUM_THREADS2 * NUM_PER_THREAD2) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
1230
1231
1232
1233
1234
1235
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items);

1236
1237
1238
        if ((i + (threadIdx.x * NUM_PER_THREAD2) + NUM_PER_THREAD2) > n) {
            continue;
        }
Tim Dettmers's avatar
Tim Dettmers committed
1239

1240
1241
#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD2; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1242
1243
            g_val = float(g_vals[j]);
            g_val *= gnorm_scale;
1244

1245
1246
1247
            if (weight_decay > 0.0f) {
                switch (OPTIMIZER) {
                case ADAGRAD:
1248
1249
                case MOMENTUM:
                case RMSPROP:
1250
1251
                    g_val += ((float)p_vals[j]) * weight_decay;
                    break;
1252
                case LION:
1253
1254
1255
                    p_vals[j] = ((float)p_vals[j]) * (1.0f - lr * weight_decay);
                    break;
                }
1256
1257
            }

1258
            s1_vals[j] = smem_quantiles1[c1s[j]] * max1[0];
Tim Dettmers's avatar
Tim Dettmers committed
1259

1260
1261
1262
1263
            switch (OPTIMIZER) {
            case ADAGRAD:
            case MOMENTUM:
                if (step == 1)
Tim Dettmers's avatar
Tim Dettmers committed
1264
                    s1_vals[j] = g_vals[j];
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
                else
                    s1_vals[j] = s1_vals[j] * beta1 + ((float)g_vals[j]);

                p_vals[j] = ((float)p_vals[j]) + (-lr * update_scale * (s1_vals[j]));
                break;
            case LION:
                p_vals[j] =
                    ((float)p_vals[j]) - (lr * sgn(((float)s1_vals[j]) * beta1 + ((1.0f - beta1) * ((float)g_val))));
                s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * g_val);
                break;
            case RMSPROP:
                s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * (g_val * g_val));
                p_vals[j] = ((float)p_vals[j]) - (lr * __fdividef(g_val, sqrtf(s1_vals[j]) + eps));
                break;
Tim Dettmers's avatar
Tim Dettmers committed
1279
1280
            }

1281
            c1s[j] = dQuantize<0>(smem_quantiles1, 0.0f, s1_vals[j] * new_max_val1);
Tim Dettmers's avatar
Tim Dettmers committed
1282
1283

            // make sure state1 term has still the same sign after quantization
1284
1285
1286
1287
1288
            if (signbit(smem_quantiles1[c1s[j]]) != signbit(s1_vals[j])) {
                if (s1_vals[j] > 0.0f)
                    c1s[j] += 1;
                else
                    c1s[j] -= 1;
Tim Dettmers's avatar
Tim Dettmers committed
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
            }
        }

        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
        __syncthreads();
    }
}

1299
1300
1301
1302
1303
1304
1305
template <typename T, int BLOCK_SIZE, int NUM_VALS>
__global__ void kPercentileClipping(T* __restrict__ g, float* gnorm_vec, int step, const int n) {
    const int n_full = (BLOCK_SIZE * (n / BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
    int valid_items = 0;

    typedef cub::BlockReduce<float, BLOCK_SIZE / NUM_VALS> BlockReduce;
    typedef cub::BlockLoad<T, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
Tim Dettmers's avatar
Tim Dettmers committed
1306

1307
    __shared__ typename BlockReduce::TempStorage reduce;
Tim Dettmers's avatar
Tim Dettmers committed
1308

1309
1310
1311
1312
1313
1314
1315
    __shared__ typename LoadT::TempStorage loadT;
    T vals[NUM_VALS];
    float local_sum = 0.0f;

    for (unsigned int i = (blockIdx.x * BLOCK_SIZE); i < n_full; i += gridDim.x * BLOCK_SIZE) {
        valid_items = n - i > BLOCK_SIZE ? BLOCK_SIZE : n - i;
        local_sum = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
1316

1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
        __syncthreads();
        LoadT(loadT).Load(&(g[i]), vals, valid_items, (T)0.0f);

#pragma unroll NUM_VALS
        for (int j = 0; j < NUM_VALS; j++)
            local_sum += ((float)vals[j]) * ((float)vals[j]);

        local_sum = BlockReduce(reduce).Sum(local_sum, valid_items);
        if (threadIdx.x == 0) {
            if (step == 1) {
                // initialize with the same norm for all positions
                // #pragma unroll 10
                for (int j = 0; j < 100; j++)
                    atomicAdd(&gnorm_vec[j], local_sum);
            } else
                atomicAdd(&gnorm_vec[step % 100], local_sum);
        }
    }
}
Tim Dettmers's avatar
Tim Dettmers committed
1336
1337
1338

#define LANES 2
#define QUAD 3
1339
1340
1341
1342
1343
1344
1345

template <typename T, int OPTIMIZER, int BLOCK_SIZE, int N_PER_TH>
__launch_bounds__(256, 3) __global__ void kOptimizerStatic8bit2StateBlockwise(
    T* p, T* __restrict__ const g, unsigned char* state1, unsigned char* state2, const float beta1, const float beta2,
    const float beta3, const float alpha, const float eps, const int step, const float lr,
    float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* absmax1, float* absmax2,
    float weight_decay, const float gnorm_scale, const bool skip_zeros, const int n
1346
) {
Tim Dettmers's avatar
Tim Dettmers committed
1347

1348
    // const int n_full = n + (n%BLOCK_SIZE);
Tim Dettmers's avatar
Tim Dettmers committed
1349
1350
1351
1352
1353
1354
    const int n_full = gridDim.x * BLOCK_SIZE;
    const int base_idx = (blockIdx.x * BLOCK_SIZE);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[N_PER_TH];
    float s2_vals[N_PER_TH];
1355
1356
    float s3_vals[N_PER_TH];

Tim Dettmers's avatar
Tim Dettmers committed
1357
1358
    // 2-5%
    const float correction1 = 1.0f - __powf(beta1, step);
1359
1360
    const float correction2 = sqrtf(1.0f - __powf(beta2, step));
    const float step_size = __fdividef(-lr * correction2, correction1);
Tim Dettmers's avatar
Tim Dettmers committed
1361
1362
1363
    const int lane_id = threadIdx.x % LANES;
    float new_local_abs_max1 = -FLT_MAX;
    float new_local_abs_max2 = -FLT_MAX;
1364
    float new_local_abs_max3 = -FLT_MAX;
Tim Dettmers's avatar
Tim Dettmers committed
1365
1366
1367
1368
1369
    float quadrants1[QUAD];
    float quadrants2[QUAD];

    unsigned char c1s[N_PER_TH];
    unsigned char c2s[N_PER_TH];
1370
1371
    unsigned char c3s[N_PER_TH];

Tim Dettmers's avatar
Tim Dettmers committed
1372
    T g_vals[N_PER_TH];
1373
    T p_vals[N_PER_TH];
1374
1375
    typedef cub::BlockLoad<T, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;
Tim Dettmers's avatar
Tim Dettmers committed
1376

1377
1378
    typedef cub::BlockStore<unsigned char, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;
Tim Dettmers's avatar
Tim Dettmers committed
1379
1380
1381

    __shared__ float smem_quantiles1[LANES][257];
    __shared__ float smem_quantiles2[LANES][257];
1382
1383
1384
    typedef cub::BlockReduce<float, BLOCK_SIZE / N_PER_TH> BlockReduce1;
    typedef cub::BlockReduce<float, BLOCK_SIZE / N_PER_TH> BlockReduce2;
    typedef cub::BlockReduce<float, BLOCK_SIZE / N_PER_TH> BlockReduce3;
Tim Dettmers's avatar
Tim Dettmers committed
1385
1386
    __shared__ typename BlockReduce1::TempStorage reduce1;
    __shared__ typename BlockReduce2::TempStorage reduce2;
1387
    __shared__ typename BlockReduce2::TempStorage reduce3;
Tim Dettmers's avatar
Tim Dettmers committed
1388
1389
    __shared__ float smem_exchange1[1];
    __shared__ float smem_exchange2[1];
1390
    __shared__ float smem_exchange3[1]; // [[maybe_unused]]
Tim Dettmers's avatar
Tim Dettmers committed
1391
1392
1393
1394
1395
1396
1397

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;
1398

Tim Dettmers's avatar
Tim Dettmers committed
1399
1400
1401
    // init: 0.2 -> 0.23

    // 0.23 -> 0.23
1402
1403
1404
1405
    smem_quantiles1[0][threadIdx.x] = quantiles1[threadIdx.x];
    smem_quantiles2[0][threadIdx.x] = quantiles2[threadIdx.x];
#pragma unroll
    for (unsigned int j = 1; j < LANES; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1406
1407
        smem_quantiles1[j][threadIdx.x] = smem_quantiles1[0][threadIdx.x];
        smem_quantiles2[j][threadIdx.x] = smem_quantiles2[0][threadIdx.x];
1408
    }
Tim Dettmers's avatar
Tim Dettmers committed
1409
1410
1411

    __syncthreads();

1412
1413
1414
1415
#pragma unroll
    for (int k = 0; k < QUAD; k++) {
        quadrants1[k] = smem_quantiles1[lane_id][(k * 256 / (QUAD + 1)) + (256 / (QUAD + 1) - 1)];
        quadrants2[k] = smem_quantiles2[lane_id][(k * 256 / (QUAD + 1)) + (256 / (QUAD + 1) - 1)];
Tim Dettmers's avatar
Tim Dettmers committed
1416
1417
    }

1418
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
Tim Dettmers's avatar
Tim Dettmers committed
1419
1420
1421
1422
1423
1424
1425
1426
1427
        // loads: 0.23 -> 0.85/1.44
        valid_items = n - i >= BLOCK_SIZE ? BLOCK_SIZE : n - i;
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state2[i]), c2s, valid_items, 0);

1428
1429
        // AdEMAMix has an additional state packed into state1.
        if (OPTIMIZER == ADEMAMIX) {
1430
1431
            __syncthreads();
            LoadChar(temp_storage.loadc).Load(&(state1[n + i]), c3s, valid_items, 128);
1432
1433
        }

Tim Dettmers's avatar
Tim Dettmers committed
1434
1435
        new_local_abs_max1 = -FLT_MAX;
        new_local_abs_max2 = -FLT_MAX;
1436
        new_local_abs_max3 = -FLT_MAX;
Tim Dettmers's avatar
Tim Dettmers committed
1437

1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
//  update: 2.48/1.57 -> 2.51/1.60
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            if (!isnan((float)g_vals[j]) && !isinf((float)g_vals[j])) {
                s2_vals[j] = smem_quantiles2[lane_id][c2s[j]] * absmax2[i / BLOCK_SIZE];
                g_val = g_vals[j];
                // float ratio = (g_val*g_val)/fmaxf(s2_vals[j], eps*eps);
                // g_val = ratio > 2.0f ? 2.0f*g_val/ratio : g_val;
                g_val *= gnorm_scale;

                s2_vals[j] = (s2_vals[j] * beta2) + (((1.0f - beta2) * g_val * g_val));

                s1_vals[j] = smem_quantiles1[lane_id][c1s[j]] * absmax1[i / BLOCK_SIZE];
                s1_vals[j] = (s1_vals[j] * beta1) + (((1.0f - beta1) * g_val));

                if (OPTIMIZER == ADEMAMIX) {
                    // The absmax for the third state is appended to absmax1
                    s3_vals[j] = smem_quantiles1[lane_id][c3s[j]] * absmax1[(n + i) / BLOCK_SIZE];
                    s3_vals[j] = (s3_vals[j] * beta3) + (((1.0f - beta3) * g_val));
                }
            } else {
                s1_vals[j] = 0.0f;
                s2_vals[j] = 0.0f;
1461

1462
1463
1464
                if (OPTIMIZER == ADEMAMIX) {
                    s3_vals[j] = 0.0f;
                }
1465
            }
Tim Dettmers's avatar
Tim Dettmers committed
1466
1467
1468

            new_local_abs_max1 = fmaxf(new_local_abs_max1, fabsf(s1_vals[j]));
            new_local_abs_max2 = fmaxf(new_local_abs_max2, fabsf(s2_vals[j]));
1469
1470

            if (OPTIMIZER == ADEMAMIX) {
1471
                new_local_abs_max3 = fmaxf(new_local_abs_max3, fabsf(s3_vals[j]));
1472
            }
Tim Dettmers's avatar
Tim Dettmers committed
1473
1474
1475
1476
1477
1478
        }

        //  reduce: 2.51/1.60 -> 2.67/1.69
        new_local_abs_max1 = BlockReduce1(reduce1).Reduce(new_local_abs_max1, cub::Max());
        new_local_abs_max2 = BlockReduce2(reduce2).Reduce(new_local_abs_max2, cub::Max());

1479
        if (OPTIMIZER == ADEMAMIX) {
1480
            new_local_abs_max3 = BlockReduce3(reduce3).Reduce(new_local_abs_max3, cub::Max());
1481
1482
        }

1483
1484
1485
        if (threadIdx.x == 0) {
            smem_exchange1[0] = new_local_abs_max1;
            smem_exchange2[0] = new_local_abs_max2;
1486

1487
1488
1489
            if (OPTIMIZER == ADEMAMIX) {
                smem_exchange3[0] = new_local_abs_max3;
            }
Tim Dettmers's avatar
Tim Dettmers committed
1490
1491
1492
1493
        }

        __syncthreads();

1494
1495
1496
        if (threadIdx.x == 0) {
            absmax1[i / BLOCK_SIZE] = new_local_abs_max1;
            absmax2[i / BLOCK_SIZE] = new_local_abs_max2;
1497

1498
1499
1500
1501
1502
1503
            if (OPTIMIZER == ADEMAMIX) {
                absmax1[(n + i) / BLOCK_SIZE] = new_local_abs_max3;
            }
        } else {
            new_local_abs_max1 = smem_exchange1[0];
            new_local_abs_max2 = smem_exchange2[0];
1504

1505
1506
1507
            if (OPTIMIZER == ADEMAMIX) {
                new_local_abs_max3 = smem_exchange3[0];
            }
Tim Dettmers's avatar
Tim Dettmers committed
1508
1509
1510
        }

        __syncthreads();
1511
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items, (T)0.0f);
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
//  reduce: 2.67/1.69 -> 2.67/1.70
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            // if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
            if (!isnan((float)g_vals[j]) && !isinf((float)g_vals[j])) {
                if (OPTIMIZER == ADEMAMIX) {
                    p_vals[j] =
                        T((float)p_vals[j] - lr * (((s1_vals[j] / correction1) + (alpha * s3_vals[j])) /
                                                   ((sqrtf(s2_vals[j]) / correction2) + eps)));
                } else {
                    p_vals[j] =
                        (T)(((float)p_vals[j]) +
                            ((step_size * (__fdividef(s1_vals[j], (sqrtf(s2_vals[j]) + (correction2 * eps)))))));
                }

                if (weight_decay > 0.0f)
                    p_vals[j] = ((float)p_vals[j]) * (1.0f - (lr * weight_decay));
            }
Tim Dettmers's avatar
Tim Dettmers committed
1530
1531
1532
1533
        }

        //  store: 0.85/1.44 -> 2.48/1.57
        __syncthreads();
1534
        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
1535

1536
1537
1538
1539
1540
//  quantizaztion: 2.67/1.70  -> 3.4/3.3
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            c1s[j] = quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s1_vals[j], new_local_abs_max1));
            c2s[j] = quantize_2D<0>(quadrants2, smem_quantiles2[lane_id], __fdividef(s2_vals[j], new_local_abs_max2));
Tim Dettmers's avatar
Tim Dettmers committed
1541
1542
1543

            // make sure state1 term has still the same sign after quantization
            // (not needed for state2 term which has only positive values)
1544
1545
1546
1547
1548
            if (signbit(smem_quantiles1[lane_id][c1s[j]]) != signbit(s1_vals[j])) {
                if (s1_vals[j] > 0.0f)
                    c1s[j] += 1;
                else
                    c1s[j] -= 1;
Tim Dettmers's avatar
Tim Dettmers committed
1549
            }
1550
1551

            if (OPTIMIZER == ADEMAMIX) {
1552
1553
                c3s[j] =
                    quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s3_vals[j], new_local_abs_max3));
1554

1555
1556
1557
                if (signbit(smem_quantiles1[lane_id][c3s[j]]) != signbit(s3_vals[j])) {
                    c3s[j] += (s3_vals[j] > 0.0f) ? 1 : -1;
                }
1558
            }
Tim Dettmers's avatar
Tim Dettmers committed
1559
1560
1561
1562
1563
1564
        }

        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state2[i]), c2s, valid_items);
1565
1566

        if (OPTIMIZER == ADEMAMIX) {
1567
1568
            __syncthreads();
            StoreChar(temp_storage.storec).Store(&(state1[n + i]), c3s, valid_items);
1569
        }
Tim Dettmers's avatar
Tim Dettmers committed
1570
1571
1572
1573
1574
    }
}

#define LANES 2
#define QUAD 3
1575
1576
1577
1578
1579
1580
1581
1582
1583

template <typename T, int OPTIMIZER, int BLOCK_SIZE, int N_PER_TH>
__launch_bounds__(256, 3) __global__ void kOptimizerStatic8bit1StateBlockwise(
    T* p, T* __restrict__ const g, unsigned char* state1, const float beta1, const float beta2, const float eps,
    const int step, const float lr, float* __restrict__ const quantiles1, float* absmax1, float weight_decay,
    const float gnorm_scale, const bool skip_zeros, const int n
) {

    // const int n_full = n + (n%BLOCK_SIZE);
Tim Dettmers's avatar
Tim Dettmers committed
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
    const int n_full = gridDim.x * BLOCK_SIZE;
    const int base_idx = (blockIdx.x * BLOCK_SIZE);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[N_PER_TH];
    // 2-5%
    const int lane_id = threadIdx.x % LANES;
    float new_local_abs_max1 = -FLT_MAX;
    float quadrants1[QUAD];

    unsigned char c1s[N_PER_TH];
    T g_vals[N_PER_TH];
1596
    T p_vals[N_PER_TH];
Tim Dettmers's avatar
Tim Dettmers committed
1597

1598
1599
    typedef cub::BlockLoad<T, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;
Tim Dettmers's avatar
Tim Dettmers committed
1600

1601
1602
    typedef cub::BlockStore<unsigned char, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;
Tim Dettmers's avatar
Tim Dettmers committed
1603
1604

    __shared__ float smem_quantiles1[LANES][257];
1605
    typedef cub::BlockReduce<float, BLOCK_SIZE / N_PER_TH> BlockReduce1;
Tim Dettmers's avatar
Tim Dettmers committed
1606
1607
1608
1609
1610
1611
1612
1613
1614
    __shared__ typename BlockReduce1::TempStorage reduce1;
    __shared__ float smem_exchange1[1];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;
1615

Tim Dettmers's avatar
Tim Dettmers committed
1616
1617
1618
    // init: 0.2 -> 0.23

    // 0.23 -> 0.23
1619
1620
1621
1622
    smem_quantiles1[0][threadIdx.x] = quantiles1[threadIdx.x];
#pragma unroll
    for (unsigned int j = 1; j < LANES; j++)
        smem_quantiles1[j][threadIdx.x] = smem_quantiles1[0][threadIdx.x];
Tim Dettmers's avatar
Tim Dettmers committed
1623
1624
1625

    __syncthreads();

1626
1627
1628
#pragma unroll
    for (int k = 0; k < QUAD; k++)
        quadrants1[k] = smem_quantiles1[lane_id][(k * 256 / (QUAD + 1)) + (256 / (QUAD + 1) - 1)];
Tim Dettmers's avatar
Tim Dettmers committed
1629

1630
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
Tim Dettmers's avatar
Tim Dettmers committed
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
        // loads: 0.23 -> 0.85/1.44
        valid_items = n - i >= BLOCK_SIZE ? BLOCK_SIZE : n - i;
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items, (T)0.0f);

        new_local_abs_max1 = -FLT_MAX;

1642
1643
1644
//  update: 2.48/1.57 -> 2.51/1.60
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1645
1646
            g_val = float(g_vals[j]);
            g_val *= gnorm_scale;
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
            if (!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f))) {
                if (weight_decay > 0.0f) {
                    switch (OPTIMIZER) {
                    case MOMENTUM:
                    case ADAGRAD:
                    case RMSPROP:
                        g_val += ((float)p_vals[j]) * weight_decay;
                        break;
                    case LION:
                        p_vals[j] = ((float)p_vals[j]) * (1.0f - lr * weight_decay);
                        break;
                    }
                }

                s1_vals[j] = smem_quantiles1[lane_id][c1s[j]] * absmax1[i / BLOCK_SIZE];

                switch (OPTIMIZER) {
                case MOMENTUM:
                    if (step == 1)
                        s1_vals[j] = g_val;
                    else
                        s1_vals[j] = (s1_vals[j] * beta1) + g_val;
                    break;
                case LION:
                    // here, using gvals[j] to store the gradient smoothed by beta1 for the following parameter update,
                    // before the momentum is updated by beta2
                    g_vals[j] = lr * sgn(((float)s1_vals[j]) * beta1 + ((1.0f - beta1) * g_val));
                    s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * g_val);
1675
                    break;
1676
1677
1678
1679
1680
                case RMSPROP:
                    s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * (g_val * g_val));
                    break;
                case ADAGRAD:
                    s1_vals[j] = s1_vals[j] + (g_val * g_val);
1681
1682
                    break;
                }
1683
            }
Tim Dettmers's avatar
Tim Dettmers committed
1684
1685
1686
1687
1688
1689
1690

            new_local_abs_max1 = fmaxf(new_local_abs_max1, fabsf(s1_vals[j]));
        }

        //  reduce: 2.51/1.60 -> 2.67/1.69
        new_local_abs_max1 = BlockReduce1(reduce1).Reduce(new_local_abs_max1, cub::Max());

1691
1692
        if (threadIdx.x == 0)
            smem_exchange1[0] = new_local_abs_max1;
Tim Dettmers's avatar
Tim Dettmers committed
1693
1694
1695

        __syncthreads();

1696
1697
        if (threadIdx.x == 0)
            absmax1[i / BLOCK_SIZE] = new_local_abs_max1;
Tim Dettmers's avatar
Tim Dettmers committed
1698
        else
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
            new_local_abs_max1 = smem_exchange1[0];

//  reduce: 2.67/1.69 -> 2.67/1.70
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            if (!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f))) {
                switch (OPTIMIZER) {
                case MOMENTUM:
                    p_vals[j] = ((float)p_vals[j]) - lr * (s1_vals[j]);
                    break;
                case LION:
                    p_vals[j] = ((float)p_vals[j]) - ((float)g_vals[j]);
                    break;
                case RMSPROP:
                    g_val = g_vals[j];
                    p_vals[j] = ((float)p_vals[j]) - lr * (__fdividef(g_val, sqrtf(s1_vals[j]) + eps));
                    break;
                case ADAGRAD:
                    g_val = g_vals[j];
                    p_vals[j] = ((float)p_vals[j]) - lr * (__fdividef(g_val, sqrtf(s1_vals[j]) + eps));
                    break;
                }
            }
        }
Tim Dettmers's avatar
Tim Dettmers committed
1723
1724
1725
1726
1727

        //  store: 0.85/1.44 -> 2.48/1.57
        __syncthreads();
        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);

1728
1729
1730
1731
//  quantizaztion: 2.67/1.70  -> 3.4/3.3
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            c1s[j] = quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s1_vals[j], new_local_abs_max1));
Tim Dettmers's avatar
Tim Dettmers committed
1732
1733
1734

            // make sure state1 term has still the same sign after quantization
            // (not needed for state2 term which has only positive values)
1735
1736
1737
1738
1739
            if (signbit(smem_quantiles1[lane_id][c1s[j]]) != signbit(s1_vals[j])) {
                if (s1_vals[j] > 0.0f)
                    c1s[j] += 1;
                else
                    c1s[j] -= 1;
Tim Dettmers's avatar
Tim Dettmers committed
1740
1741
1742
1743
1744
1745
1746
1747
            }
        }

        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
    }
}

1748
1749
1750
1751
1752
// Inputs:
//  A [rows, cols]
// Outputs:
//  rowStats [rows]
//  out [rows, cols]
1753
1754
1755
template <typename T, int THREADS, int SPARSE_DECOMP>
__launch_bounds__(1024, BNB_MAX_THREADS_PER_SM / 1024) __global__
    void kInt8VectorQuant(T* __restrict__ A, int8_t* out, float* rowStats, float threshold, int rows, int cols) {
1756

1757
1758
    // For sm50/sm52 and CUDA < 12.2 we need to do the reduction in fp32.
    // Otherwise `T` is `fp16`. This can be removed when Maxwell is dropped.
1759
#if (__CUDACC_VER_MAJOR__ >= 12 && __CUDACC_VER_MINOR >= 2) || BNB_FP16_AVAILABLE
1760
    using TReduction = T;
1761
#else
1762
    using TReduction = float;
1763
#endif
Tim Dettmers's avatar
Tim Dettmers committed
1764

1765
    using BlockReduceT = cub::BlockReduce<TReduction, THREADS>;
Tim Dettmers's avatar
Tim Dettmers committed
1766

1767
1768
1769
1770
1771
1772
    // One block per row.
    // Threads load column values in a striped arrangement.
    // e.g. t0 reads row[0], row[0+nthreads], ..
    // and  t1 reads row[1], row[1+nthreads], ..
    // Each thread will determine its local absmax.
    // We then do a blockwise reduction to determine the row's absmax.
Tim Dettmers's avatar
Tim Dettmers committed
1773

1774
1775
    __shared__ typename BlockReduceT::TempStorage temp_storage;
    __shared__ TReduction smem_row_absmax;
Tim Dettmers's avatar
Tim Dettmers committed
1776

1777
1778
    const int row_id = blockIdx.x;
    const T* row_data = A + (row_id * cols);
Tim Dettmers's avatar
Tim Dettmers committed
1779

1780
1781
1782
1783
    // Threads will read the row values in a striped access pattern and find a local absmax.
    TReduction row_local_absmax = -FLT_MIN;
    for (int i = threadIdx.x; i < cols; i += THREADS) {
        const TReduction absval = fabsf(__ldcs(&(row_data[i])));
Tim Dettmers's avatar
Tim Dettmers committed
1784

1785
1786
1787
1788
1789
1790
1791
        // For sparse decomposition, values outside of the threshold are not to be
        // included when calculating the row's absmax.
        if constexpr (SPARSE_DECOMP) {
            row_local_absmax = fmaxf(row_local_absmax, absval < TReduction(threshold) ? absval : row_local_absmax);
        } else {
            row_local_absmax = fmaxf(row_local_absmax, absval);
        }
Tim Dettmers's avatar
Tim Dettmers committed
1792
    }
1793

1794
1795
1796
1797
1798
1799
1800
    // Reduce thread-local absmax across the block.
    const TReduction row_absmax = BlockReduceT(temp_storage).Reduce(row_local_absmax, cub::Max(), cols);
    if (threadIdx.x == 0) {
        // Save our block's absmax to shared memory for the quantization step.
        rowStats[row_id] = smem_row_absmax = row_absmax;
    }
    __syncthreads();
1801

1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
    // Quantize row-wise.
    const float scale = __fdividef(127.0f, smem_row_absmax);
    for (int i = threadIdx.x; i < cols; i += THREADS) {
        float val = row_data[i];

        if constexpr (SPARSE_DECOMP) {
            // For sparse decomposition, we do not want to quantize the outliers.
            // Instead they're zeroed out.
            out[row_id * cols + i] = fabs(val) < threshold ? __float2int_rn(val * scale) : 0;
        } else {
            out[row_id * cols + i] = __float2int_rn(val * scale);
        }
    }
}
1816

1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
template <typename T, int THREADS, int SPARSE_DECOMP>
__launch_bounds__(1024, BNB_MAX_THREADS_PER_SM / 1024) __global__
    void kgetRowStats(T* __restrict__ A, float* rowStats, float threshold, int rows, int cols) {
    using BlockReduceT = cub::BlockReduce<float, THREADS>;

    // One block per row.
    // Threads load column values in a striped arrangement.
    // e.g. t0 reads row[0], row[0+nthreads], ..
    // and  t1 reads row[1], row[1+nthreads], ..
    // Each thread will determine its local absmax.
    // We then do a blockwise reduction to determine the row's absmax.

    __shared__ typename BlockReduceT::TempStorage temp_storage;

    const int row_id = blockIdx.x;
    const T* __restrict__ row_data = A + (row_id * cols);

    // Threads will read the row values in a striped access pattern and find a local absmax.
    float row_local_absmax = -FLT_MIN;
    for (int i = threadIdx.x; i < cols; i += THREADS) {
        const float absval = fabsf(row_data[i]);

        // For sparse decomposition, values outside of the threshold are not to be
        // included when calculating the row's absmax.
        if constexpr (SPARSE_DECOMP) {
            row_local_absmax = fmaxf(row_local_absmax, absval < threshold ? absval : row_local_absmax);
        } else {
            row_local_absmax = fmaxf(row_local_absmax, absval);
        }
    }
1847

1848
1849
1850
1851
1852
1853
    // Reduce thread-local absmax across the block.
    // TODO: Consider algorithm BLOCK_REDUCE_RAKING_COMMUTATIVE_ONLY
    const float row_absmax = BlockReduceT(temp_storage).Reduce(row_local_absmax, cub::Max(), cols);
    if (threadIdx.x == 0) {
        // Save our block's absmax to shared memory for the quantization step.
        rowStats[row_id] = row_absmax;
Tim Dettmers's avatar
Tim Dettmers committed
1854
    }
1855
}
Tim Dettmers's avatar
Tim Dettmers committed
1856

1857
1858
1859
1860
template __global__ void
    kgetRowStats<half, 1024, 0>(half* __restrict__ A, float* rowStats, float threshold, int rows, int cols);
template __global__ void
    kgetRowStats<half, 1024, 1>(half* __restrict__ A, float* rowStats, float threshold, int rows, int cols);
Tim Dettmers's avatar
Tim Dettmers committed
1861

1862
1863
1864
1865
1866
1867
template __global__ void kInt8VectorQuant<half, 1024, 0>(
    half* __restrict__ A, int8_t* out, float* rowStats, float threshold, int rows, int cols
);
template __global__ void kInt8VectorQuant<half, 1024, 1>(
    half* __restrict__ A, int8_t* out, float* rowStats, float threshold, int rows, int cols
);
Tim Dettmers's avatar
Tim Dettmers committed
1868

1869
#define MM_DEQUANT_CONST 6.200012e-05f // 1.0f/(127.0f*127.0f)
Tim Dettmers's avatar
Tim Dettmers committed
1870

1871
1872
template <int ITEMS_PER_THREAD, int THREADS>
__global__ void kdequant_mm_int32_fp16(
1873
1874
    int* __restrict__ const A, float* __restrict__ const rowStats, float* __restrict__ const colStats, half* out,
    half* __restrict__ const bias, const int numRows, const int numCols, const int n
1875
) {
1876
    const int n_out = numRows * numCols;
Tim Dettmers's avatar
Tim Dettmers committed
1877

1878
1879
    int block_offset = blockIdx.x * THREADS * ITEMS_PER_THREAD;
    int thread_offset = threadIdx.x * ITEMS_PER_THREAD;
Tim Dettmers's avatar
Tim Dettmers committed
1880

1881
1882
    int local_values[ITEMS_PER_THREAD];
    half local_output[ITEMS_PER_THREAD];
1883

1884
1885
1886
    float local_rowStats[ITEMS_PER_THREAD];
    float local_colStats[ITEMS_PER_THREAD];
    float local_biasValue[ITEMS_PER_THREAD];
Tim Dettmers's avatar
Tim Dettmers committed
1887

1888
1889
    typedef cub::BlockLoad<int, THREADS, ITEMS_PER_THREAD, cub::BLOCK_LOAD_VECTORIZE> LoadInt32;
    __shared__ typename LoadInt32::TempStorage loadint32;
Tim Dettmers's avatar
Tim Dettmers committed
1890

1891
    int row_idx, col_idx;
Tim Dettmers's avatar
Tim Dettmers committed
1892

1893
1894
#pragma unroll ITEMS_PER_THREAD
    for (int j = 0; j < ITEMS_PER_THREAD; ++j) {
Tim Dettmers's avatar
Tim Dettmers committed
1895

1896
1897
        row_idx = (block_offset + thread_offset + j) / numCols;
        col_idx = (block_offset + thread_offset + j) % numCols;
Tim Dettmers's avatar
Tim Dettmers committed
1898

1899
1900
1901
1902
        local_colStats[j] = col_idx >= numCols ? 0.0f : __ldg(&colStats[col_idx]);
        local_rowStats[j] = row_idx >= numRows ? 0.0f : __ldg(&rowStats[row_idx]);
        local_biasValue[j] = ((bias == nullptr) || col_idx >= numCols) ? 0.0f : __half2float(bias[col_idx]);
    }
Tim Dettmers's avatar
Tim Dettmers committed
1903

1904
1905
1906
1907
    // Each block loads THREADS * ITEMS_PER_THREAD values from A
    int valid_items =
        block_offset + THREADS * ITEMS_PER_THREAD < n_out ? THREADS * ITEMS_PER_THREAD : n_out - block_offset;
    LoadInt32(loadint32).Load(&(A[block_offset]), local_values, valid_items, 0);
Tim Dettmers's avatar
Tim Dettmers committed
1908

1909
1910
1911
1912
1913
1914
#pragma unroll ITEMS_PER_THREAD
    for (int j = 0; j < ITEMS_PER_THREAD; ++j) {
        local_output[j] = __float2half(
            fmaf(local_values[j] * local_rowStats[j] * local_colStats[j], MM_DEQUANT_CONST, local_biasValue[j])
        );
    }
Tim Dettmers's avatar
Tim Dettmers committed
1915

1916
1917
1918
1919
1920
1921
#pragma unroll ITEMS_PER_THREAD
    for (int j = 0; j < ITEMS_PER_THREAD; j++) {
        int outIdx = block_offset + thread_offset + j;
        if (outIdx < n_out) {
            out[outIdx] = local_output[j];
        }
Tim Dettmers's avatar
Tim Dettmers committed
1922
1923
1924
    }
}

1925
#define DENORM 1.0f / 127.0f
Tim Dettmers's avatar
Tim Dettmers committed
1926
#define MAX_SPARSE_COUNT 32
1927
1928
#define SMEM_SIZE 8 * 256

1929
template <typename T, int SPMM_ITEMS, int BITS>
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
__global__ void kspmm_coo_very_sparse_naive(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, T* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
) {

    // 0. load balancing: We process rows with most columns first (count_vec)and we process one row per block
    //    If a block finishes, the next one is scheduled. Since the last blocks like have fewer
    //    elements they finish faster "fillin up" the gaps left by larger blocks

    // without tensor cores
    // 1. use rowidx_length to find what to load (as many blocks as there are rows)
    // 2. Load A into registers
    // 3. each warp loads all required rows of B but each warp is offset by k
    // 4. Do mma operations that accumulate into registers
    // 5. Each warp stores its output row into matrix C

    const int count = max_count[blockIdx.x];
    const int local_max_idx = max_idx[blockIdx.x];
    const int offset = local_max_idx == 0 ? 0 : offset_rowidx[local_max_idx - 1];
    const int local_row_idx = rowidx[offset];

    const int warp_id = threadIdx.x / 32;
    const int warp_idx = threadIdx.x % 32;
    const int warp_offset = (warp_id * 32) * SPMM_ITEMS;
    const int num_items = BITS == 8 ? 8 : 8;
    int idx_col_B = warp_offset;
    int local_idx_col_B_offset = 0;

    half local_valA[MAX_SPARSE_COUNT];
    int local_colidxA[MAX_SPARSE_COUNT];
    half local_valC[SPMM_ITEMS];
    T local_valsB[num_items];
    half local_valOut[num_items];
    // 128 byte loads per warp == 4 bytes per thread

    // 2. Load A into registers
    for (int j = 0; j < MAX_SPARSE_COUNT; j++) {
        local_valA[j] = j < count ? values[offset + j] : __float2half(0.0f);
        local_colidxA[j] = j < count ? colidx[offset + j] : 0;
Tim Dettmers's avatar
Tim Dettmers committed
1969
1970
    }

1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
    // each thread processes SPMM_ITEMS=32 per iteration. We have 256 threads. 32*256=x192
    // we expect each warp to be SPMM_ITEMS*32 apart
    // we have a total of 128 bytes for the bank with a bank size of 4 bytes
    // added 3 bytes = 6 values between warps should reduce bank conflicts
    __shared__ half smem_dequant_stats[SMEM_SIZE];

    while (idx_col_B < colsB) {

        if (dequant_stats != NULL) {
            for (int i = threadIdx.x; i < SMEM_SIZE; i += blockDim.x)
                if ((idx_col_B + i - local_idx_col_B_offset) < colsB)
                    smem_dequant_stats[i] = dequant_stats[idx_col_B + i - local_idx_col_B_offset];

            __syncthreads();
        }

#pragma unroll SPMM_ITEMS
        for (int j = 0; j < SPMM_ITEMS; j++)
            local_valC[j] = 0.0f;

#pragma unroll
        for (int i = 0; i < count; i++) {
            // 3. each warp loads all required rows of B but each warp is offset by k
            int row_offset = colsB * local_colidxA[i];

#pragma unroll SPMM_ITEMS
            for (int j = 0; j < SPMM_ITEMS; j += num_items) {
                // 4. Multiply the tile -> accumulate outputs in shared memory until 128 bytes it reached
                int idx = idx_col_B + (warp_idx * SPMM_ITEMS) + j;
                if (idx >= colsB) {
                    break;
                }
                if ((idx + num_items < colsB)) {
                    if (BITS == 8)
                        reinterpret_cast<float2(&)[num_items]>(local_valsB)[0] =
                            reinterpret_cast<float2*>(B)[(row_offset + idx) / num_items];
                    else
                        reinterpret_cast<float4(&)[num_items]>(local_valsB)[0] =
                            reinterpret_cast<float4*>(B)[(row_offset + idx) / num_items];
                } else {
#pragma unroll num_items
                    for (int k = 0; k < num_items; k++)
                        if (idx + k < colsB)
                            local_valsB[k] = B[row_offset + idx + k];
                        else
                            local_valsB[k] = 0.0f;
                }
#pragma unroll num_items
                for (int k = 0; k < num_items; k++) {
                    if (BITS == 8 && dequant_stats != NULL)
                    // we do texture cache reads (__ldg) on dequant_stats which should be super fast
                    {
                        float valB = local_valsB[k];
                        float valA = local_valA[i];
                        if (valB != 0.0 && valA != 0.0)
                            local_valC[j + k] =
                                (float)local_valC[j + k] +
                                ((float)smem_dequant_stats[idx + k - local_idx_col_B_offset]) * DENORM * valB * valA;
                    } else
                        local_valC[j + k] = (float)local_valC[j + k] + (float)local_valsB[k] * (float)local_valA[i];
                }
Tim Dettmers's avatar
Tim Dettmers committed
2032
2033
2034
            }
        }

2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
        int idx_row_C = (colsB * local_row_idx);

#pragma unroll SPMM_ITEMS
        for (int j = 0; j < SPMM_ITEMS; j += num_items) {
            // int idx_col_C =  idx_col_B + (32*j) + warp_idx;
            int idx_col_C = idx_col_B + warp_idx * SPMM_ITEMS + j;
            int idx_val = idx_col_C + idx_row_C;

            if (idx_col_C + num_items < colsB) {

                // load outputs to do inplace addition
                reinterpret_cast<float4(&)[num_items / 4]>(local_valOut)[0] =
                    reinterpret_cast<float4*>(out)[idx_val / num_items];

#pragma unroll num_items
                for (int k = 0; k < num_items; k++)
                    local_valC[(j / num_items) + k] = (float)local_valC[(j / num_items) + k] + (float)local_valOut[k];

                reinterpret_cast<float4*>(out)[idx_val / num_items] =
                    reinterpret_cast<float4(&)[num_items]>(local_valC)[j / num_items];
            } else {
#pragma unroll num_items
                for (int k = 0; k < num_items; k++)
                    if (idx_col_C + k < colsB)
                        out[idx_val + k] = (float)out[idx_val + k] + (float)local_valC[j + k];
            }
        }
Tim Dettmers's avatar
Tim Dettmers committed
2062

2063
2064
2065
        idx_col_B += blockDim.x * SPMM_ITEMS;
        local_idx_col_B_offset += blockDim.x * SPMM_ITEMS;
    }
Tim Dettmers's avatar
Tim Dettmers committed
2066
2067
}

2068
#define WARPS 3
2069
2070
2071

template <typename T, int BITS, int THREADS>
__global__ void gemm_device(int M, int N, int K, T* __restrict__ const A, T* B, T* out, int lda, int ldb, int ldc) {
Tim Dettmers's avatar
Tim Dettmers committed
2072
2073

#if __CUDA_ARCH__ >= 750
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
    using namespace nvcuda;
    int col_offset = blockIdx.x * 32;
    const int warp_id = threadIdx.x / 32;
    const int half_warp_id = threadIdx.x / 16;
    const int half_warp_lane = threadIdx.x % 16;
    const int batch_size_warps = (WARPS - 1) * 2;
    const int val_per_iter = blockDim.x - 32;

    T local_A[4];
    T local_B[128];

    const int a_tile_offset = 16;
    const int b_tile_offset = (16 * 32 + 16);

    __shared__ T smem_A[8 * 16 + (2 * 16 * (batch_size_warps - 1))];
    __shared__ T smem_B[2 * batch_size_warps * 16 * 32 + (2 * 16 * (batch_size_warps - 1))];
    //__shared__ T smem_C[8*32];

    wmma::fragment<wmma::matrix_a, 8, 32, 16, half, wmma::row_major> a_frag;
    wmma::fragment<wmma::matrix_b, 8, 32, 16, half, wmma::col_major> b_frag;
    wmma::fragment<wmma::accumulator, 8, 32, 16, half> c_frag;
    wmma::fill_fragment(c_frag, 0.0f);

    int ticktock = 0;
    int idx = 0 + threadIdx.x;
    int loaded_values = 0;
    // prefetch
    if (idx < K && warp_id < (WARPS - 1)) {
        if (loaded_values == 0) {
            local_A[0] = A[idx];
            local_A[1] = A[idx + (1 * val_per_iter)];
            local_A[2] = A[idx + (2 * val_per_iter)];
            local_A[3] = A[idx + (3 * val_per_iter)];

#pragma unroll 32
            for (int col = 0; col < 32; col++) {
                local_B[col] = B[(col_offset + col) * ldb + idx];
                local_B[col + 32] = B[(col_offset + col) * ldb + idx + (1 * val_per_iter)];
                local_B[col + 64] = B[(col_offset + col) * ldb + idx + (2 * val_per_iter)];
                local_B[col + 96] = B[(col_offset + col) * ldb + idx + (3 * val_per_iter)];
            }
            loaded_values = 3;
        } else {

            if (loaded_values == 3) {
                local_A[0] = local_A[1];
#pragma unroll 32
                for (int col = 0; col < 32; col++)
                    local_B[col] = local_B[col + (32)];
            } else if (loaded_values == 2) {
                local_A[0] = local_A[2];
#pragma unroll 32
                for (int col = 0; col < 32; col++)
                    local_B[col] = local_B[col + (64)];
            } else {
                local_A[0] = local_A[3];
#pragma unroll 32
                for (int col = 0; col < 32; col++)
                    local_B[col] = local_B[col + (96)];
            }
            loaded_values--;
        }
Tim Dettmers's avatar
Tim Dettmers committed
2136

2137
        smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = local_A[0];
Tim Dettmers's avatar
Tim Dettmers committed
2138

2139
2140
2141
2142
2143
2144
2145
#pragma unroll 32
        for (int col = 0; col < 32; col++)
            smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                local_B[col];
    } else if (warp_id < (WARPS - 1)) {
        local_A[0] = T(0.0);
        smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2146

2147
2148
2149
#pragma unroll 32
        for (int col = 0; col < 32; col++)
            local_B[col] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2150

2151
2152
2153
2154
2155
2156
#pragma unroll 32
        for (int col = 0; col < 32; col++)
            smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                0.0f;
    }
    ticktock = ticktock == 0 ? 1 : 0;
Tim Dettmers's avatar
Tim Dettmers committed
2157

2158
2159
2160
    // for(int base_idx = blockDim.x-32; base_idx < K; base_idx+=blockDim.x-32)
    for (int base_idx = blockDim.x - 32; base_idx < K; base_idx += blockDim.x - 32) {
        idx = base_idx + threadIdx.x;
Tim Dettmers's avatar
Tim Dettmers committed
2161

2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
        __syncthreads();
        if (idx < K && warp_id < (WARPS - 1)) {
            // local_A[0] = A[idx];

            // #pragma unroll 32
            // for(int col = 0; col < 32; col++)
            //   local_B[col] = B[(col_offset+col)*ldb+idx];
            if (loaded_values == 0) {
                local_A[0] = A[idx];
                local_A[1] = A[idx + (1 * val_per_iter)];
                local_A[2] = A[idx + (2 * val_per_iter)];
                local_A[3] = A[idx + (3 * val_per_iter)];

#pragma unroll 32
                for (int col = 0; col < 32; col++) {
                    local_B[col] = B[(col_offset + col) * ldb + idx];
                    local_B[col + 32] = B[(col_offset + col) * ldb + idx + (1 * val_per_iter)];
                    local_B[col + 64] = B[(col_offset + col) * ldb + idx + (2 * val_per_iter)];
                    local_B[col + 96] = B[(col_offset + col) * ldb + idx + (3 * val_per_iter)];
                }
                loaded_values = 3;

            } else {

                if (loaded_values == 3) {
                    local_A[0] = local_A[1];
#pragma unroll 32
                    for (int col = 0; col < 32; col++)
                        local_B[col] = local_B[col + (32)];
                } else if (loaded_values == 2) {
                    local_A[0] = local_A[2];
#pragma unroll 32
                    for (int col = 0; col < 32; col++)
                        local_B[col] = local_B[col + (64)];
                } else {
                    local_A[0] = local_A[3];
#pragma unroll 32
                    for (int col = 0; col < 32; col++)
                        local_B[col] = local_B[col + (96)];
                }
                loaded_values--;
            }

            smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = local_A[0];

#pragma unroll 32
            for (int col = 0; col < 32; col++)
                smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                    local_B[col];
        } else if (warp_id < (WARPS - 1)) {
            local_A[0] = T(0.0);
            smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2214

2215
2216
2217
#pragma unroll 32
            for (int col = 0; col < 32; col++)
                local_B[col] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2218

2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
#pragma unroll 32
            for (int col = 0; col < 32; col++)
                smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                    0.0f;
        }
        ticktock = ticktock == 0 ? 1 : 0;

        if (warp_id == (WARPS - 1))
            for (int k = 0; k < batch_size_warps; k++) {
                wmma::load_matrix_sync(
                    a_frag, &(smem_A[(ticktock * batch_size_warps + k) * a_tile_offset]), 16
                ); //  111 mu
                wmma::load_matrix_sync(
                    b_frag, &(smem_B[(ticktock * batch_size_warps + k) * b_tile_offset]), 16
                ); // 35 mu
                wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
            }
Tim Dettmers's avatar
Tim Dettmers committed
2236
    }
2237
2238
2239
2240

    __syncthreads();
    if (warp_id != (WARPS - 1)) {
        return;
Tim Dettmers's avatar
Tim Dettmers committed
2241
    }
2242
2243
    // only warp_id == (WARPS-1) from here
    int warp_lane = threadIdx.x % 32;
Tim Dettmers's avatar
Tim Dettmers committed
2244

2245
2246
2247
2248
    ticktock = ticktock == 0 ? 1 : 0;
    for (int k = 0; k < batch_size_warps; k++) {
        wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock * batch_size_warps + k) * a_tile_offset]), 16); //  111 mu
        wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock * batch_size_warps + k) * b_tile_offset]), 16); // 35 mu
Tim Dettmers's avatar
Tim Dettmers committed
2249
        wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
2250
2251
2252
2253
2254
2255
2256
2257
    }

    // 129 mu
    if (warp_id == (WARPS - 1))
        wmma::store_matrix_sync(&(smem_A[0]), c_frag, 32, wmma::mem_row_major);

    if (col_offset + warp_lane < M)
        out[col_offset + warp_lane] = smem_A[warp_lane];
Tim Dettmers's avatar
Tim Dettmers committed
2258
#endif
Tim Dettmers's avatar
Tim Dettmers committed
2259
2260
}

2261
2262
2263
2264
template <typename T> __device__ void printnonzero(T* A, int num_values, const char* strval) {
    for (int i = 0; i < num_values; i++)
        if ((float)A[i] != 0.0)
            printf("%s %i %f\n", strval, i, (float)A[i]);
Tim Dettmers's avatar
Tim Dettmers committed
2265
2266
}

2267
2268
2269
2270
2271
template <typename T, int THREADS>
__global__ void kgemm_4bit_inference(
    int M, int N, int K, T* __restrict__ const A, unsigned char* B, float* absmax, T* out, int lda, int ldb, int ldc,
    int blocksize
) {
Tim Dettmers's avatar
Tim Dettmers committed
2272

2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
    //// element-wise kernel
    //// 1. Load batch x k into registers
    //// 2. Load k x k into registers
    //// 3. dequantize and store in second pair of k x k
    //// 4. matmul
    //// 5. sum with cub
    //// 6. store outputs
    //// TC kernel
    //// use k warps per thread block
    //// 1. threadblock use read-only cache to read in register tile for A into shared memory
    //// 2. each warp loops over shared memory tiles of A of size 8x16 and loads them into fragments
    //// 3. each warp reads a segment of values 16x32 from B
    //// 4. do dequantization from register of B into second pair of registers
    //// 5. store (4) into fragment
    //// 6. matmul aggregate into fragment C
    //// 7. aggregate files of C into shared memory block C
    //// 8. sum (7)
    //// 9. write outputs to matmul output matrix
2291
#if __CUDA_ARCH__ >= 750
2292
2293
2294
2295
2296
2297
2298
    using namespace nvcuda;
    int col_offset = blockIdx.x * 32;
    const int warp_id = threadIdx.x / 32;
    const int warp_idx = threadIdx.x % 32;
    const int half_warp_id = threadIdx.x / 16;
    const int half_warp_lane = threadIdx.x % 16;
    const int batch_size_warps = (WARPS - 1) * 2;
Tim Dettmers's avatar
Tim Dettmers committed
2299

2300
2301
2302
2303
    T quant_map[16];

#pragma unroll 16
    for (int i = 0; i < 16; i++)
2304
        quant_map[i] = nf4_dequantization_lut[i];
2305
    //__shared__ T quant_map[16*160];
2306

2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
    T local_A[2];
    T local_B[64];
    unsigned char local_B_4bit[32];

    const int a_tile_offset = 16;
    const int b_tile_offset = (16 * 32 + 16);

    __shared__ T smem_A[8 * 16 + (16 * (batch_size_warps - 1))];
    __shared__ T smem_B[2 * batch_size_warps * 16 * 32 + (2 * 16 * (batch_size_warps - 1))];
    __shared__ T smem_C[8 * 32];

    wmma::fragment<wmma::matrix_a, 8, 32, 16, half, wmma::row_major> a_frag;
    wmma::fragment<wmma::matrix_b, 8, 32, 16, half, wmma::col_major> b_frag;
    wmma::fragment<wmma::accumulator, 8, 32, 16, half> c_frag;
    wmma::fill_fragment(c_frag, 0.0f);

    for (int i = threadIdx.x; i < (8 * 32); i += blockDim.x)
        smem_C[i] = 0.0f;

    __syncthreads();

    int ticktock = 0;
    int idx = 0 + threadIdx.x;
    int loaded_values = 0;
    // prefetch
    if (idx < K && warp_id < (WARPS - 1)) {
        if (loaded_values == 0) {
            local_A[0] = A[idx];
            local_A[1] = A[idx + blockDim.x - 32];

#pragma unroll 32
            for (int col = 0; col < 32; col++)
                local_B_4bit[col] = B[(col_offset + col) * ldb + idx];

            loaded_values = 1;
        } else {
            local_A[0] = local_A[1];
            loaded_values--;

#pragma unroll 64
            for (int col = 0; col < 64; col += 2) {
                // local_B[col] = dhDequantizeNF4(local_B_4bit[col/2] >> 4)*T(1.0f);
                // local_B[col+1] = dhDequantizeNF4(local_B_4bit[col/2] & 0x0F)*T(1.0f);
                // local_B[col] = d2DequantizeFP4(local_B_4bit[col/2] >> 4)*(float)(17.0);
                // local_B[col+1] = d2DequantizeFP4(local_B_4bit[col/2] & 0x0F)*(float)(17.0);
                // local_B[col] = 127*(local_B_4bit[col/2] >> 4)*(float)(17.0);
                // local_B[col+1] = 127*(local_B_4bit[col/2] & 0x0F)*(float)(17.0);

                // local_B[col] = quant_map[(local_B_4bit[col/2] >> 4)]*T(17.0);
                // local_B[col+1] = quant_map[(local_B_4bit[col/2] & 0x0F)]*T(17.0);
                local_B[col] = quant_map[160 * (local_B_4bit[col / 2] >> 4) + warp_idx] * T(17.0);
                local_B[col + 1] = quant_map[160 * (local_B_4bit[col / 2] & 0x0F) + warp_idx] * T(17.0);
            }
2360
        }
Tim Dettmers's avatar
Tim Dettmers committed
2361

2362
        smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = local_A[0];
2363

2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
#pragma unroll 32
        for (int col = 0; col < 32; col++)
            smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                local_B[col];
    } else if (warp_id < (WARPS - 1)) {
        local_A[0] = T(0.0);
        smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = 0.0f;

#pragma unroll 32
        for (int col = 0; col < 32; col++)
            local_B[col] = 0.0f;

#pragma unroll 32
        for (int col = 0; col < 32; col++)
            smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                0.0f;
2380
2381
    }
    ticktock = ticktock == 0 ? 1 : 0;
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
    // if(threadIdx.x == 0)
    // printf("aa %i %i\n", idx, loaded_values);

    // for(int base_idx = blockDim.x-32; base_idx < K; base_idx+=blockDim.x-32)
    for (int base_idx = blockDim.x - 32; base_idx < K; base_idx += blockDim.x - 32) {
        idx = base_idx + threadIdx.x;
        // if(threadIdx.x == 0)
        // printf("%i %i\n", idx, loaded_values);

        //__syncthreads();
        if (idx < K && warp_id < (WARPS - 1)) {
            if (loaded_values == 0) {
                local_A[0] = A[idx];
                local_A[1] = A[idx + blockDim.x - 32];

#pragma unroll 32
                for (int col = 0; col < 32; col++) {
                    local_B_4bit[col] = B[(col_offset + col) * ldb + idx];
                    local_B_4bit[col + 16] = B[(col_offset + col) * ldb + idx];
                }

                loaded_values = 1;
            } else {
                local_A[0] = local_A[1];
                loaded_values--;

                int absidx = (idx + col_offset) / blocksize;
                half local_absmax = __ldg(&(absmax[absidx]));

#pragma unroll 64
                for (int col = 0; col < 64; col += 2) {
                    // local_B[col] = dhDequantizeNF4(local_B_4bit[col/2] >> 4)*T(absidx);
                    // local_B[col+1] = dhDequantizeNF4(local_B_4bit[col/2] & 0x0F)*T(absidx);
                    // local_B[col] = T(127)*T(local_B_4bit[col/2] >> 4)*T(absidx);
                    // local_B[col+1] = T(127)*T(local_B_4bit[col/2] & 0x0F)*T(absidx);

                    // local_B[col] = quant_map[160*(local_B_4bit[col/2] >> 4)+warp_idx]*T(local_absmax);
                    // local_B[col+1] = quant_map[160*(local_B_4bit[col/2] & 0x0F)+warp_idx]*T(local_absmax);
                    local_B[col] = quant_map[(local_B_4bit[col / 2] >> 4)] * T(absidx);
                    local_B[col + 1] = quant_map[(local_B_4bit[col / 2] & 0x0F)] * T(absidx);
                }
                // printnonzero<T>(local_B, 128, "");
            }

            smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = local_A[0];
2427

2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
#pragma unroll 32
            for (int col = 0; col < 32; col++)
                smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                    local_B[col];
        } else if (warp_id < (WARPS - 1)) {
            local_A[0] = T(0.0);
            smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = 0.0f;

#pragma unroll 32
            for (int col = 0; col < 32; col++)
                local_B[col] = 0.0f;

#pragma unroll 32
            for (int col = 0; col < 32; col++)
                smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                    0.0f;
        }
        ticktock = ticktock == 0 ? 1 : 0;

        if (warp_id == (WARPS - 1))
            for (int k = 0; k < batch_size_warps; k++) {
                wmma::load_matrix_sync(
                    a_frag, &(smem_A[(ticktock * batch_size_warps + k) * a_tile_offset]), 16
                ); //  111 mu
                wmma::load_matrix_sync(
                    b_frag, &(smem_B[(ticktock * batch_size_warps + k) * b_tile_offset]), 16
                ); // 35 mu
                wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
            }
    }

    __syncthreads();
    // if(threadIdx.x == 0)
    //{
    //   printnonzero<T>(smem_A, 8*16 + (2*16*(batch_size_warps-1)), "A: ");
    //   printnonzero<T>(smem_B, 2*batch_size_warps*16*32 + (2*16*(batch_size_warps-1)), "B: ");
    // }
    if (warp_id != (WARPS - 1)) {
        return;
    }
    // only warp_id == (WARPS-1) from here
    int warp_lane = threadIdx.x % 32;

    ticktock = ticktock == 0 ? 1 : 0;
    for (int k = 0; k < batch_size_warps; k++) {
        // if(warp_lane == 0)
        // printf("%i %i %i %i\n", (ticktock*batch_size_warps + k)*a_tile_offset, k, ticktock, threadIdx.x);
        wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock * batch_size_warps + k) * a_tile_offset]), 16); //  111 mu
        wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock * batch_size_warps + k) * b_tile_offset]), 16); // 35 mu
2477
        wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
    }

    // 129 mu
    if (warp_id == (WARPS - 1))
        wmma::store_matrix_sync(&(smem_C[0]), c_frag, 32, wmma::mem_row_major);

    // printnonzero<T>(smem_C, 32, "");

    if (col_offset + warp_lane < M)
        out[col_offset + warp_lane] = smem_C[warp_lane];
2488
#endif
Tim Dettmers's avatar
Tim Dettmers committed
2489
2490
}

2491
#define num_values_4bit 32
2492

2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
template <typename T, int THREADS, int BITS>
__global__ void kgemm_4bit_inference_naive(
    int M, int N, int K, T* __restrict__ const A, unsigned char* B, float* absmax, const float* datatype, T* out,
    int lda, int ldb, int ldc, int blocksize
) {

    // per threadblock:
    // load step-by-step in chunks of [32,warps]: 1x32 * [32,warps] -> [1,warps]
    // 4 warps -> 4 loads per iter
    // 1x32 * 32x4 -> 1x4 outputs per thread block
    typedef cub::WarpReduce<float> WarpReduce;
    __shared__ typename WarpReduce::TempStorage temp_storage[THREADS / 32];

    const int warp_idx = threadIdx.x / 32;
    const int warp_lane = threadIdx.x % 32;
    const int row_B = (THREADS / 32) * blockIdx.x + warp_idx;
    const int offset_B = ldb * row_B;
    const int num_values_8bit = num_values_4bit / 2;
    float local_C = 0.0f;

    unsigned char local_B_4bit[num_values_8bit];
    T local_B[num_values_4bit / 4];
    T local_A[num_values_4bit / 4];
    __shared__ T quant_map[16];
    T local_absmax = T(0.0f);

    if (threadIdx.x < 16)
        quant_map[threadIdx.x] = T(__ldg(&datatype[threadIdx.x]));
    // for(int i = threadIdx.x; i < 16; i++)
    // quant_map[i] = T(__ldg(&datatype[i]));
    __syncthreads();

    // A: [1, K]
    // B: [N, K]
    for (int inner_idx = warp_lane * num_values_4bit; inner_idx < K; inner_idx += 32 * num_values_4bit) {
        const int inner_idx_halved = inner_idx / 2;

        // Since blocksize will always be a power-of-2, we avoid more expensive
        // division by the blocksize and instead use a shift operation.
        // This is equivalent to (i+threadId.x*NUM_PER_TH)/blocksize.
        const int absidx = ((2 * offset_B) + inner_idx) >> (31 - __clz(blocksize));

        local_absmax = __ldg(&(absmax[absidx]));

        if (row_B < M) {
            if ((inner_idx_halved + num_values_8bit) < (K / 2)) {
                // this is the most important for performance considerations
                reinterpret_cast<int4(&)[num_values_8bit]>(local_B_4bit)[0] =
                    reinterpret_cast<int4*>(B)[(offset_B + (inner_idx_halved)) / (num_values_8bit)];
            } else {
#pragma unroll
                for (int j = 0; j < (num_values_8bit); j++)
                    if ((inner_idx_halved) + j < (K / 2))
                        local_B_4bit[j] = B[offset_B + inner_idx_halved + j];
                    else
                        local_B_4bit[j] = 0b01110111;
            }
        } else {
#pragma unroll
            for (int j = 0; j < (num_values_8bit); j++)
                local_B_4bit[j] = 0b01110111;
Tim Dettmers's avatar
Tim Dettmers committed
2554
        }
2555

2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
        for (int i = 0; i < 4; i++) {
#pragma unroll
            for (int k = 0; k < num_values_8bit / 4; k++) {
#if BNB_BF16_AVAILABLE
                local_B[k * 2] = quant_map[local_B_4bit[(i * num_values_8bit / 4) + k] >> 4] * local_absmax;
                local_B[k * 2 + 1] = quant_map[local_B_4bit[(i * num_values_8bit / 4) + k] & 0x0F] * local_absmax;
#else
                // bf16 multipliation not supported
                local_B[k * 2] =
                    T((float)quant_map[local_B_4bit[(i * num_values_8bit / 4) + k] >> 4] * (float)local_absmax);
                local_B[k * 2 + 1] =
                    T((float)quant_map[local_B_4bit[(i * num_values_8bit / 4) + k] & 0x0F] * (float)local_absmax);
#endif
            }
2570

2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
            if (inner_idx + (num_values_4bit / 4) + (i * num_values_4bit / 4) < K) {
                // this is also relatively important for performance
                if (BITS == 16) {
                    reinterpret_cast<int4(&)[num_values_4bit]>(local_A)[0] =
                        reinterpret_cast<int4*>(A)[inner_idx / (num_values_4bit / 4) + i];
                } else {
                    reinterpret_cast<int4(&)[num_values_4bit]>(local_A)[0] =
                        reinterpret_cast<int4*>(A)[inner_idx / (num_values_4bit / 8) + (2 * i) + 0];
                    reinterpret_cast<int4(&)[num_values_4bit]>(local_A)[1] =
                        reinterpret_cast<int4*>(A)[inner_idx / (num_values_4bit / 8) + (2 * i) + 1];
                }
2582

2583
2584
2585
2586
2587
2588
2589
            } else
#pragma unroll
                for (int k = 0; k < num_values_4bit / 4; k++)
                    if (inner_idx + (i * num_values_4bit / 4) + k < K)
                        local_A[k] = A[inner_idx + k + (i * num_values_4bit / 4)];
                    else
                        local_A[k] = T(0.0f);
2590

2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
// accumulate in float; small performance hit for Ampere, but lower error for outputs
#pragma unroll
            for (int k = 0; k < num_values_4bit / 4; k++) {
#if BNB_BF16_AVAILABLE
                local_C += (float)(local_A[k] * local_B[k]);
#else
                // bf16 multipliation not supported
                local_C += ((float)local_A[k] * (float)local_B[k]);
#endif
            }
        }
    }

    local_C = WarpReduce(temp_storage[warp_idx]).Sum(local_C);

    if (row_B < M && warp_lane == 0)
        out[row_B] = T(local_C);
2608
2609
}

2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
template <typename T, int FUNC> __global__ void kfunc(T* A, T* B, T value, long n) {
    for (long i = (blockDim.x * blockIdx.x) + threadIdx.x; i < n; i += (blockDim.x * gridDim.x)) {
        switch (FUNC) {
        case FILL:
            A[i] = (T)value;
            break;
        case ARANGE:
            A[i] = (T)i;
            break;
        case _MUL:
            A[i] = A[i] * B[i];
            break;
        }
Tim Dettmers's avatar
Tim Dettmers committed
2623
2624
2625
    }
}

Tim Dettmers's avatar
Tim Dettmers committed
2626
2627
2628
2629
//==============================================================
//                   TEMPLATE DEFINITIONS
//==============================================================

2630
2631
2632
2633
template __global__ void kfunc<float, FILL>(float* A, float* B, float value, long n);
template __global__ void kfunc<unsigned char, FILL>(unsigned char* A, unsigned char* B, unsigned char value, long n);
template __global__ void kfunc<float, ARANGE>(float* A, float* B, float value, long n);
template __global__ void kfunc<float, _MUL>(float* A, float* B, float value, long n);
Tim Dettmers's avatar
Tim Dettmers committed
2634
2635

// these are not used and make no sense, but the compiler needs them
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
// template __global__ void gemm_device<float, 16, 128>(int M, int N, int K, float * __restrict__ const A,  float* B,
// float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 32, 256>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 192>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 160>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 128>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
// template __global__ void gemm_device<float, 16, 32>(int M, int N, int K, float * __restrict__ const A,  float* B,
// float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 32, 32>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 64>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 96>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
Tim Dettmers's avatar
Tim Dettmers committed
2661
2662
// these are not used and make no sense, but the compiler needs them

2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
// template __global__ void gemm_device<float, 32, 128>(int M, int N, int K, float * __restrict__ const A,  float* B,
// float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 16, 256>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 192>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 160>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 128>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
// template __global__ void gemm_device<float, 32, 32>(int M, int N, int K, float * __restrict__ const A,  float* B,
// float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 16, 32>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 64>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 96>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);

template __global__ void kgemm_4bit_inference<half, 96>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, half* out, int lda, int ldb,
    int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference<half, 128>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, half* out, int lda, int ldb,
    int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference<half, 160>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, half* out, int lda, int ldb,
    int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference<half, 256>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, half* out, int lda, int ldb,
    int ldc, int blocksize
);

template __global__ void kgemm_4bit_inference_naive<half, 128, 16>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, const float* datatype, half* out,
    int lda, int ldb, int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference_naive<__nv_bfloat16, 128, 16>(
    int M, int N, int K, __nv_bfloat16* __restrict__ const A, unsigned char* B, float* absmax, const float* datatype,
    __nv_bfloat16* out, int lda, int ldb, int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference_naive<float, 128, 32>(
    int M, int N, int K, float* __restrict__ const A, unsigned char* B, float* absmax, const float* datatype,
    float* out, int lda, int ldb, int ldc, int blocksize
);

template __global__ void kspmm_coo_very_sparse_naive<half, 8, 16>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, half* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<half, 16, 16>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, half* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<half, 32, 16>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, half* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<signed char, 8, 8>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, signed char* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<signed char, 16, 8>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, signed char* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<signed char, 32, 8>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, signed char* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);

template __global__ void kdequant_mm_int32_fp16<4, 512>(
    int* __restrict__ const A, float* __restrict__ const rowStats, float* __restrict__ const colStats, half* out,
    half* __restrict__ const bias, const int numRows, const int numCols, const int n
);
Tim Dettmers's avatar
Tim Dettmers committed
2748

Tim Dettmers's avatar
Tim Dettmers committed
2749
2750
2751
template __device__ unsigned char dQuantize<0>(float* smem_code, const float rand, float x);
template __device__ unsigned char dQuantize<1>(float* smem_code, const float rand, float x);

2752
2753
2754
2755
2756
#define MAKE_PreconditionOptimizer32bit1State(oname, gtype)                                                            \
    template __global__ void kPreconditionOptimizer32bit1State<gtype, oname, 4096, 8>(                                 \
        gtype * g, gtype * p, float* state1, float* unorm, const float beta1, const float beta2, const float eps,      \
        const float weight_decay, const int step, const float lr, const float gnorm_scale, const int n                 \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2757
2758
2759

MAKE_PreconditionOptimizer32bit1State(MOMENTUM, half)
MAKE_PreconditionOptimizer32bit1State(MOMENTUM, float)
2760
MAKE_PreconditionOptimizer32bit1State(MOMENTUM, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2761
2762
MAKE_PreconditionOptimizer32bit1State(RMSPROP, half)
MAKE_PreconditionOptimizer32bit1State(RMSPROP, float)
2763
MAKE_PreconditionOptimizer32bit1State(RMSPROP, __nv_bfloat16)
2764
2765
MAKE_PreconditionOptimizer32bit1State(LION, half)
MAKE_PreconditionOptimizer32bit1State(LION, float)
Tim Dettmers's avatar
Tim Dettmers committed
2766
MAKE_PreconditionOptimizer32bit1State(LION, __nv_bfloat16)
2767
2768
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, half)
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, float)
2769
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2770

2771
2772
2773
2774
2775
2776
#define MAKE_Optimizer32bit1State(oname, gtype)                                                                        \
    template __global__ void kOptimizer32bit1State<gtype, oname>(                                                      \
        gtype * g, gtype * p, float* state1, float* unorm, const float max_unorm, const float param_norm,              \
        const float beta1, const float beta2, const float eps, const float weight_decay, const int step,               \
        const float lr, const float gnorm_scale, const bool skip_zeros, const int n                                    \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2777
2778
2779

MAKE_Optimizer32bit1State(MOMENTUM, half)
MAKE_Optimizer32bit1State(MOMENTUM, float)
2780
MAKE_Optimizer32bit1State(MOMENTUM, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2781
2782
MAKE_Optimizer32bit1State(RMSPROP, half)
MAKE_Optimizer32bit1State(RMSPROP, float)
2783
MAKE_Optimizer32bit1State(RMSPROP, __nv_bfloat16)
2784
2785
MAKE_Optimizer32bit1State(LION, half)
MAKE_Optimizer32bit1State(LION, float)
Tim Dettmers's avatar
Tim Dettmers committed
2786
MAKE_Optimizer32bit1State(LION, __nv_bfloat16)
2787
2788
MAKE_Optimizer32bit1State(ADAGRAD, half)
MAKE_Optimizer32bit1State(ADAGRAD, float)
2789
MAKE_Optimizer32bit1State(ADAGRAD, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2790

2791
2792
2793
2794
2795
2796
#define MAKE_PreconditionOptimizer32bit2State(oname, gtype)                                                            \
    template __global__ void kPreconditionOptimizer32bit2State<gtype, oname, 4096, 8>(                                 \
        gtype * g, gtype * p, float* state1, float* state2, float* unorm, const float beta1, const float beta2,        \
        const float eps, const float weight_decay, const int step, const float lr, const float gnorm_scale,            \
        const int n                                                                                                    \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2797
2798

MAKE_PreconditionOptimizer32bit2State(ADAM, float)
2799
2800
MAKE_PreconditionOptimizer32bit2State(ADAM, half)
MAKE_PreconditionOptimizer32bit2State(ADAM, __nv_bfloat16)
2801
2802
2803
MAKE_PreconditionOptimizer32bit2State(ADEMAMIX, float)
MAKE_PreconditionOptimizer32bit2State(ADEMAMIX, half)
MAKE_PreconditionOptimizer32bit2State(ADEMAMIX, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2804

2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
template __global__ void kOptimizer32bit2State<float, ADAM>(
    float* g, float* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<half, ADAM>(
    half* g, half* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<__nv_bfloat16, ADAM>(
    __nv_bfloat16* g, __nv_bfloat16* p, float* state1, float* state2, float* unorm, const float max_unorm,
    const float param_norm, const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<float, ADEMAMIX>(
    float* g, float* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<half, ADEMAMIX>(
    half* g, half* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<__nv_bfloat16, ADEMAMIX>(
    __nv_bfloat16* g, __nv_bfloat16* p, float* state1, float* state2, float* unorm, const float max_unorm,
    const float param_norm, const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);

#define MAKE_PreconditionStatic8bit1State(oname, gtype)                                                                \
    template __global__ void kPreconditionOptimizerStatic8bit1State<gtype, oname>(                                     \
        gtype * p, gtype* __restrict__ const g, unsigned char* __restrict__ const state1, float* unorm,                \
        const float beta1, const float beta2, const float eps, const int step, float* __restrict__ const quantiles1,   \
        float* max1, float* new_max1, const float weight_decay, const float gnorm_scale, const int n                   \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2848
2849
2850
2851
2852

MAKE_PreconditionStatic8bit1State(MOMENTUM, half)
MAKE_PreconditionStatic8bit1State(MOMENTUM, float)
MAKE_PreconditionStatic8bit1State(RMSPROP, half)
MAKE_PreconditionStatic8bit1State(RMSPROP, float)
2853
2854
MAKE_PreconditionStatic8bit1State(LION, half)
MAKE_PreconditionStatic8bit1State(LION, float)
2855
2856
MAKE_PreconditionStatic8bit1State(ADAGRAD, half)
MAKE_PreconditionStatic8bit1State(ADAGRAD, float)
Tim Dettmers's avatar
Tim Dettmers committed
2857

2858
2859
2860
2861
2862
2863
2864
#define MAKE_optimizerStatic8bit1State(oname, gtype)                                                                   \
    template __global__ void kOptimizerStatic8bit1State<gtype, oname>(                                                 \
        gtype * p, gtype* const g, unsigned char* state1, const float* unorm, const float max_unorm,                   \
        const float param_norm, const float beta1, const float beta2, const float eps, const int step, const float lr, \
        float* __restrict__ const quantiles1, float* max1, float* new_max1, float weight_decay,                        \
        const float gnorm_scale, const int n                                                                           \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2865
2866
2867
2868
2869

MAKE_optimizerStatic8bit1State(MOMENTUM, half)
MAKE_optimizerStatic8bit1State(MOMENTUM, float)
MAKE_optimizerStatic8bit1State(RMSPROP, half)
MAKE_optimizerStatic8bit1State(RMSPROP, float)
2870
2871
MAKE_optimizerStatic8bit1State(LION, half)
MAKE_optimizerStatic8bit1State(LION, float)
2872
2873
2874
MAKE_optimizerStatic8bit1State(ADAGRAD, half)
MAKE_optimizerStatic8bit1State(ADAGRAD, float)

2875
2876
2877
2878
2879
2880
2881
#define MAKE_PreconditionStatic8bit2State(oname, gtype)                                                                \
    template __global__ void kPreconditionOptimizerStatic8bit2State<gtype, oname>(                                     \
        gtype * p, gtype* __restrict__ const g, unsigned char* __restrict__ const state1,                              \
        unsigned char* __restrict__ const state2, float* unorm, const float beta1, const float beta2, const float eps, \
        const int step, float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* max1,       \
        float* max2, float* new_max1, float* new_max2, const float gnorm_scale, const int n                            \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2882
2883
2884
2885

MAKE_PreconditionStatic8bit2State(ADAM, half)
MAKE_PreconditionStatic8bit2State(ADAM, float)

2886
2887
2888
2889
2890
2891
2892
2893
#define MAKE_optimizerStatic8bit2State(oname, gtype)                                                                   \
    template __global__ void kOptimizerStatic8bit2State<gtype, oname>(                                                 \
        gtype * p, gtype* const g, unsigned char* state1, unsigned char* state2, const float* unorm,                   \
        const float max_unorm, const float param_norm, const float beta1, const float beta2, const float eps,          \
        const int step, const float lr, float* __restrict__ const quantiles1, float* __restrict__ const quantiles2,    \
        float* max1, float* max2, float* new_max1, float* new_max2, float weight_decay, const float gnorm_scale,       \
        const int n                                                                                                    \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2894
2895
2896
2897

MAKE_optimizerStatic8bit2State(ADAM, half)
MAKE_optimizerStatic8bit2State(ADAM, float)

2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
template __global__ void
    kPercentileClipping<float, 2048, 4>(float* __restrict__ g, float* gnorm_vec, int step, const int n);
template __global__ void
    kPercentileClipping<half, 2048, 4>(half* __restrict__ g, float* gnorm_vec, int step, const int n);

#define MAKE_kQuantizeBlockwise(dtype, blocksize, num_per_thread, stochastic, data_type_name)                          \
    template __global__ void kQuantizeBlockwise<dtype, blocksize, num_per_thread, stochastic, data_type_name>(         \
        float* code, dtype* __restrict__ const A, float* absmax, unsigned char* out, float* __restrict__ const rand,   \
        const int rand_offset, const int n                                                                             \
    );

MAKE_kQuantizeBlockwise(half, 4096, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 4096, 4, 1, General8bit)
MAKE_kQuantizeBlockwise(half, 2048, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 1024, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 512, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 256, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 128, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 64, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 4096, 4, 0, FP4)
MAKE_kQuantizeBlockwise(half, 2048, 4, 0, FP4)
MAKE_kQuantizeBlockwise(half, 1024, 4, 0, FP4)
MAKE_kQuantizeBlockwise(half, 512, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half, 256, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half, 128, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half, 64, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half, 4096, 4, 0, NF4)
MAKE_kQuantizeBlockwise(half, 2048, 4, 0, NF4)
MAKE_kQuantizeBlockwise(half, 1024, 4, 0, NF4)
MAKE_kQuantizeBlockwise(half, 512, 2, 0, NF4)
MAKE_kQuantizeBlockwise(half, 256, 2, 0, NF4)
MAKE_kQuantizeBlockwise(half, 128, 2, 0, NF4)
MAKE_kQuantizeBlockwise(half, 64, 2, 0, NF4)
Tim Dettmers's avatar
Tim Dettmers committed
2931
2932
2933
2934
MAKE_kQuantizeBlockwise(float, 4096, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 4096, 4, 1, General8bit)
MAKE_kQuantizeBlockwise(float, 2048, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 1024, 4, 0, General8bit)
2935
2936
2937
2938
MAKE_kQuantizeBlockwise(float, 512, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 256, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 128, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 64, 2, 0, General8bit)
Tim Dettmers's avatar
Tim Dettmers committed
2939
2940
2941
MAKE_kQuantizeBlockwise(float, 4096, 4, 0, FP4)
MAKE_kQuantizeBlockwise(float, 2048, 4, 0, FP4)
MAKE_kQuantizeBlockwise(float, 1024, 4, 0, FP4)
2942
2943
2944
2945
MAKE_kQuantizeBlockwise(float, 512, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float, 256, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float, 128, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float, 64, 2, 0, FP4)
Tim Dettmers's avatar
Tim Dettmers committed
2946
2947
2948
MAKE_kQuantizeBlockwise(float, 4096, 4, 0, NF4)
MAKE_kQuantizeBlockwise(float, 2048, 4, 0, NF4)
MAKE_kQuantizeBlockwise(float, 1024, 4, 0, NF4)
2949
2950
2951
2952
MAKE_kQuantizeBlockwise(float, 512, 2, 0, NF4)
MAKE_kQuantizeBlockwise(float, 256, 2, 0, NF4)
MAKE_kQuantizeBlockwise(float, 128, 2, 0, NF4)
MAKE_kQuantizeBlockwise(float, 64, 2, 0, NF4)
Tim Dettmers's avatar
Tim Dettmers committed
2953

2954
2955
2956
2957
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 1, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 2048, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 1024, 4, 0, General8bit)
2958
2959
2960
2961
MAKE_kQuantizeBlockwise(__nv_bfloat16, 512, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 256, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 128, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 64, 2, 0, General8bit)
2962
2963
2964
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 2048, 4, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 1024, 4, 0, FP4)
2965
2966
2967
2968
MAKE_kQuantizeBlockwise(__nv_bfloat16, 512, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 256, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 128, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 64, 2, 0, FP4)
2969
2970
2971
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 2048, 4, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 1024, 4, 0, NF4)
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
MAKE_kQuantizeBlockwise(__nv_bfloat16, 512, 2, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 256, 2, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 128, 2, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 64, 2, 0, NF4)

template __global__ void kDequantizeBlockwise<half, 512, 64, 8, FP4>(
    float* code, unsigned char* A, float* absmax, half* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<half, 512, 64, 8, General8bit>(
    float* code, unsigned char* A, float* absmax, half* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<half, 512, 64, 8, NF4>(
    float* code, unsigned char* A, float* absmax, half* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<float, 512, 64, 8, FP4>(
    float* code, unsigned char* A, float* absmax, float* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<float, 512, 64, 8, General8bit>(
    float* code, unsigned char* A, float* absmax, float* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<float, 512, 64, 8, NF4>(
    float* code, unsigned char* A, float* absmax, float* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, FP4>(
    float* code, unsigned char* A, float* absmax, __nv_bfloat16* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, General8bit>(
    float* code, unsigned char* A, float* absmax, __nv_bfloat16* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, NF4>(
    float* code, unsigned char* A, float* absmax, __nv_bfloat16* out, const int blocksize, const int n
);

#define MAKE_OptimizerStatic8bit2StateBlockwise(oname, gtype, block_size, num_per_thread)                              \
    template __global__ void kOptimizerStatic8bit2StateBlockwise<gtype, oname, block_size, num_per_thread>(            \
        gtype * p, gtype* __restrict__ const g, unsigned char* state1, unsigned char* state2, const float beta1,       \
        const float beta2, const float beta3, const float alpha, const float eps, const int step, const float lr,      \
        float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* absmax1, float* absmax2,    \
        float weight_decay, const float gnorm_scale, const bool skip_zeros, const int n                                \
    );
Tim Dettmers's avatar
Tim Dettmers committed
3012

3013
3014
3015
3016
3017
3018
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, float, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, half, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADEMAMIX, float, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADEMAMIX, half, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADEMAMIX, __nv_bfloat16, 256, 1)
Tim Dettmers's avatar
Tim Dettmers committed
3019

3020
3021
3022
3023
3024
3025
#define MAKE_OptimizerStatic8bit1StateBlockwise(oname, gtype, block_size, num_per_thread)                              \
    template __global__ void kOptimizerStatic8bit1StateBlockwise<gtype, oname, block_size, num_per_thread>(            \
        gtype * p, gtype* __restrict__ const g, unsigned char* state1, const float beta1, const float beta2,           \
        const float eps, const int step, const float lr, float* __restrict__ const quantiles1, float* absmax1,         \
        float weight_decay, const float gnorm_scale, const bool skip_zeros, const int n                                \
    );
Tim Dettmers's avatar
Tim Dettmers committed
3026

3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(LION, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(LION, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(LION, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, __nv_bfloat16, 256, 1)
3039

3040
3041
template __device__ void printnonzero<float>(float* A, int num_values, const char* strval);
template __device__ void printnonzero<half>(half* A, int num_values, const char* strval);