kernels.cu 158 KB
Newer Older
1
2
3
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
Tim Dettmers's avatar
Tim Dettmers committed
4
5
6
7
8
9
10
11
12
13
14
// LICENSE file in the root directory of this source tree.

#include <kernels.cuh>
#include <cub/block/block_radix_sort.cuh>
#include <cub/warp/warp_reduce.cuh>
#include <cub/block/block_load.cuh>
#include <cub/block/block_discontinuity.cuh>
#include <cub/block/block_store.cuh>
#include <cub/block/block_reduce.cuh>
#include <cub/cub.cuh>
#include <math_constants.h>
Tim Dettmers's avatar
Tim Dettmers committed
15
#include <mma.h>
Tim Dettmers's avatar
Tim Dettmers committed
16

Tim Dettmers's avatar
Tim Dettmers committed
17

Tim Dettmers's avatar
Tim Dettmers committed
18
19
20
21
22
#define HLF_MAX 65504
#define TH 1024
#define NUM 4
#define NUM_BLOCK 4096

Tim Dettmers's avatar
Tim Dettmers committed
23

Tim Dettmers's avatar
Tim Dettmers committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
// source: https://stackoverflow.com/questions/17399119/how-do-i-use-atomicmax-on-floating-point-values-in-cuda
__device__ float atomicMax(float* address, float val) {
  int* address_as_i = reinterpret_cast<int*>(address);
  int old = *address_as_i, assumed;
  do {
    assumed = old;
    old = atomicCAS(
        reinterpret_cast<int*>(address), assumed,
        __float_as_int(fmaxf(val, __int_as_float(assumed))));
  } while (assumed != old);
  return __int_as_float(old);
}

__device__ float atomicMin(float* address, float val) {
  int* address_as_i = reinterpret_cast<int*>(address);
  int old = *address_as_i, assumed;
  do {
    assumed = old;
    old = atomicCAS(
        reinterpret_cast<int*>(address), assumed,
        __float_as_int(fminf(val, __int_as_float(assumed))));
  } while (assumed != old);
  return __int_as_float(old);
}

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
__device__ float dDequantizeFP4(unsigned char val, float absmax)
{
  float sign = (val & 0b1000) == 8 ? -1.0f : 1.0f;
  if((val & 0b0110) == 0)
  {
    // subnormal
    if((val & 0b0001) == 0)
      return 0.0f;
    else
      return sign*0.0625f*absmax;
  }
  else
  {
    // normal
    float exponent = ((val & 0b0100) == 4 ? 2.0f : 8.0f) + ((val & 0b0010) == 2 ? 0.0f : 2.0f);
    float fraction = (val & 0b0001) == 1 ? 1.5f : 1.0f;

    return sign*exponent*fraction*absmax;
  }
}

Tim Dettmers's avatar
Tim Dettmers committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
__device__ float d2DequantizeFP4(unsigned char val)
{
  float sign = (val & 0b1000) == 8 ? -1.0f : 1.0f;
  if((val & 0b0110) == 0)
  {
    // subnormal
    if((val & 0b0001) == 0)
      return 0.0f;
    else
      return sign*0.0625f;
  }
  else
  {
    // normal
    float exponent = ((val & 0b0100) == 4 ? 2.0f : 8.0f) + ((val & 0b0010) == 2 ? 0.0f : 2.0f);
    float fraction = (val & 0b0001) == 1 ? 1.5f : 1.0f;

    return sign*exponent*fraction;
  }
}

Tim Dettmers's avatar
Tim Dettmers committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
__device__ float dDequantizeFP4Tree(unsigned char val, float absmax)
{
  float sign = (val & 0b1000) == 8 ? -1.0f : 1.0f;
  if((val & 0b0100) == 4) // 0
    if((val & 0b0010) == 2) //01
      if((val & 0b0001) == 1) // 111
        return 0.25000000f*absmax*sign; // 1111
      else
        return 0.16666667f*absmax*sign; // 1110
    else
      if((val & 0b0001) == 1) // 110
        return 0.50000000f*absmax*sign; // 1101
      else
        return 0.33333333f*absmax*sign; // 1100
  else
    if((val & 0b0010) == 2) //10
      if((val & 0b0001) == 1) // 101
        return 1.00000000f*absmax*sign; // 1011
      else
        return 0.66666667f*absmax*sign; // 1010
111
    else
Tim Dettmers's avatar
Tim Dettmers committed
112
113
114
115
116
117
      if((val & 0b0001) == 1) // 100
        return 5.208333333e-03f*absmax*sign; // 1001
      else
        return 0.00000000f*absmax*sign; // 1000
}

118
119
120
121
122
123
124
125
126
127
128
129
130
131
__device__ unsigned char dQuantizeFP4(float x)
{
  // FP4 with bias of 3
  // first bit is a sign
  // subnormals
  // 0b000 = 0
  // 0b001 = 0.0625
  // 0b110 = 2
  // 0b111 = 3
  // 0b100 = 4
  // 0b101 = 6
  // 0b010 = 8
  // 0b011 = 12

Tim Dettmers's avatar
Tim Dettmers committed
132
133
134

  // we do a binary search
  // the pivots are divided by 12 (the FP4 absmax)
135
  // since we assume input data is in [-1.0, 1.0]
Tim Dettmers's avatar
Tim Dettmers committed
136
137

  // !be careful here, its easy to make a mistake
138
  // that is difficult to notice if you add an extra
Tim Dettmers's avatar
Tim Dettmers committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
  // zero somewhere!

  int sign = x < 0 ? 0b1000 : 0b0000;
  x = fabsf(x);
  if(x > 0.29166667f)
    if( x > 0.583333f)
      if( x > 0.8333333f)
        return 0b0011+sign;
      else
        return 0b0010+sign;
    else
      if(x > 0.4166667f)
        return 0b101+sign;
      else
        return 0b100+sign;
  else
    if(x > 0.0859375f)
      if(x > 0.20833333f)
        return 0b0111+sign;
      else
        return 0b0110+sign;
    else
      if(x > 0.00260417f)
        return 0b0001+sign;
      else
        return 0b0000+sign;
}

Tim Dettmers's avatar
Tim Dettmers committed
167
168
169
170
171
172
173
174
__device__ half dhDequantizeNF4(unsigned char val)
{
  // the values for this tree was generated by test_normal_map_tree
  // in the file tests/test_functional.py
  if((val & 0b1000) == 8)
    if((val & 0b0100) == 4) // 1
      if((val & 0b0010) == 2) // 11
        if((val & 0b0001) == 1) // 111
175
          return 1.0f;
Tim Dettmers's avatar
Tim Dettmers committed
176
177
178
179
        else
          return 0.7229568362236023f;
      else
        if((val & 0b0001) == 1) // 110
180
          return 0.5626170039176941f;
Tim Dettmers's avatar
Tim Dettmers committed
181
        else
182
          return 0.44070982933044434f;
Tim Dettmers's avatar
Tim Dettmers committed
183
184
185
    else
      if((val & 0b0010) == 2) //10
        if((val & 0b0001) == 1) // 101
186
          return 0.33791524171829224f;
Tim Dettmers's avatar
Tim Dettmers committed
187
        else
188
189
          return 0.24611230194568634f;
      else
Tim Dettmers's avatar
Tim Dettmers committed
190
        if((val & 0b0001) == 1) // 100
191
          return 0.16093020141124725f;
Tim Dettmers's avatar
Tim Dettmers committed
192
        else
193
          return 0.07958029955625534f;
Tim Dettmers's avatar
Tim Dettmers committed
194
195
196
197
198

  else
    if((val & 0b0100) == 4) // 0
      if((val & 0b0010) == 2) //01
        if((val & 0b0001) == 1) // 011
199
          return 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
200
        else
201
          return -0.09105003625154495f;
Tim Dettmers's avatar
Tim Dettmers committed
202
203
      else
        if((val & 0b0001) == 1) // 010
204
          return -0.18477343022823334f;
Tim Dettmers's avatar
Tim Dettmers committed
205
206
207
208
209
210
211
        else
          return -0.28444138169288635f;
    else
      if((val & 0b0010) == 2) //00
        if((val & 0b0001) == 1) // 001
          return -0.39491748809814453f;
        else
212
213
          return -0.5250730514526367f;
      else
Tim Dettmers's avatar
Tim Dettmers committed
214
        if((val & 0b0001) == 1) // 000
215
          return -0.6961928009986877f;
Tim Dettmers's avatar
Tim Dettmers committed
216
        else
217
          return -1.0f;
Tim Dettmers's avatar
Tim Dettmers committed
218
219
220
221

}

__device__ float dDequantizeNF4(unsigned char val)
Tim Dettmers's avatar
Tim Dettmers committed
222
{
223

Tim Dettmers's avatar
Tim Dettmers committed
224
225
226
227
228
229
  // the values for this tree was generated by test_normal_map_tree
  // in the file tests/test_functional.py
  if((val & 0b1000) == 8)
    if((val & 0b0100) == 4) // 1
      if((val & 0b0010) == 2) // 11
        if((val & 0b0001) == 1) // 111
230
          return 1.0f;
Tim Dettmers's avatar
Tim Dettmers committed
231
        else
Tim Dettmers's avatar
Tim Dettmers committed
232
          return 0.7229568362236023f;
Tim Dettmers's avatar
Tim Dettmers committed
233
234
      else
        if((val & 0b0001) == 1) // 110
235
          return 0.5626170039176941f;
Tim Dettmers's avatar
Tim Dettmers committed
236
        else
237
          return 0.44070982933044434f;
Tim Dettmers's avatar
Tim Dettmers committed
238
239
240
    else
      if((val & 0b0010) == 2) //10
        if((val & 0b0001) == 1) // 101
241
          return 0.33791524171829224f;
Tim Dettmers's avatar
Tim Dettmers committed
242
        else
243
244
          return 0.24611230194568634f;
      else
Tim Dettmers's avatar
Tim Dettmers committed
245
        if((val & 0b0001) == 1) // 100
246
          return 0.16093020141124725f;
Tim Dettmers's avatar
Tim Dettmers committed
247
        else
248
          return 0.07958029955625534f;
Tim Dettmers's avatar
Tim Dettmers committed
249
250
251
252
253

  else
    if((val & 0b0100) == 4) // 0
      if((val & 0b0010) == 2) //01
        if((val & 0b0001) == 1) // 011
254
          return 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
255
        else
256
          return -0.09105003625154495f;
Tim Dettmers's avatar
Tim Dettmers committed
257
258
      else
        if((val & 0b0001) == 1) // 010
259
          return -0.18477343022823334f;
Tim Dettmers's avatar
Tim Dettmers committed
260
        else
Tim Dettmers's avatar
Tim Dettmers committed
261
          return -0.28444138169288635f;
Tim Dettmers's avatar
Tim Dettmers committed
262
263
264
    else
      if((val & 0b0010) == 2) //00
        if((val & 0b0001) == 1) // 001
Tim Dettmers's avatar
Tim Dettmers committed
265
          return -0.39491748809814453f;
Tim Dettmers's avatar
Tim Dettmers committed
266
        else
267
268
          return -0.5250730514526367f;
      else
Tim Dettmers's avatar
Tim Dettmers committed
269
        if((val & 0b0001) == 1) // 000
270
          return -0.6961928009986877f;
Tim Dettmers's avatar
Tim Dettmers committed
271
        else
272
          return -1.0f;
Tim Dettmers's avatar
Tim Dettmers committed
273
274
275

}

276
__device__ unsigned char dQuantizeNF4(float x)
Tim Dettmers's avatar
Tim Dettmers committed
277
278
{

Tim Dettmers's avatar
Tim Dettmers committed
279
280
281
282
283
284
285
286
287
  // the values for this tree was generated by test_normal_map_tree
  // in the file tests/test_functional.py
  if(x > 0.03979014977812767f)
    if(x > 0.3893125355243683f) // 1
      if(x > 0.6427869200706482f) // 11
        if(x > 0.8614784181118011f) // 111
          return 0b1111;
        else
          return 0b1110;
288
      else
Tim Dettmers's avatar
Tim Dettmers committed
289
290
291
292
        if(x > 0.5016634166240692f) // 110
          return 0b1101;
        else
          return 0b1100;
293
    else
Tim Dettmers's avatar
Tim Dettmers committed
294
295
296
297
298
      if(x > 0.2035212516784668f) // 10
        if(x > 0.2920137718319893f) // 101
          return 0b1011;
        else
          return 0b1010;
299
      else
Tim Dettmers's avatar
Tim Dettmers committed
300
301
302
        if(x > 0.1202552504837513f) // 100
          return 0b1001;
        else
303
          return 0b1000;
304
  else
Tim Dettmers's avatar
Tim Dettmers committed
305
306
307
308
309
310
    if(x > -0.33967943489551544f) // 0
      if(x > -0.13791173323988914f) // 01
        if(x > -0.045525018125772476f) // 011
          return 0b0111;
        else
          return 0b0110;
311
      else
Tim Dettmers's avatar
Tim Dettmers committed
312
313
314
315
        if(x > -0.23460740596055984f) // 010
          return 0b0101;
        else
          return 0b0100;
316
    else
Tim Dettmers's avatar
Tim Dettmers committed
317
318
319
320
321
      if(x > -0.6106329262256622f) // 00
        if(x > -0.4599952697753906f) // 001
          return 0b0011;
        else
          return 0b0010;
322
      else
Tim Dettmers's avatar
Tim Dettmers committed
323
324
325
326
        if(x > -0.8480964004993439f) // 000
          return 0b0001;
        else
          return 0b0000;
327
}
328
329
330
// sign function for lion
// taken from https://stackoverflow.com/a/4609795, but not sure if there's a proper way to do this in CUDA

331
332
template <typename T> __device__ int sgn(T val)
{
333
334
  return (T(0) < val) - (val < T(0));
}
335

Tim Dettmers's avatar
Tim Dettmers committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
template <int STOCHASTIC>
__device__ unsigned char dQuantize(float* smem_code, const float rand, float x)
{
    int pivot = 127;
    int upper_pivot = 255;
    int lower_pivot = 0;

    float lower = -1.0f;
    float upper = 1.0f;

    float val = smem_code[pivot];
    // i>>=1 = {32, 16, 8, 4, 2, 1}
    for(int i = 64; i > 0; i>>=1)
    {
        if(x > val)
        {
            lower_pivot = pivot;
            lower = val;
            pivot+=i;
        }
        else
        {
            upper_pivot = pivot;
            upper = val;
            pivot-=i;
        }
        val = smem_code[pivot];
    }

    if(upper_pivot == 255)
        upper = smem_code[upper_pivot];
    if(lower_pivot == 0)
        lower = smem_code[lower_pivot];

    if(!STOCHASTIC)
    {
      if(x > val)
      {
        float midpoint = (upper+val)*0.5f;
        if(x > midpoint)
        {
          return upper_pivot;
        }
        else
          return pivot;
      }
      else
      {
        float midpoint = (lower+val)*0.5f;
        if(x < midpoint)
          return lower_pivot;
        else
          return pivot;
      }
    }
    else
    {
      if(x > val)
      {
        float dist_to_upper = fabsf(upper-x);
        float dist_full = upper-val;
        if(rand >= dist_to_upper/dist_full) return upper_pivot;
        else return pivot;
      }
      else
      {
        float dist_to_lower = fabsf(lower-x);
        float dist_full = val-lower;
        if(rand >= dist_to_lower/dist_full) return lower_pivot;
        else return pivot;
      }
    }
}

template <int SIGNED>
__device__ __forceinline__ unsigned char quantize_2D(float *__restrict__ quadrants, float *__restrict__ const smem_code, float x)
{
    int pivot = 127;
    int upper_pivot = 255;
    int lower_pivot = 0;

    float lower = SIGNED ? -1.0f : 0.0f;
    float upper = 1.0f;
    float midpoint;
    float val = quadrants[1];
    int local_pivot = 1;
    int offset = 1;

    // i>>=1 = {32, 16, 8, 4, 2, 1}
    for(int i = 64; i > 0; i>>=1)
    {
        if(x > val)
        {
            lower_pivot = pivot;
            lower = val;
            pivot+=i;
            //val = i == 64 ? quadrants[2] : smem_code[pivot];
            local_pivot += offset;
        }
        else
        {
            upper_pivot = pivot;
            upper = val;
            pivot-=i;
            //val = i == 64 ? quadrants[0] : smem_code[pivot];
            local_pivot -= offset;
        }
        val = i >= 64 ? quadrants[local_pivot] : smem_code[pivot];
        offset -= 1;
    }

    if(x > val)
    {
      midpoint = (upper+val)*0.5f;
      if(x > midpoint)
        return upper_pivot;
      else
        return pivot;
    }
    else
    {
      midpoint = (lower+val)*0.5f;
      if(x < midpoint)
        return lower_pivot;
      else
        return pivot;
    }
}

template <int SIGNED>
__device__ __forceinline__ unsigned char quantize_quadrant(int QUADRANT, float *__restrict__ const smem_code, float x, float lower, float midpoint, float upper)
{
    int lower_pivot = QUADRANT*16-1 - 0;
    int pivot = QUADRANT*16-1 + 16;
    int upper_pivot = QUADRANT*16-1 + 31;

    float val = midpoint;

    // i>>=1 = {32, 16, 8, 4, 2, 1}
    for(int i = 16; i > 0; i>>=1)
    {
        if(x > val)
        {
            lower_pivot = pivot;
            lower = val;
            pivot+=i;
        }
        else
        {
            upper_pivot = pivot;
            upper = val;
            pivot-=i;
        }
        val = smem_code[pivot];
    }

    if(x > val)
    {
      midpoint = (upper+val)*0.5f;
      if(x > midpoint)
        return upper_pivot;
      else
        return pivot;
    }
    else
    {
      midpoint = (lower+val)*0.5f;
      if(x < midpoint)
        return lower_pivot;
      else
        return pivot;
    }
}

__global__ void kHistogramScatterAdd2D(float* histogram, int *index1, int *index2, float *src, const int maxidx1, const int n)
{
  const int tid = threadIdx.x + (blockDim.x*blockIdx.x);
  const int numThreads = blockDim.x*gridDim.x;

  for(int i = tid; i < n; i+=numThreads)
  {
      int idx = (index1[i]*maxidx1) + index2[i];
      atomicAdd(&histogram[idx], src[i]);
  }
}

template<typename T, int BLOCK_SIZE, int NUM_MAX>
__global__ void kCompressMax(T * __restrict__ const A, T* out, unsigned char* out_idx, const int n)
{
  typedef cub::WarpReduce<T> WarpReduce;
  __shared__ typename WarpReduce::TempStorage temp_storage;
  typedef cub::BlockLoad<T, BLOCK_SIZE/8 , 8, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
  __shared__ typename LoadT::TempStorage loadt;

  const int warp_idx = threadIdx.x/32;
  const int valid_items = n - (blockIdx.x*BLOCK_SIZE) > BLOCK_SIZE ? BLOCK_SIZE : n - (blockIdx.x*BLOCK_SIZE);

  //  BLOCK_SIZE/32 == number of warps
  __shared__ int smem_max_indices[8*BLOCK_SIZE/32];
  __shared__ float smem_max_values[8*BLOCK_SIZE/32];

  T values[8];
  T max1 = -64000.0f;
  T max2 = -64000.0f;
  int max_idx1 = -1;
  int max_idx2 = -1;
  int sign1 = -1;
  int sign2 = -1;

  // 1. load 8 values per thread
  // 2. compute 2-max in registers (64 max per warp)
  // 3. do warp reduction + broadcast back
  // 4. Up-shift maxed value, write index into shared memory, replace with 2nd largest
  // 5. Repeat (3) 8 times for top 8 values in 256
  // 6. store with byte index

  LoadT(loadt).Load(&(A[(blockIdx.x*BLOCK_SIZE)]), values, valid_items, (T)0.0f);
  #pragma unroll 8
  for(int i = 0; i < 8; i++)
  {
    T absval = fabsf(values[i]);
    if(absval > max1)
    {
      max1 = values[i];
      sign1 = signbit(values[i]);
      max_idx1 = 8*threadIdx.x + i;
    }
    else if(absval > max2)
    {
      max2 = values[i];
      sign2 = signbit(values[i]);
      max_idx2 = 8*threadIdx.x + i;
    }
  }

  float warp_max;
  for(int i = 0; i < 8; i++)
  {
    // 3. do warp reduction + broadcast back
    warp_max = WarpReduce(temp_storage).Reduce(max1, cub::Max());
    warp_max = cub::ShuffleIndex<32>(warp_max, 0, 0xffffffff);

    // 4. Up-shift maxed value, write index into shared memory, replace with 2nd largest
    if(warp_max == max1)
    {
      smem_max_values[warp_idx*8 + i] = sign1 != 0 ? -max1 : max1;
      smem_max_indices[warp_idx*8 + i] = max_idx1;

      sign1 = sign2;
      max1 = max2;
      max_idx1 = max_idx2;

      max2 = -64000.0f;
    }
    __syncwarp();
  }

  if(threadIdx.x % 32 < 8)
  {
    // offset: 8 values per 256 input values
596
    //
Tim Dettmers's avatar
Tim Dettmers committed
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
    int offset = BLOCK_SIZE*blockIdx.x*BLOCK_SIZE/32*8;
  }

}

#define THREADS_ESTIMATE 512
#define NUM_ESTIMATE 8
#define BLOCK_ESTIMATE 4096

template<typename T>
__launch_bounds__(THREADS_ESTIMATE, 1)
__global__ void kEstimateQuantiles(T *__restrict__ const A, float *code, const float offset, const T max_val, const int n)
{
  const int n_full = (BLOCK_ESTIMATE*(n/BLOCK_ESTIMATE)) + (n % BLOCK_ESTIMATE == 0 ? 0 : BLOCK_ESTIMATE);
  int valid_items = (blockIdx.x+1 == gridDim.x) ? n - (blockIdx.x*BLOCK_ESTIMATE) : BLOCK_ESTIMATE;
  const int base_idx = (blockIdx.x * BLOCK_ESTIMATE);
  const float reciprocal_num_blocks = 1.0f/(n < 4096 ? 1.0f : (n/BLOCK_ESTIMATE));

  T vals[NUM_ESTIMATE];

  typedef cub::BlockRadixSort<T, THREADS_ESTIMATE, NUM_ESTIMATE, cub::NullType, 4, true, cub::BLOCK_SCAN_RAKING> BlockRadixSort;
  typedef cub::BlockLoad<T, THREADS_ESTIMATE, NUM_ESTIMATE, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;

  __shared__ union {
      typename LoadFloat::TempStorage loadf;
      typename BlockRadixSort::TempStorage sort;
      int smem_qidx[BLOCK_ESTIMATE];
  } temp_storage;

  for (unsigned int i = base_idx; i < n_full; i += gridDim.x*BLOCK_ESTIMATE)
  {
      valid_items = n - i > BLOCK_ESTIMATE ? BLOCK_ESTIMATE : n - i;

      // do not process half-blocks
      if(valid_items < BLOCK_ESTIMATE && n > BLOCK_ESTIMATE){ continue; }

      #pragma unroll 4
      for(int j = 0; j < NUM_ESTIMATE; j++)
          vals[j] = max_val;

      __syncthreads();
      LoadFloat(temp_storage.loadf).Load(&(A[i]), vals, valid_items);

      #pragma unroll 4
      for(int j = 0; j < NUM_ESTIMATE; j++)
          vals[j] = ((float)vals[j]) * reciprocal_num_blocks;


      __syncthreads();
      // sort into striped pattern to mitigate bank conflicts
      // striped pattern index for thread 0 [0, 1024, 2048, 3096]
      // striped pattern index for thread 1 [1, 1025, 2049, 3097]
      BlockRadixSort(temp_storage.sort).SortBlockedToStriped(vals);

      __syncthreads();
      for(int j = threadIdx.x; j < BLOCK_ESTIMATE; j+=blockDim.x)
          temp_storage.smem_qidx[j] = -1;

655
656
      __syncthreads();

Tim Dettmers's avatar
Tim Dettmers committed
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
      if(threadIdx.x < 256)
      {
          float q_interval = (1.0f-(2.0f*offset))/255.0f;
          int local_idx = round(((offset+(threadIdx.x*q_interval))*(valid_items-1)));
          temp_storage.smem_qidx[local_idx] = threadIdx.x;
      }

      __syncthreads();

      for(int i = threadIdx.x; i < BLOCK_ESTIMATE; i+=blockDim.x)
      {
          if(temp_storage.smem_qidx[i] != -1)
              atomicAdd(&code[temp_storage.smem_qidx[i]], vals[i/THREADS_ESTIMATE]);
      }
  }
}


__launch_bounds__(TH, 4)
__global__ void kQuantize(float * code, float * __restrict__ const A, unsigned char *out, const int n)
{
  const int n_full = (NUM_BLOCK*(n/NUM_BLOCK)) + (n % NUM_BLOCK == 0 ? 0 : NUM_BLOCK);
  int valid_items = (blockIdx.x+1 == gridDim.x) ? n - (blockIdx.x*NUM_BLOCK) : NUM_BLOCK;
  const int base_idx = (blockIdx.x * NUM_BLOCK);

  float vals[NUM];
  unsigned char qvals[NUM];
  //const int lane_id = threadIdx.x % 2;

  typedef cub::BlockLoad<float, TH, NUM, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
  typedef cub::BlockStore<unsigned char, TH, NUM, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;

  __shared__ typename LoadFloat::TempStorage loadf;
  __shared__ typename StoreChar::TempStorage storec;
  __shared__ float smem_code[256];
  //__shared__ float smem_code[2][257];

  if(threadIdx.x < 256)
  {
    smem_code[threadIdx.x] = code[threadIdx.x];
    //smem_code[0][threadIdx.x] = code[threadIdx.x];
    //smem_code[1][threadIdx.x] = smem_code[0][threadIdx.x];
  }


  for (unsigned int i = base_idx; i < n_full; i += gridDim.x*NUM_BLOCK)
  {
      // number of values already processed in blocks +
      // number of values already processed in this block +
      // rand_offset % mod value
      valid_items = n - i > NUM_BLOCK ? NUM_BLOCK : n - i;

      __syncthreads();
      LoadFloat(loadf).Load(&(A[i]), vals, valid_items);


      #pragma unroll 4
      for(int j = 0; j < NUM; j++)
          qvals[j] = dQuantize<0>(smem_code, 0.0f, vals[j]);

      __syncthreads();
      StoreChar(storec).Store(&(out[i]), qvals, valid_items);
  }
}

Tim Dettmers's avatar
Tim Dettmers committed
722
template<typename T, int BLOCK_SIZE, int NUM_PER_TH, int STOCHASTIC, int DATA_TYPE>
723
//__launch_bounds__(TH, 4)
Tim Dettmers's avatar
Tim Dettmers committed
724
725
726
727
728
729
__global__ void kQuantizeBlockwise(float * code, T * __restrict__ const A, float *absmax, unsigned char *out, float * __restrict__ const rand, const int rand_offset, const int n)
{
  const int n_full = gridDim.x * BLOCK_SIZE;
  int valid_items = 0;
  const int base_idx = (blockIdx.x * BLOCK_SIZE);

730
731
  T vals[NUM_PER_TH];
  float rand_vals[NUM_PER_TH];
Tim Dettmers's avatar
Tim Dettmers committed
732
  unsigned char qvals[(DATA_TYPE > 0) ? NUM_PER_TH/2 : NUM_PER_TH];
Tim Dettmers's avatar
Tim Dettmers committed
733
734
735
736
737
  //float local_abs_max = -FLT_MAX;
  float local_abs_max = 0.0f;
  int local_rand_idx = 0;

  typedef cub::BlockLoad<T, BLOCK_SIZE/NUM_PER_TH, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
Tim Dettmers's avatar
Tim Dettmers committed
738
  typedef cub::BlockStore<unsigned char, BLOCK_SIZE/NUM_PER_TH, (DATA_TYPE > 0) ? NUM_PER_TH/2 : NUM_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
Tim Dettmers's avatar
Tim Dettmers committed
739
740
741
742
743
744
745
746
747
748
  typedef cub::BlockReduce<float, BLOCK_SIZE/NUM_PER_TH> BlockReduce;
  typedef cub::BlockLoad<float, BLOCK_SIZE/NUM_PER_TH, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;

  __shared__ typename LoadT::TempStorage loadt;
  __shared__ typename LoadFloat::TempStorage loadf;
  __shared__ typename StoreChar::TempStorage storec;
  __shared__ typename BlockReduce::TempStorage reduce;
  __shared__ float smem_code[256];
  __shared__ float smem_absmax_value[1];

Tim Dettmers's avatar
Tim Dettmers committed
749
  if(DATA_TYPE == General8bit)
750
751
    for(int i = threadIdx.x; i < 256; i+=blockDim.x)
      smem_code[i] = code[i];
Tim Dettmers's avatar
Tim Dettmers committed
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790

  for (unsigned int i = base_idx; i < n_full; i += gridDim.x*BLOCK_SIZE)
  {
    valid_items = n - i > BLOCK_SIZE ? BLOCK_SIZE : n - i;
    local_abs_max = -FLT_MAX;

    __syncthreads();
    LoadT(loadt).Load(&(A[i]), vals, valid_items, (T)0.0f);

    // 1. compute local max
    // 2. broadcast local max
    // 3. normalize inputs and quantize

    #pragma unroll NUM_PER_TH
    for(int j = 0; j < NUM_PER_TH; j++)
       local_abs_max = fmaxf(local_abs_max, fabsf((float)vals[j]));

    local_abs_max = BlockReduce(reduce).Reduce(local_abs_max, cub::Max(), valid_items);

    if(threadIdx.x == 0)
      smem_absmax_value[0] = local_abs_max;

    __syncthreads();

    if(threadIdx.x == 0)
      absmax[i/BLOCK_SIZE] = local_abs_max;
    else
      local_abs_max = smem_absmax_value[0];

    __syncwarp();

    local_abs_max = 1.0f/local_abs_max;

    if(STOCHASTIC)
    {
      local_rand_idx = ((blockIdx.x*NUM_BLOCK) + (threadIdx.x*NUM) + rand_offset) % (1024-4);
      LoadFloat(loadf).Load(&rand[local_rand_idx], rand_vals, BLOCK_SIZE, 0);
    }

Tim Dettmers's avatar
Tim Dettmers committed
791
792
    unsigned char packed_4bit = 0;
    switch(DATA_TYPE)
Tim Dettmers's avatar
Tim Dettmers committed
793
    {
Tim Dettmers's avatar
Tim Dettmers committed
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
        case General8bit:
            #pragma unroll NUM_PER_TH
            for(int j = 0; j < NUM_PER_TH; j++)
            {
                if(!STOCHASTIC)
                 qvals[j] = dQuantize<0>(smem_code, 0.0f, ((float)vals[j])*local_abs_max);
                else
                 qvals[j] = dQuantize<1>(smem_code, rand_vals[j], ((float)vals[j])*local_abs_max);
            }
            break;
        case FP4:
            #pragma unroll NUM_PER_TH
            for(int j = 0; j < NUM_PER_TH/2; j++)
            {
              packed_4bit |= dQuantizeFP4(((float)vals[2*j])*local_abs_max) << 4;
              packed_4bit |= dQuantizeFP4(((float)vals[2*j+1])*local_abs_max);
              qvals[j] = packed_4bit;
            }
            break;
        case NF4:
            #pragma unroll NUM_PER_TH
            for(int j = 0; j < NUM_PER_TH/2; j++)
            {
817
818
              packed_4bit |= dQuantizeNF4(((float)vals[2*j])*local_abs_max) << 4;
              packed_4bit |= dQuantizeNF4(((float)vals[2*j+1])*local_abs_max);
Tim Dettmers's avatar
Tim Dettmers committed
819
820
821
              qvals[j] = packed_4bit;
            }
            break;
Tim Dettmers's avatar
Tim Dettmers committed
822
823
824
    }

    __syncthreads();
Tim Dettmers's avatar
Tim Dettmers committed
825
    StoreChar(storec).Store(&(out[(DATA_TYPE > 0) ? i/2 : i]), qvals, (DATA_TYPE > 0) ? (valid_items+1)/2 : valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
826
827
828
  }
}

829
template<typename T, int TILE_SIZE, int THREADS, int NUM_PER_TH, int DATA_TYPE>
830
__global__ void kDequantizeBlockwise(float *code, unsigned char * A, float * absmax, T *out, const int blocksize, const int n)
Tim Dettmers's avatar
Tim Dettmers committed
831
832
{

833
834
835
836
  const int n_load = (gridDim.x * TILE_SIZE);
  int valid_items_load = 0;
  int valid_items_store = 0;
  const int base_idx = (blockIdx.x * TILE_SIZE);
Tim Dettmers's avatar
Tim Dettmers committed
837

838
  T vals[NUM_PER_TH*((DATA_TYPE > 0) ? 2 : 1)];
839
  unsigned char qvals[NUM_PER_TH];
Tim Dettmers's avatar
Tim Dettmers committed
840
841
842
  float local_abs_max = -FLT_MAX;

  typedef cub::BlockLoad<unsigned char, THREADS, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;
843
  typedef cub::BlockStore<T, THREADS, NUM_PER_TH*((DATA_TYPE > 0) ? 2 : 1), cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;
Tim Dettmers's avatar
Tim Dettmers committed
844
845
846
847

  __shared__ typename LoadChar::TempStorage loadchar;
  __shared__ typename StoreT::TempStorage storet;

848
  for (unsigned int i = base_idx; i < n_load; i += gridDim.x*TILE_SIZE)
Tim Dettmers's avatar
Tim Dettmers committed
849
  {
850
851
852
853
854
855
856
857
858
859
860
    if(DATA_TYPE > 0)
    {
      valid_items_load = (n+1)/2 - i > TILE_SIZE ? TILE_SIZE : (n+1)/2 - i;
      valid_items_store = n - i*2 > TILE_SIZE*2 ? TILE_SIZE*2 : n - i*2;
    }
    else
    {
      valid_items_load = n - i > TILE_SIZE ? TILE_SIZE : n - i;
      valid_items_store = n - i > TILE_SIZE ? TILE_SIZE : n - i;
    }
    local_abs_max = __ldg(&absmax[(i+threadIdx.x*NUM_PER_TH)/(blocksize)]);
Tim Dettmers's avatar
Tim Dettmers committed
861

862
863
    __syncthreads();
    LoadChar(loadchar).Load(&(A[i]), qvals, valid_items_load, 128);
Tim Dettmers's avatar
Tim Dettmers committed
864

865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
    switch(DATA_TYPE)
    {
        case General8bit:
          // load code through read-only cache via __ldg
          #pragma unroll NUM_PER_TH
          for(int j = 0; j < NUM_PER_TH; j++)
            vals[j] = __ldg(&code[qvals[j]])*local_abs_max;
          break;
        case FP4:
          #pragma unroll NUM_PER_TH
          for(int j = 0; j < NUM_PER_TH; j++)
          {
            vals[j*2] = dDequantizeFP4Tree(qvals[j] >> 4, local_abs_max);
            vals[j*2 + 1] = dDequantizeFP4Tree(qvals[j] & 0x0F, local_abs_max);
          }
          break;
        case NF4:
          #pragma unroll NUM_PER_TH
          for(int j = 0; j < NUM_PER_TH; j++)
          {
Tim Dettmers's avatar
Tim Dettmers committed
885
886
            vals[j*2] = dDequantizeNF4(qvals[j] >> 4)* local_abs_max;
            vals[j*2 + 1] = dDequantizeNF4(qvals[j] & 0x0F)* local_abs_max;
887
888
889
          }
          break;
    }
Tim Dettmers's avatar
Tim Dettmers committed
890

891
892
    __syncthreads();
    StoreT(storet).Store(&(out[(DATA_TYPE > 0) ? i*2 : i]), vals, valid_items_store);
Tim Dettmers's avatar
Tim Dettmers committed
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
  }
}

__global__ void kDequantize(float *code, unsigned char *A, float *out, const int n)
{
	const unsigned int numThreads = blockDim.x * gridDim.x;
	const int idx = (blockIdx.x * blockDim.x) + threadIdx.x;

	__shared__ float smem_code[256];
	if(threadIdx.x < 256)
	{
		smem_code[threadIdx.x] = code[threadIdx.x];
	}

	__syncthreads();

	for (int i = idx;i < n; i += numThreads)
	{
		out[i] = smem_code[A[i]];
	}
}



template<typename T, int OPTIMIZER, int BLOCK_SIZE, int NUM_VALS>
__launch_bounds__(BLOCK_SIZE/NUM_VALS, 1)
919
__global__ void kPreconditionOptimizer32bit2State(T* g, T* p,
Tim Dettmers's avatar
Tim Dettmers committed
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
                float* state1, float* state2, float *unorm,
                const float beta1, const float beta2, const float eps, const float weight_decay,
                const int step, const float lr, const float gnorm_scale, const int n)
{

  const int n_full = (BLOCK_SIZE*(n/BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
  const int base_idx = (blockIdx.x * blockDim.x * NUM_VALS);
  int valid_items = 0;

  T g_vals[NUM_VALS];

  float s1_vals[NUM_VALS];
  float s2_vals[NUM_VALS];

  const float correction1 = 1.0f/(1.0f - powf(beta1, step));
  const float correction2 = 1.0f/(1.0f - powf(beta2, step));

  typedef cub::BlockLoad<T, BLOCK_SIZE/NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
  typedef cub::BlockLoad<float, BLOCK_SIZE/NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
  typedef cub::BlockReduce<float, BLOCK_SIZE/NUM_VALS> BlockReduce;

  __shared__ union {
      typename Load::TempStorage load;
      typename LoadFloat::TempStorage loadf;
      typename BlockReduce::TempStorage reduce;
  } temp_storage;

  for (unsigned int i = base_idx; i < n_full; i += gridDim.x*BLOCK_SIZE)
  {
      valid_items = n - i >= (BLOCK_SIZE) ? (BLOCK_SIZE) : n - i;

      __syncthreads();
      Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items, 0.0f);
      __syncthreads();
      LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items, 0.0f);
      __syncthreads();
      LoadFloat(temp_storage.loadf).Load(&(state2[i]), s2_vals, valid_items, 0.0f);

      # pragma unroll NUM_VALS
      for(unsigned int j = 0; j < NUM_VALS; j++)
        g_vals[j] = gnorm_scale*((float)g_vals[j]);

      # pragma unroll NUM_VALS
      for(unsigned int j = 0; j < NUM_VALS; j++)
      {
          switch(OPTIMIZER)
          {
967
              case ADAM:
Tim Dettmers's avatar
Tim Dettmers committed
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
                  s1_vals[j] = s1_vals[j]*beta1 + ((1.0f -beta1)*((float)g_vals[j]));
                  s2_vals[j] = s2_vals[j]*beta2 + ((1.0f -beta2)*(((float)g_vals[j])*((float)g_vals[j])));
                  s1_vals[j] *= correction1;
                  s2_vals[j] *= correction2;
                  s1_vals[j] = s1_vals[j]/(sqrtf(s2_vals[j])+eps); // update
                  s1_vals[j] *= s1_vals[j]; // update l2 norm (update*update)
                  break;
          }
      }

      # pragma unroll NUM_VALS-1
      for(unsigned int j = 1; j < NUM_VALS; j++)
          s1_vals[0] += s1_vals[j];

      __syncthreads();
      s1_vals[0] = BlockReduce(temp_storage.reduce).Sum(s1_vals[0]);

      if(threadIdx.x == 0)
        atomicAdd(&unorm[0], s1_vals[0]);

      __syncwarp();
  }
}



#define NUM_PER_THREAD 4

template<typename T, int OPTIMIZER>
__launch_bounds__(TH, 1)
998
__global__ void kOptimizer32bit2State(T* g, T* p,
Tim Dettmers's avatar
Tim Dettmers committed
999
1000
                float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
                const float beta1, const float beta2, const float eps, const float weight_decay,
1001
                const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n)
Tim Dettmers's avatar
Tim Dettmers committed
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
{

  const int n_full = ((TH*NUM_PER_THREAD)*(n/(TH*NUM_PER_THREAD))) + (n % (TH*NUM_PER_THREAD) == 0 ? 0 : (TH*NUM_PER_THREAD));
  const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
  int valid_items = 0;
  float update_scale = 0.0f;
  T g_vals[NUM_PER_THREAD];
  T p_vals[NUM_PER_THREAD];

  float s1_vals[NUM_PER_THREAD];
  float s2_vals[NUM_PER_THREAD];

  const float correction1 = 1.0f - powf(beta1, step);
  const float correction2 = sqrtf(1.0f - powf(beta2, step));
  const float step_size = -lr*correction2/correction1;

  if(max_unorm > 0.0f)
  {
    update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
    if(update_scale > max_unorm*param_norm){ update_scale = (max_unorm*param_norm)/update_scale; }
    else{ update_scale = 1.0f; }
  }
  else{ update_scale = 1.0f; }

  typedef cub::BlockLoad<T, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
  typedef cub::BlockStore<T, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> Store;

  typedef cub::BlockLoad<float, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
  typedef cub::BlockStore<float, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreFloat;

  __shared__ union {
      typename Load::TempStorage load;
      typename Store::TempStorage store;
      typename LoadFloat::TempStorage loadf;
      typename StoreFloat::TempStorage storef;
  } temp_storage;

  for (unsigned int i = base_idx; i < n_full; i += gridDim.x*TH*NUM_PER_THREAD)
  {
      valid_items = n - i >= (TH*NUM_PER_THREAD) ? (TH*NUM_PER_THREAD) : n - i;

      __syncthreads();
      Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items);
      __syncthreads();
      LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items);
      __syncthreads();
      LoadFloat(temp_storage.loadf).Load(&(state2[i]), s2_vals, valid_items);
      __syncthreads();
      Load(temp_storage.load).Load(&(p[i]), p_vals, valid_items);

      # pragma unroll 4
      for(unsigned int j = 0; j < NUM_PER_THREAD; j++)
        g_vals[j] = gnorm_scale*((float)g_vals[j]);

      # pragma unroll 4
      for(unsigned int j = 0; j < NUM_PER_THREAD; j++)
      {
          switch(OPTIMIZER)
          {
1061
              case ADAM:
1062
									if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
1063
1064
1065
1066
									{
										s1_vals[j] = s1_vals[j]*beta1 + ((1.0f -beta1)*((float)g_vals[j]));
										s2_vals[j] = s2_vals[j]*beta2 + ((1.0f -beta2)*(((float)g_vals[j])*((float)g_vals[j])));
										p_vals[j] = ((float)p_vals[j]) + (update_scale*step_size*(s1_vals[j]/(sqrtf(s2_vals[j])+(eps*correction2))));
Tim Dettmers's avatar
Tim Dettmers committed
1067
1068
1069

                    if(weight_decay > 0.0f)
                        p_vals[j] = ((float)p_vals[j])*(1.0f-(lr*weight_decay));
1070
									}
Tim Dettmers's avatar
Tim Dettmers committed
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
                  break;
          }
      }

      __syncthreads();
      Store(temp_storage.store).Store(&(p[i]), p_vals, valid_items);
      __syncthreads();
      StoreFloat(temp_storage.storef).Store(&(state1[i]), s1_vals, valid_items);
      __syncthreads();
      StoreFloat(temp_storage.storef).Store(&(state2[i]), s2_vals, valid_items);
  }
}

template<typename T, int OPTIMIZER, int BLOCK_SIZE, int NUM_VALS>
__launch_bounds__(BLOCK_SIZE/NUM_VALS, 1)
1086
__global__ void kPreconditionOptimizer32bit1State(T* g, T* p,
Tim Dettmers's avatar
Tim Dettmers committed
1087
                float* state1, float *unorm,
1088
                const float beta1, const float beta2, const float eps, const float weight_decay,
Tim Dettmers's avatar
Tim Dettmers committed
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
                const int step, const float lr, const float gnorm_scale, const int n)
{

  const int n_full = (BLOCK_SIZE*(n/BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
  const int base_idx = (blockIdx.x * blockDim.x * NUM_VALS);
  int valid_items = 0;

  T g_vals[NUM_VALS];

  float s1_vals[NUM_VALS];

  typedef cub::BlockLoad<T, BLOCK_SIZE/NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
  typedef cub::BlockLoad<float, BLOCK_SIZE/NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
  typedef cub::BlockReduce<float, BLOCK_SIZE/NUM_VALS> BlockReduce;

  __shared__ union {
      typename Load::TempStorage load;
      typename LoadFloat::TempStorage loadf;
      typename BlockReduce::TempStorage reduce;
  } temp_storage;

  for (unsigned int i = base_idx; i < n_full; i += gridDim.x*BLOCK_SIZE)
  {
      valid_items = n - i >= (BLOCK_SIZE) ? (BLOCK_SIZE) : n - i;

      __syncthreads();
      Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items, 0.0f);
      __syncthreads();
      LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items, 0.0f);

      # pragma unroll NUM_VALS
      for(unsigned int j = 0; j < NUM_VALS; j++)
        g_vals[j] = gnorm_scale*((float)g_vals[j]);

      # pragma unroll NUM_VALS
      for(unsigned int j = 0; j < NUM_VALS; j++)
      {
          switch(OPTIMIZER)
          {
1128
              case MOMENTUM:
Tim Dettmers's avatar
Tim Dettmers committed
1129
1130
1131
1132
1133
1134
                  if(step == 1)
                    s1_vals[j] = (float)g_vals[j]; // state update
                  else
                    s1_vals[j] = s1_vals[j]*beta1 + ((float)g_vals[j]); // state update
                  s1_vals[j] = s1_vals[j]*s1_vals[j]; // update norm
                  break;
1135
              case LION:
Phil Wang's avatar
Phil Wang committed
1136
                  s1_vals[j] = s1_vals[j]*beta2 + ((1.0f-beta2)*(float)g_vals[j]); // state update
1137
                  break;
1138
              case RMSPROP:
Tim Dettmers's avatar
Tim Dettmers committed
1139
1140
1141
1142
                  s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*((float)g_vals[j])*((float)g_vals[j])); // state update
                  s1_vals[j] = __fdividef((float)g_vals[j],sqrtf(s1_vals[j])+eps); // update value
                  s1_vals[j] = s1_vals[j]*s1_vals[j]; // update norm
                  break;
1143
              case ADAGRAD:
1144
1145
1146
1147
                  s1_vals[j] = s1_vals[j] + ((float)g_vals[j])*((float)g_vals[j]); // state update
                  s1_vals[j] = __fdividef((float)g_vals[j],sqrtf(s1_vals[j])+eps); // update value
                  s1_vals[j] = s1_vals[j]*s1_vals[j]; // update norm
                  break;
Tim Dettmers's avatar
Tim Dettmers committed
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
          }
      }

      # pragma unroll
      for(unsigned int j = 1; j < NUM_VALS; j++)
        s1_vals[0] += s1_vals[j];

      __syncthreads();
      s1_vals[0] = BlockReduce(temp_storage.reduce).Sum(s1_vals[0], valid_items);

      if(threadIdx.x == 0)
        atomicAdd(&unorm[0], s1_vals[0]);

      __syncwarp();
  }
}

template<typename T, int OPTIMIZER>
__launch_bounds__(TH, 1)
1167
__global__ void kOptimizer32bit1State(T *g, T *p,
Tim Dettmers's avatar
Tim Dettmers committed
1168
                float *state1, float *unorm, const float max_unorm, const float param_norm,
1169
                const float beta1, const float beta2, const float eps, const float weight_decay,
1170
                const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n)
Tim Dettmers's avatar
Tim Dettmers committed
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
{

  const int n_full = ((TH*NUM_PER_THREAD)*(n/(TH*NUM_PER_THREAD))) + (n % (TH*NUM_PER_THREAD) == 0 ? 0 : (TH*NUM_PER_THREAD));
  const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
  int valid_items = 0;
  float update_scale = 0.0f;

  if(max_unorm > 0.0f)
  {
    update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
    if(update_scale > max_unorm*param_norm+eps){ update_scale = (max_unorm*param_norm+eps)/update_scale; }
    else{ update_scale = 1.0f; }
  }
  else{ update_scale = 1.0f; }

  T g_vals[NUM_PER_THREAD];
  T p_vals[NUM_PER_THREAD];

  float s1_vals[NUM_PER_THREAD];

  typedef cub::BlockLoad<T, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
  typedef cub::BlockStore<T, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> Store;

  typedef cub::BlockLoad<float, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
  typedef cub::BlockStore<float, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreFloat;

  __shared__ union {
      typename Load::TempStorage load;
      typename Store::TempStorage store;
      typename LoadFloat::TempStorage loadf;
      typename StoreFloat::TempStorage storef;
  } temp_storage;

  for (unsigned int i = base_idx; i < n_full; i += gridDim.x*TH*NUM_PER_THREAD)
  {
      valid_items = n - i >= (TH*NUM_PER_THREAD) ? (TH*NUM_PER_THREAD) : n - i;

      __syncthreads();
      Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items);
      __syncthreads();
      LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items);
      __syncthreads();
      Load(temp_storage.load).Load(&(p[i]), p_vals, valid_items);

      # pragma unroll 4
      for(unsigned int j = 0; j < NUM_PER_THREAD; j++)
      {
        g_vals[j] = gnorm_scale*((float)g_vals[j]);
        if(weight_decay > 0.0f)
          g_vals[j] = (float)g_vals[j] + (((float)p_vals[j])*weight_decay);
      }

      # pragma unroll 4
      for(unsigned int j = 0; j < NUM_PER_THREAD; j++)
      {
1226
					if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
1227
1228
1229
					{
						switch(OPTIMIZER)
						{
1230
								case MOMENTUM:
1231
1232
1233
1234
1235
1236
1237
										if(step == 1)
											s1_vals[j] = (float)g_vals[j];
										else
											s1_vals[j] = s1_vals[j]*beta1 + ((float)g_vals[j]);

										p_vals[j] = ((float)p_vals[j]) + update_scale*(-lr*(s1_vals[j]));
										break;
1238
1239
								case LION:
										p_vals[j] = ((float)p_vals[j]) - update_scale*(lr*sgn(((float)s1_vals[j])*beta1 + ((1.0f-beta1)*((float)g_vals[j]))));
Phil Wang's avatar
Phil Wang committed
1240
										s1_vals[j] = s1_vals[j]*beta2 + ((1.0f-beta2)*((float)g_vals[j]));
1241
										break;
1242
								case RMSPROP:
1243
1244
1245
										s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*((float)g_vals[j])*((float)g_vals[j]));
										p_vals[j] = ((float)p_vals[j]) - update_scale*(lr*__fdividef((float)g_vals[j],sqrtf((float)s1_vals[j])+eps));
										break;
1246
								case ADAGRAD:
1247
1248
1249
										s1_vals[j] = s1_vals[j] + ((float)g_vals[j])*((float)g_vals[j]);
										p_vals[j] = ((float)p_vals[j]) - lr*__fdividef((float)g_vals[j],sqrtf((float)s1_vals[j])+eps);
										break;
1250
1251
						}
					}
Tim Dettmers's avatar
Tim Dettmers committed
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
      }

      __syncthreads();
      Store(temp_storage.store).Store(&(p[i]), p_vals, valid_items);
      __syncthreads();
      StoreFloat(temp_storage.storef).Store(&(state1[i]), s1_vals, valid_items);
  }
}


#define NUM8BIT 16
#define NUM_THREADS 256
#define NUM_PER_BLOCK 4096

template<typename T, int OPTIMIZER>
__global__ void
__launch_bounds__(NUM_THREADS, 2)
kPreconditionOptimizerStatic8bit2State(T* p, T* __restrict__ const g, unsigned char*__restrict__  const state1, unsigned char* __restrict__ const state2,
                float *unorm,
                const float beta1, const float beta2,
                const float eps, const int step,
                float* __restrict__ const quantiles1, float* __restrict__ const quantiles2,
                float* max1, float* max2, float* new_max1, float* new_max2,
                const float gnorm_scale, const int n)
{
    const int n_full = gridDim.x * NUM_PER_BLOCK;
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
    int valid_items = n - (blockIdx.x*NUM_PER_BLOCK) > NUM_PER_BLOCK ? NUM_PER_BLOCK : n - (blockIdx.x*NUM_PER_BLOCK);
    float g_val = 0.0f;
    float local_max_s1 = -FLT_MAX;
    float local_max_s2 = -FLT_MAX;
    float local_unorm = 0.0f;

    float s2_vals[NUM8BIT];
    float s1_vals[NUM8BIT];
    T g_vals[NUM8BIT];
    unsigned char m_c1[NUM8BIT];
    unsigned char r_c2[NUM8BIT];

    typedef cub::BlockLoad<T, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadUInt8;
    typedef cub::BlockReduce<float, NUM_THREADS> BlockReduce;


    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadUInt8::TempStorage loadc;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;

    __shared__ float smem_quantiles1[256];
    __shared__ float smem_quantiles2[256];

    if(threadIdx.x < 256)
    {
        smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
        smem_quantiles2[threadIdx.x] = quantiles2[threadIdx.x];
    }

    __syncthreads();

    for (unsigned int i = base_idx; i < n_full; i += NUM_THREADS*gridDim.x*NUM8BIT)
    {
        valid_items = n - i >= (TH*NUM_PER_THREAD) ? (TH*NUM_PER_THREAD) : n - i;

        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadUInt8(temp_storage.loadc).Load(&(state1[i]), m_c1, valid_items, 128);
        __syncthreads();
        LoadUInt8(temp_storage.loadc).Load(&(state2[i]), r_c2, valid_items, 128);
        __syncthreads();

        #pragma unroll 16
        for(int j = 0; j < NUM8BIT; j++)
        {
            g_val = g_vals[j];
            g_val *= gnorm_scale;
            s1_vals[j] = smem_quantiles1[m_c1[j]]*max1[0]*beta1;
            s1_vals[j] += (1.0f-beta1)*g_val;
            local_max_s1 = fmaxf(local_max_s1, fabsf(s1_vals[j]));
        }

        #pragma unroll 16
        for(int j = 0; j < NUM8BIT; j++)
        {
            g_val = g_vals[j];
            g_val *= gnorm_scale;
            s2_vals[j] = smem_quantiles2[r_c2[j]]*max2[0]*beta2;
            s2_vals[j] += (1.0f-beta2)*g_val*g_val;
            local_max_s2 = fmaxf(local_max_s2, fabsf(s2_vals[j]));
        }

        if(unorm != NULL)
        {
          #pragma unroll 16
          for(int j = 0; j < NUM8BIT; j++)
          {
            float correction1 = __fdividef(1.0f, 1.0f - powf(beta1, step));
            float correction2 = __fdividef(1.0f, 1.0f - powf(beta2, step));
            s1_vals[j] *= correction1;
            s2_vals[j] *= correction2;
            float update_val = s1_vals[j]/(sqrtf(s2_vals[j])+eps); // update
            local_unorm += update_val*update_val;
          }
        }
    }

    __syncthreads();
    local_max_s1 = BlockReduce(temp_storage.reduce).Reduce(local_max_s1, cub::Max(), valid_items);
    __syncthreads();
    local_max_s2 = BlockReduce(temp_storage.reduce).Reduce(local_max_s2, cub::Max(), valid_items);
    if(unorm != NULL)
    {
      __syncthreads();
      local_unorm = BlockReduce(temp_storage.reduce).Reduce(local_unorm, cub::Sum(), valid_items);
    }

    if(threadIdx.x == 0)
    {
        atomicMax(&new_max1[0], local_max_s1);
        atomicMax(&new_max2[0], local_max_s2);
        if(unorm != NULL){ atomicAdd(&unorm[0], local_unorm); }
    }
}

#define NUM_PER_THREAD2 4
#define NUM_THREADS2 1024
#define NUM_PER_BLOCK2 4096

template<typename T, int OPTIMIZER>
__global__ void
__launch_bounds__(NUM_THREADS2, 1)
kOptimizerStatic8bit2State(T* p, T* const g, unsigned char* state1, unsigned char* state2,
                const float *unorm, const float max_unorm, const float param_norm, \
                const float beta1, const float beta2,
                const float eps, const int step, const float lr,
                float* __restrict__ const quantiles1, float* __restrict__ const quantiles2,
                float* max1, float* max2, float* new_max1, float* new_max2,
                float weight_decay,
                const float gnorm_scale, const int n)
{

    const int n_full = (blockDim.x * gridDim.x)*NUM_PER_THREAD2;
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD2);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[NUM_PER_THREAD2];
    float s2_vals[NUM_PER_THREAD2];
    const float correction1 = 1.0f - powf(beta1, step);
    const float correction2 = sqrtf(1.0f - powf(beta2, step));
    const float step_size = -lr*correction2/correction1;
    //const float step_size = -lr*correction2/correction1;
    float new_max_val1 = 1.0f/new_max1[0];
    float new_max_val2 = 1.0f/new_max2[0];
    float update_scale = 1.0f;

    if(max_unorm > 0.0f)
    {
      update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
      if(update_scale > max_unorm*param_norm){ update_scale = (max_unorm*param_norm)/update_scale; }
      else{ update_scale = 1.0f; }
    }
    else{ update_scale = 1.0f; }

    unsigned char c1s[NUM_PER_THREAD2];
    unsigned char c2s[NUM_PER_THREAD2];
    T p_vals[NUM_PER_THREAD2];
    T g_vals[NUM_PER_THREAD2];
    typedef cub::BlockLoad<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;

    typedef cub::BlockStore<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ float smem_quantiles1[256];
    __shared__ float smem_quantiles2[256];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;

    if(threadIdx.x < 512)
    {
        if(threadIdx.x < 256)
            smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
        else
            smem_quantiles2[threadIdx.x-256] = quantiles2[threadIdx.x-256];
    }

    __syncthreads();

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x*NUM_THREADS2*NUM_PER_THREAD2)
    {
        valid_items = n - i >= (TH*NUM_PER_THREAD) ? (TH*NUM_PER_THREAD) : n - i;
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state2[i]), c2s, valid_items, 0);
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items);

        if((i + (threadIdx.x*NUM_PER_THREAD2) + NUM_PER_THREAD2) > n){ continue; }

        # pragma unroll 4
        for(unsigned int j = 0; j < NUM_PER_THREAD2; j++)
        {
            g_val = float(g_vals[j]);
            g_val *= gnorm_scale;
            s1_vals[j] = smem_quantiles1[c1s[j]];
            s1_vals[j] = s1_vals[j]*max1[0];

            s1_vals[j] = (s1_vals[j]*beta1) + (((1.0f-beta1)*g_val));

            c1s[j] = dQuantize<0>(smem_quantiles1, 0.0f, s1_vals[j]*new_max_val1);

            // make sure state1 term has still the same sign after quantization
            // (not needed for state2 term which has only positive values)
            if(signbit(smem_quantiles1[c1s[j]]) != signbit(s1_vals[j]))
            {
              if(s1_vals[j] > 0.0f)
                  c1s[j] += 1;
              else
                  c1s[j] -= 1;
            }

            s2_vals[j] = smem_quantiles2[c2s[j]];
            s2_vals[j] = s2_vals[j]*max2[0];
            s2_vals[j] = (s2_vals[j]*beta2) + (((1.0f-beta2)*g_val*g_val));
            c2s[j] = dQuantize<0>(smem_quantiles2, 0.0f, s2_vals[j]*new_max_val2);
        }

        # pragma unroll 4
        for(unsigned int j = 0; j < NUM_PER_THREAD2; j++)
        {
            p_vals[j] = (T)(((float)p_vals[j]) + ((update_scale*step_size*(s1_vals[j]/(sqrtf(s2_vals[j])+(correction2*eps))))));
            if(weight_decay > 0.0f)
                p_vals[j] = update_scale*((float)p_vals[j])*(1.0f-(lr*weight_decay));
        }

        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state2[i]), c2s, valid_items);
        __syncthreads();
    }
}


template<typename T, int OPTIMIZER>
__global__ void
__launch_bounds__(NUM_THREADS, 2)
1508
kPreconditionOptimizerStatic8bit1State(T* p, T* __restrict__ const g, unsigned char*__restrict__  const state1,
Tim Dettmers's avatar
Tim Dettmers committed
1509
                float *unorm,
1510
                const float beta1, const float beta2,
Tim Dettmers's avatar
Tim Dettmers committed
1511
                const float eps, const int step,
1512
1513
                float* __restrict__ const quantiles1,
                float* max1, float* new_max1,
Tim Dettmers's avatar
Tim Dettmers committed
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
                const float weight_decay,
                const float gnorm_scale, const int n)
{
    const int n_full = gridDim.x * NUM_PER_BLOCK;
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
    int valid_items = n - (blockIdx.x*NUM_PER_BLOCK) > NUM_PER_BLOCK ? NUM_PER_BLOCK : n - (blockIdx.x*NUM_PER_BLOCK);
    float g_val = 0.0f;
    float local_max_s1 = -FLT_MAX;
    float local_unorm = 0.0f;

    float s1_vals[NUM8BIT];
    T g_vals[NUM8BIT];
    unsigned char m_c1[NUM8BIT];

    typedef cub::BlockLoad<T, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadUInt8;
    typedef cub::BlockReduce<float, NUM_THREADS> BlockReduce;


    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadUInt8::TempStorage loadc;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;

    __shared__ float smem_quantiles1[256];

    if(threadIdx.x < 256)
      smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];

    __syncthreads();

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x*NUM_THREADS*NUM8BIT)
    {
        valid_items = n - i >= (TH*NUM_PER_THREAD) ? (TH*NUM_PER_THREAD) : n - i;

        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadUInt8(temp_storage.loadc).Load(&(state1[i]), m_c1, valid_items, 128);

        #pragma unroll 16
        for(int j = 0; j < NUM8BIT; j++)
        {
            g_val = g_vals[j];
            g_val *= gnorm_scale;
            s1_vals[j] = smem_quantiles1[m_c1[j]]*max1[0];
            switch(OPTIMIZER)
            {
1563
                case MOMENTUM:
Tim Dettmers's avatar
Tim Dettmers committed
1564
1565
1566
1567
1568
1569
1570
                    if(step == 1)
                      s1_vals[j] = (float)g_vals[j];
                    else
                      s1_vals[j] = s1_vals[j]*beta1 + ((float)g_vals[j]);
                    if(unorm != NULL)
                      local_unorm += s1_vals[j]*s1_vals[j];
                    break;
1571
              case LION:
1572
                  s1_vals[j] = s1_vals[j]*beta2 + ((1.0f-beta2)*g_val);
1573
                  break;
1574
              case RMSPROP:
Tim Dettmers's avatar
Tim Dettmers committed
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
                    s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*(g_val*g_val));
                  break;
            }

            local_max_s1 = fmaxf(local_max_s1, fabsf(s1_vals[j]));
        }
    }

    __syncthreads();
    local_max_s1 = BlockReduce(temp_storage.reduce).Reduce(local_max_s1, cub::Max(), valid_items);
    if(threadIdx.x == 0){ atomicMax(&new_max1[0], local_max_s1); }
    if(unorm != NULL)
    {
      __syncthreads();
      local_unorm = BlockReduce(temp_storage.reduce).Reduce(local_unorm, cub::Sum(), valid_items);
      if(threadIdx.x == 0){ atomicAdd(&unorm[0], local_unorm); }
    }

}

template<typename T, int OPTIMIZER>
__global__ void
1597
__launch_bounds__(1024, 1)
Tim Dettmers's avatar
Tim Dettmers committed
1598
1599
kOptimizerStatic8bit1State(T* p, T* const g, unsigned char* state1,
                const float *unorm, const float max_unorm, const float param_norm,
1600
                const float beta1, const float beta2,
Tim Dettmers's avatar
Tim Dettmers committed
1601
                const float eps, const int step, const float lr,
1602
1603
                float* __restrict__ const quantiles1,
                float* max1, float* new_max1,
Tim Dettmers's avatar
Tim Dettmers committed
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
                float weight_decay,
                const float gnorm_scale, const int n)
{

    const int n_full = (blockDim.x * gridDim.x)*NUM_PER_THREAD2;
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD2);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[NUM_PER_THREAD2];
    float new_max_val1 = 1.0f/new_max1[0];
    float update_scale = 1.0f;

    if(max_unorm > 0.0f)
    {
      update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
      if(update_scale > max_unorm*param_norm){ update_scale = (max_unorm*param_norm)/update_scale; }
      else{ update_scale = 1.0f; }
    }
    else{ update_scale = 1.0f; }

    unsigned char c1s[NUM_PER_THREAD2];
    T p_vals[NUM_PER_THREAD2];
    T g_vals[NUM_PER_THREAD2];
    typedef cub::BlockLoad<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;

    typedef cub::BlockStore<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ float smem_quantiles1[256];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;

    if(threadIdx.x < 256)
        smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];

    __syncthreads();

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x*NUM_THREADS2*NUM_PER_THREAD2)
    {
        valid_items = n - i >= (TH*NUM_PER_THREAD) ? (TH*NUM_PER_THREAD) : n - i;
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items);

        if((i + (threadIdx.x*NUM_PER_THREAD2) + NUM_PER_THREAD2) > n){ continue; }

        # pragma unroll 4
        for(unsigned int j = 0; j < NUM_PER_THREAD2; j++)
        {
            g_val = float(g_vals[j]);
            g_val *= gnorm_scale;
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675

            if(weight_decay > 0.0f) {
              switch(OPTIMIZER) {
                case MOMENTUM:
                case RMSPROP:
                  g_val += ((float)p_vals[j])*weight_decay;
                  break;
                case LION:
                  p_vals[j] = ((float)p_vals[j])*(1.0f-lr*weight_decay);
                  break;
              }
            }

Tim Dettmers's avatar
Tim Dettmers committed
1676
1677
1678
1679
            s1_vals[j] = smem_quantiles1[c1s[j]]*max1[0];

            switch(OPTIMIZER)
            {
1680
                case MOMENTUM:
Tim Dettmers's avatar
Tim Dettmers committed
1681
1682
1683
1684
1685
1686
1687
                  if(step == 1)
                    s1_vals[j] = g_vals[j];
                  else
                    s1_vals[j] = s1_vals[j]*beta1 + ((float)g_vals[j]);

                  p_vals[j] = ((float)p_vals[j]) + (-lr*update_scale*(s1_vals[j]));
                  break;
1688
              case LION:
1689
                  p_vals[j] = ((float)p_vals[j]) - (lr*sgn(((float)s1_vals[j])*beta1 + ((1.0f-beta1)*((float)g_val))));
1690
                  s1_vals[j] = s1_vals[j]*beta2 + ((1.0f-beta2)*g_val);
1691
                  break;
1692
              case RMSPROP:
Tim Dettmers's avatar
Tim Dettmers committed
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
                  s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*(g_val*g_val));
                  p_vals[j] = ((float)p_vals[j]) - (lr*__fdividef(g_val,sqrtf(s1_vals[j])+eps));
                  break;
            }

            c1s[j] = dQuantize<0>(smem_quantiles1, 0.0f, s1_vals[j]*new_max_val1);

            // make sure state1 term has still the same sign after quantization
            if(signbit(smem_quantiles1[c1s[j]]) != signbit(s1_vals[j]))
            {
              if(s1_vals[j] > 0.0f)
                  c1s[j] += 1;
              else
                  c1s[j] -= 1;
            }
        }

        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
        __syncthreads();
    }
}


template<typename T, int BLOCK_SIZE, int NUM_VALS>
__global__ void kPercentileClipping(T * __restrict__ g, float *gnorm_vec, int step, const int n)
{
  const int n_full = (BLOCK_SIZE*(n/BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
  int valid_items = 0;

  typedef cub::BlockReduce<float, BLOCK_SIZE/NUM_VALS> BlockReduce;
  typedef cub::BlockLoad<T, BLOCK_SIZE/NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;

  __shared__ typename BlockReduce::TempStorage reduce;

  __shared__ typename LoadT::TempStorage loadT;
  T vals[NUM_VALS];
  float local_sum = 0.0f;

  for (unsigned int i = (blockIdx.x * BLOCK_SIZE); i < n_full; i += gridDim.x*BLOCK_SIZE)
  {
      valid_items = n - i > BLOCK_SIZE ? BLOCK_SIZE : n - i;
      local_sum = 0.0f;

      __syncthreads();
      LoadT(loadT).Load(&(g[i]), vals, valid_items, (T)0.0f);

     #pragma unroll NUM_VALS
     for(int j = 0; j < NUM_VALS; j++)
       local_sum += ((float)vals[j])*((float)vals[j]);

    local_sum = BlockReduce(reduce).Sum(local_sum, valid_items);
    if(threadIdx.x == 0)
    {
      if(step == 1)
      {
        // initialize with the same norm for all positions
        //#pragma unroll 10
        for(int j = 0; j < 100; j++)
          atomicAdd(&gnorm_vec[j], local_sum);
      }
      else
          atomicAdd(&gnorm_vec[step % 100], local_sum);
    }

  }
}


#define LANES 2
#define QUAD 3
template<typename T, int OPTIMIZER, int BLOCK_SIZE, int N_PER_TH>
__launch_bounds__(256, 3)
__global__ void
kOptimizerStatic8bit2StateBlockwise(T* p, T* __restrict__ const g, unsigned char* state1, unsigned char* state2,
                const float beta1, const float beta2,
                const float eps, const int step, const float lr,
                float* __restrict__ const quantiles1, float* __restrict__ const quantiles2,
1772
                float* absmax1, float* absmax2,
Tim Dettmers's avatar
Tim Dettmers committed
1773
                float weight_decay,
1774
                const float gnorm_scale, const bool skip_zeros, const int n)
Tim Dettmers's avatar
Tim Dettmers committed
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
{

    //const int n_full = n + (n%BLOCK_SIZE);
    const int n_full = gridDim.x * BLOCK_SIZE;
    const int base_idx = (blockIdx.x * BLOCK_SIZE);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[N_PER_TH];
    float s2_vals[N_PER_TH];
    // 2-5%
    const float correction1 = 1.0f - __powf(beta1, step);
    const float correction2 = sqrtf(1.0f -__powf(beta2, step));
    const float step_size = __fdividef(-lr*correction2,correction1);
    const int lane_id = threadIdx.x % LANES;
    float new_local_abs_max1 = -FLT_MAX;
    float new_local_abs_max2 = -FLT_MAX;
    float quadrants1[QUAD];
    float quadrants2[QUAD];

    unsigned char c1s[N_PER_TH];
    unsigned char c2s[N_PER_TH];
    T g_vals[N_PER_TH];
1797
    T p_vals[N_PER_TH];
Tim Dettmers's avatar
Tim Dettmers committed
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
    typedef cub::BlockLoad<T, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;

    typedef cub::BlockStore<unsigned char, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ float smem_quantiles1[LANES][257];
    __shared__ float smem_quantiles2[LANES][257];
    typedef cub::BlockReduce<float, BLOCK_SIZE/N_PER_TH> BlockReduce1;
    typedef cub::BlockReduce<float, BLOCK_SIZE/N_PER_TH> BlockReduce2;
    __shared__ typename BlockReduce1::TempStorage reduce1;
    __shared__ typename BlockReduce2::TempStorage reduce2;
    __shared__ float smem_exchange1[1];
    __shared__ float smem_exchange2[1];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;
    // init: 0.2 -> 0.23

    // 0.23 -> 0.23
      smem_quantiles1[0][threadIdx.x] = quantiles1[threadIdx.x];
      smem_quantiles2[0][threadIdx.x] = quantiles2[threadIdx.x];
      # pragma unroll
      for(unsigned int j = 1; j < LANES; j++)
      {
        smem_quantiles1[j][threadIdx.x] = smem_quantiles1[0][threadIdx.x];
        smem_quantiles2[j][threadIdx.x] = smem_quantiles2[0][threadIdx.x];
      }

    __syncthreads();

    #pragma unroll
    for(int k = 0; k < QUAD; k++)
    {
      quadrants1[k] = smem_quantiles1[lane_id][(k*256/(QUAD+1)) + (256/(QUAD+1)-1)];
      quadrants2[k] = smem_quantiles2[lane_id][(k*256/(QUAD+1)) + (256/(QUAD+1)-1)];
    }


    for (unsigned int i = base_idx; i < n_full; i += gridDim.x*BLOCK_SIZE)
    {
        // loads: 0.23 -> 0.85/1.44
        valid_items = n - i >= BLOCK_SIZE ? BLOCK_SIZE : n - i;
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state2[i]), c2s, valid_items, 0);

        new_local_abs_max1 = -FLT_MAX;
        new_local_abs_max2 = -FLT_MAX;

        //  update: 2.48/1.57 -> 2.51/1.60
        # pragma unroll N_PER_TH
        for(unsigned int j = 0; j < N_PER_TH; j++)
        {
1859
            if(!isnan((float)g_vals[j]) && !isinf((float)g_vals[j]))
1860
1861
						{
							s2_vals[j] = smem_quantiles2[lane_id][c2s[j]]*absmax2[i/BLOCK_SIZE];
1862
1863
1864
1865
              g_val = g_vals[j];
              //float ratio = (g_val*g_val)/fmaxf(s2_vals[j], eps*eps);
              //g_val = ratio > 2.0f ? 2.0f*g_val/ratio : g_val;
              g_val *= gnorm_scale;
1866

1867
							s2_vals[j] = (s2_vals[j]*beta2) + (((1.0f-beta2)*g_val*g_val));
1868
1869
1870

							s1_vals[j] = smem_quantiles1[lane_id][c1s[j]]*absmax1[i/BLOCK_SIZE];
							s1_vals[j] = (s1_vals[j]*beta1) + (((1.0f-beta1)*g_val));
1871
						}
1872
1873
1874
1875
1876
            else
            {
              s1_vals[j] = 0.0f;
              s2_vals[j] = 0.0f;
            }
Tim Dettmers's avatar
Tim Dettmers committed
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906

            new_local_abs_max1 = fmaxf(new_local_abs_max1, fabsf(s1_vals[j]));
            new_local_abs_max2 = fmaxf(new_local_abs_max2, fabsf(s2_vals[j]));
        }


        //  reduce: 2.51/1.60 -> 2.67/1.69
        new_local_abs_max1 = BlockReduce1(reduce1).Reduce(new_local_abs_max1, cub::Max());
        new_local_abs_max2 = BlockReduce2(reduce2).Reduce(new_local_abs_max2, cub::Max());

        if(threadIdx.x == 0)
        {
          smem_exchange1[0] = new_local_abs_max1;
          smem_exchange2[0] = new_local_abs_max2;
        }

        __syncthreads();

        if(threadIdx.x == 0)
        {
          absmax1[i/BLOCK_SIZE] = new_local_abs_max1;
          absmax2[i/BLOCK_SIZE] = new_local_abs_max2;
        }
        else
        {
          new_local_abs_max1 = smem_exchange1[0];
          new_local_abs_max2 = smem_exchange2[0];
        }

        __syncthreads();
1907
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items, (T)0.0f);
Tim Dettmers's avatar
Tim Dettmers committed
1908
1909
1910
1911
        //  reduce: 2.67/1.69 -> 2.67/1.70
        # pragma unroll N_PER_TH
        for(unsigned int j = 0; j < N_PER_TH; j++)
        {
1912
1913
						//if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
            if(!isnan((float)g_vals[j]) && !isinf((float)g_vals[j]))
1914
						{
1915
							p_vals[j] = (T)(((float)p_vals[j]) + ((step_size*(__fdividef(s1_vals[j],(sqrtf(s2_vals[j])+(correction2*eps)))))));
1916
							if(weight_decay > 0.0f)
1917
									p_vals[j] = ((float)p_vals[j])*(1.0f-(lr*weight_decay));
1918
						}
Tim Dettmers's avatar
Tim Dettmers committed
1919
1920
1921
1922
        }

        //  store: 0.85/1.44 -> 2.48/1.57
        __syncthreads();
1923
        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
1924
1925

        //  quantizaztion: 2.67/1.70  -> 3.4/3.3
1926
        # pragma unroll N_PER_TH
Tim Dettmers's avatar
Tim Dettmers committed
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
        for(unsigned int j = 0; j < N_PER_TH; j++)
        {
            c1s[j] = quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s1_vals[j],new_local_abs_max1));
            c2s[j] = quantize_2D<0>(quadrants2, smem_quantiles2[lane_id], __fdividef(s2_vals[j],new_local_abs_max2));

            // make sure state1 term has still the same sign after quantization
            // (not needed for state2 term which has only positive values)
            if(signbit(smem_quantiles1[lane_id][c1s[j]]) != signbit(s1_vals[j]))
            {
              if(s1_vals[j] > 0.0f)
                  c1s[j] += 1;
              else
                  c1s[j] -= 1;
            }
        }

        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state2[i]), c2s, valid_items);
    }
}


#define LANES 2
#define QUAD 3
template<typename T, int OPTIMIZER, int BLOCK_SIZE, int N_PER_TH>
__launch_bounds__(256, 3)
__global__ void
kOptimizerStatic8bit1StateBlockwise(T* p, T* __restrict__ const g, unsigned char* state1,
                const float beta1, const float beta2,
                const float eps, const int step, const float lr,
                float* __restrict__ const quantiles1,
                float* absmax1,
                float weight_decay,
1962
                const float gnorm_scale, const bool skip_zeros, const int n)
Tim Dettmers's avatar
Tim Dettmers committed
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
{

    //const int n_full = n + (n%BLOCK_SIZE);
    const int n_full = gridDim.x * BLOCK_SIZE;
    const int base_idx = (blockIdx.x * BLOCK_SIZE);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[N_PER_TH];
    // 2-5%
    const int lane_id = threadIdx.x % LANES;
    float new_local_abs_max1 = -FLT_MAX;
    float quadrants1[QUAD];

    unsigned char c1s[N_PER_TH];
    T g_vals[N_PER_TH];
		T p_vals[N_PER_TH];

    typedef cub::BlockLoad<T, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;

    typedef cub::BlockStore<unsigned char, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ float smem_quantiles1[LANES][257];
    typedef cub::BlockReduce<float, BLOCK_SIZE/N_PER_TH> BlockReduce1;
    __shared__ typename BlockReduce1::TempStorage reduce1;
    __shared__ float smem_exchange1[1];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;
    // init: 0.2 -> 0.23

    // 0.23 -> 0.23
		smem_quantiles1[0][threadIdx.x] = quantiles1[threadIdx.x];
		# pragma unroll
		for(unsigned int j = 1; j < LANES; j++)
			smem_quantiles1[j][threadIdx.x] = smem_quantiles1[0][threadIdx.x];

    __syncthreads();

    #pragma unroll
    for(int k = 0; k < QUAD; k++)
      quadrants1[k] = smem_quantiles1[lane_id][(k*256/(QUAD+1)) + (256/(QUAD+1)-1)];

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x*BLOCK_SIZE)
    {
        // loads: 0.23 -> 0.85/1.44
        valid_items = n - i >= BLOCK_SIZE ? BLOCK_SIZE : n - i;
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items, (T)0.0f);

        new_local_abs_max1 = -FLT_MAX;

        //  update: 2.48/1.57 -> 2.51/1.60
        # pragma unroll N_PER_TH
        for(unsigned int j = 0; j < N_PER_TH; j++)
        {
            g_val = float(g_vals[j]);
            g_val *= gnorm_scale;
Phil Wang's avatar
Phil Wang committed
2030
2031
2032
2033
            if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
            {
              if(weight_decay > 0.0f) {
                switch(OPTIMIZER) {
2034
                  case MOMENTUM:
Phil Wang's avatar
Phil Wang committed
2035
                  case ADAGRAD:
2036
2037
2038
2039
2040
2041
2042
2043
                  case RMSPROP:
                    g_val += ((float)p_vals[j])*weight_decay;
                    break;
                  case LION:
                    p_vals[j] = ((float)p_vals[j])*(1.0f-lr*weight_decay);
                    break;
                }
              }
2044
2045
2046
2047
2048

							s1_vals[j] = smem_quantiles1[lane_id][c1s[j]]*absmax1[i/BLOCK_SIZE];

							switch(OPTIMIZER)
							{
2049
									case MOMENTUM:
2050
2051
2052
2053
2054
										if(step == 1)
											s1_vals[j] = g_val;
										else
											s1_vals[j] = (s1_vals[j]*beta1) + g_val;
										break;
2055
									case LION:
Phil Wang's avatar
Phil Wang committed
2056
										// here, using gvals[j] to store the gradient smoothed by beta1 for the following parameter update, before the momentum is updated by beta2
Phil Wang's avatar
Phil Wang committed
2057
										g_vals[j] = lr*sgn(((float)s1_vals[j])*beta1 + ((1.0f-beta1)*g_val));
2058
										s1_vals[j] = s1_vals[j]*beta2 + ((1.0f-beta2)*g_val);
2059
										break;
2060
									case RMSPROP:
2061
2062
										s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*(g_val*g_val));
										break;
2063
									case ADAGRAD:
2064
2065
										s1_vals[j] = s1_vals[j] + (g_val*g_val);
										break;
2066
2067
							}
						}
Tim Dettmers's avatar
Tim Dettmers committed
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089

            new_local_abs_max1 = fmaxf(new_local_abs_max1, fabsf(s1_vals[j]));
        }


        //  reduce: 2.51/1.60 -> 2.67/1.69
        new_local_abs_max1 = BlockReduce1(reduce1).Reduce(new_local_abs_max1, cub::Max());

        if(threadIdx.x == 0)
          smem_exchange1[0] = new_local_abs_max1;

        __syncthreads();

        if(threadIdx.x == 0)
          absmax1[i/BLOCK_SIZE] = new_local_abs_max1;
        else
          new_local_abs_max1 = smem_exchange1[0];

        //  reduce: 2.67/1.69 -> 2.67/1.70
        # pragma unroll N_PER_TH
        for(unsigned int j = 0; j < N_PER_TH; j++)
				{
2090
						if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
2091
2092
2093
						{
							switch(OPTIMIZER)
							{
2094
									case MOMENTUM:
2095
2096
										p_vals[j] = ((float)p_vals[j]) - lr*(s1_vals[j]);
										break;
2097
									case LION:
2098
										p_vals[j] = ((float)p_vals[j]) - ((float)g_vals[j]);
2099
										break;
2100
									case RMSPROP:
2101
2102
2103
										g_val = g_vals[j];
										p_vals[j] = ((float)p_vals[j]) - lr*(__fdividef(g_val, sqrtf(s1_vals[j])+eps));
										break;
2104
									case ADAGRAD:
2105
2106
2107
										g_val = g_vals[j];
										p_vals[j] = ((float)p_vals[j]) - lr*(__fdividef(g_val, sqrtf(s1_vals[j])+eps));
										break;
2108
2109
							}
						}
Tim Dettmers's avatar
Tim Dettmers committed
2110
2111
2112
2113
2114
2115
2116
				}

        //  store: 0.85/1.44 -> 2.48/1.57
        __syncthreads();
        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);

        //  quantizaztion: 2.67/1.70  -> 3.4/3.3
2117
        # pragma unroll N_PER_TH
Tim Dettmers's avatar
Tim Dettmers committed
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
        for(unsigned int j = 0; j < N_PER_TH; j++)
        {
            c1s[j] = quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s1_vals[j],new_local_abs_max1));

            // make sure state1 term has still the same sign after quantization
            // (not needed for state2 term which has only positive values)
            if(signbit(smem_quantiles1[lane_id][c1s[j]]) != signbit(s1_vals[j]))
            {
              if(s1_vals[j] > 0.0f)
                  c1s[j] += 1;
              else
                  c1s[j] -= 1;
            }
        }

        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
    }
}

Tim Dettmers's avatar
Tim Dettmers committed
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
template<typename T, int THREADS, int ITEMS_PER_THREAD, int TILE_ROWS, int TILE_COLS, int SPARSE_DECOMP> __global__ void kgetColRowStats(T * __restrict__ A, float *rowStats, float *colStats, int * nnz_count_row, float nnz_threshold, int rows, int cols, int tiledRows, int tiledCols)
{
  // 0. reset stats to -FLT_MAX
  // 1. load row-by-row ITEMS_PER_THREAD (TILE_SIZE==THREADS*ITEMS_PER_THREAD)
  // 2. compute col max (per thread); store in smem due to register pressure
  // 3. compute row max (per block); store in smem to accumulate full global mem transation
  // 4. store data via atomicMax

  // each block loads TILE_COLs columns and TILE_ROW rows
  // after reading a tile the row counter increase by TILE_ROWS
  // the col counter reset after reading TILE_COL elements
  const int base_row = ((blockIdx.x*TILE_COLS)/tiledCols)*TILE_ROWS;
  // col increases by TILE_SIZE for each block and wraps back to 0 after tiledCols is reached
  const int base_col = (blockIdx.x*TILE_COLS) % tiledCols;
  const int base_idx = (base_row*cols) + base_col;
  const int items_per_load = ITEMS_PER_THREAD*THREADS;

  typedef cub::BlockLoad<T, THREADS, ITEMS_PER_THREAD, cub::BLOCK_LOAD_VECTORIZE> LoadT;
  typedef cub::BlockReduce<float, THREADS> BlockRowReduce;
  typedef cub::BlockReduce<int, THREADS> BlockRowSum;
  typedef cub::BlockExchange<float, THREADS, ITEMS_PER_THREAD> BlockExchange;

  __shared__ union {
    typename BlockExchange::TempStorage exchange;
    typename BlockRowReduce::TempStorage rowreduce;
    typename BlockRowSum::TempStorage rowsum;
    typename LoadT::TempStorage loadt;
  } temp_storage;

  __shared__ float smem_row_absmax_values[ITEMS_PER_THREAD*THREADS];
  __shared__ int smem_row_nnz_values[TILE_ROWS];

  half local_data[ITEMS_PER_THREAD];
  float local_data_fp32[ITEMS_PER_THREAD];
  float local_col_absmax_values[ITEMS_PER_THREAD];
  int local_row_nnz_count = 0;
  float row_absmax = -FLT_MAX;

  // 0. reset stats to -FLT_MAX
  for(int j = 0; j < ITEMS_PER_THREAD; j++)
  {
    //smem_col_absmax_values[threadIdx.x + (j*THREADS)] = -FLT_MAX;
    smem_row_absmax_values[threadIdx.x + (j*THREADS)] = -FLT_MAX;
2181
2182
2183
2184
2185
2186
    // smem_row_nnz_values[threadIdx.x + (j*THREADS)] = 0;
  }

  #pragma unroll TILE_ROWS
  for (int j = 0; j < TILE_ROWS; j++) {
    smem_row_nnz_values[j] = 0;
Tim Dettmers's avatar
Tim Dettmers committed
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
  }

  #pragma unroll ITEMS_PER_THREAD
  for(int j = 0; j < ITEMS_PER_THREAD; j++)
    local_col_absmax_values[j] = -FLT_MAX;

  __syncthreads();

  int valid_items = cols - base_col > items_per_load ? items_per_load : cols - base_col;
  int i = base_idx;
  // we load row after row from the base_position
  // 1. load row-by-row ITEMS_PER_THREAD (TILE_SIZE==THREADS*ITEMS_PER_THREAD)
  for(int row = 0; row < TILE_ROWS; row++)
  {
    if(base_row+row >= rows){ break; }
    local_row_nnz_count = 0;
    i = base_idx + ((row)*cols);
    // each thread gets data from the same column
    __syncthreads();
    LoadT(temp_storage.loadt).Load(&(A[i]), local_data, valid_items, __float2half(0.0f));

    #pragma unroll ITEMS_PER_THREAD
    for(int j = 0; j < ITEMS_PER_THREAD; j++)
      local_data[j] = fabsf(local_data[j]);


    if(SPARSE_DECOMP)
      #pragma unroll ITEMS_PER_THREAD
      for(int j = 0; j < ITEMS_PER_THREAD; j++)
      {
        if((float)local_data[j] >= nnz_threshold)
        {
          local_row_nnz_count += 1;
          local_data[j] = 0.0f;
        }
      }

    // 2. compute col max (per thread); store in smem due to register pressure
    #pragma unroll ITEMS_PER_THREAD
    for(int j = 0; j < ITEMS_PER_THREAD; j++)
      // take the col max for this row
      // we use shared memory because register pressure is too high if we do this locally
      //smem_col_absmax_values[threadIdx.x + (j*THREADS)] = fmaxf(smem_col_absmax_values[threadIdx.x + (j*THREADS)], __half2float(local_data[j]));
      local_col_absmax_values[j] = fmaxf(local_col_absmax_values[j], __half2float(local_data[j]));

    // 3. compute row max (per block); store in smem to accumulate full global mem transation

    // this is slow as it uses extra registers, but we need this to be compatible with Kepler and Maxwell (no fp16 units)
    #pragma unroll ITEMS_PER_THREAD
    for(int j = 0; j < ITEMS_PER_THREAD; j++)
      local_data_fp32[j] = local_data[j];

2239
2240
    __syncthreads();

Tim Dettmers's avatar
Tim Dettmers committed
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
    row_absmax = (float)BlockRowReduce(temp_storage.rowreduce).Reduce(local_data_fp32, cub::Max());
    if(SPARSE_DECOMP)
    {
      __syncthreads();
      local_row_nnz_count = BlockRowSum(temp_storage.rowsum).Sum(local_row_nnz_count);
    }
    // we store the data temporarily in shared memory so we
    // can execute a full atomic block transaction into global memory later
    // we use a striped arrangement [0, 8, 16, 24, ..] for t0 for faster stores
    if(threadIdx.x == 0)
    {
      smem_row_absmax_values[(row % ITEMS_PER_THREAD) + ((row/ITEMS_PER_THREAD)*ITEMS_PER_THREAD)] = row_absmax;
      // each blockIdx.x process 16 rows and 64*4=256 columns -> we sum nnz over 256 columns and have 16 values per block
      smem_row_nnz_values[row] = local_row_nnz_count;
    }

    __syncthreads();

  }

  // 4. store data via atomicMax
2262
2263
  // to store col data efficiently we need to rewrite the smem blocked data [0, 1, 2, 3...] for t0
  // into a striped arrangement: [0, 8, 16, 24, ..] for t0
Tim Dettmers's avatar
Tim Dettmers committed
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
  __syncthreads();
  BlockExchange(temp_storage.exchange).BlockedToStriped(local_col_absmax_values);

  #pragma unroll ITEMS_PER_THREAD
  for(int j = 0; j < ITEMS_PER_THREAD; j++)
    if(base_col+threadIdx.x+(j*THREADS) < cols)
    {
      float val = colStats[base_col+(threadIdx.x+(j*THREADS))];
      if(val < local_col_absmax_values[j])
        atomicMax(&colStats[base_col+(threadIdx.x+(j*THREADS))], local_col_absmax_values[j]);
    }

  for(int j = 0; j < ITEMS_PER_THREAD; j++)
    if(base_row+threadIdx.x+(j*THREADS) < rows)
    {
      float val = rowStats[base_row+(threadIdx.x+(j*THREADS))];
      if(val < smem_row_absmax_values[threadIdx.x+(j*THREADS)])
        atomicMax(&rowStats[base_row+(threadIdx.x+(j*THREADS))], smem_row_absmax_values[threadIdx.x+(j*THREADS)]);
    }

    if(SPARSE_DECOMP)
      if(threadIdx.x < TILE_ROWS)
        nnz_count_row[blockIdx.x*TILE_ROWS+threadIdx.x+1] = smem_row_nnz_values[threadIdx.x];

}

template __global__ void kgetColRowStats<half, 64, 4, 16, 64*4, 0>(half * __restrict__ A, float *rowStats, float *colStats, int * nnz_count_row, float nnz_threshold, int rows, int cols, int tiledRows, int tiledCols);
template __global__ void kgetColRowStats<half, 64, 4, 16, 64*4, 1>(half * __restrict__ A, float *rowStats, float *colStats, int * nnz_count_row, float nnz_threshold, int rows, int cols, int tiledRows, int tiledCols);

#define MM_DEQUANT_CONST 6.200012e-05f //1.0f/(127.0f*127.0f)

2295
template <int ITEMS_PER_THREAD, int SUBTILE_ROWS, int THREADS>__global__ void kdequant_mm_int32_fp16(int *__restrict__ const A, float *__restrict__ const rowStats, float *__restrict__ const colStats, half *out, float* newRowStats, float* newcolStats, half *__restrict__ const bias, const int numRows, const int numCols, const int tileCols, const int n)
Tim Dettmers's avatar
Tim Dettmers committed
2296
2297
2298
{

  // Strategy: To dequantize we need to load col/row statistics. This can be very expensive
2299
  // since different row/col stats need to be loaded with each thread.
Tim Dettmers's avatar
Tim Dettmers committed
2300
  // (1, bad algorithm) Loading 32 items per thread would only occur 1 row load, but this increases register pressure
2301
  // and would lead to low global load utilization.
Tim Dettmers's avatar
Tim Dettmers committed
2302
2303
2304
2305
2306
2307
2308
  // (2, bad algorithm) If each thread loads some columns and multiple rows one needs to do lot of row loads
  // for each thread and this is duplicated by a factor of 32/num-cols-per-thread.
  // (3, good algorithm) Combining (1) and (2) we use sub-tiles of size 32xk in shared memory per threadblock.
  // This allows for efficient row/col loading from shared memory within the tile.
  // We can run for example 32x128 sub-tiles and warp-strided loads of 4 elements so that each thread has
  // the same col statistic but needs to load 4 row stats from shared memory. To prevent bank conflicts
  // we use a block-striped shared memory config [1, 31, 63, 95] so no bank conflicts happen during the
2309
  // shared memory loads.
Tim Dettmers's avatar
Tim Dettmers committed
2310
2311
2312

  // data is in 32 column-tile major with tile width 32 columns and numRows rows
  // L1. Load sub-tile row/col statistics. Each thread only holds 1 col, load rows into shared memory.
2313
  // L2. Load data in warp-striped arrangement (t0 holds colidx [0, 0, 0, 0], rowidx [0, 1, 2, 3])
Tim Dettmers's avatar
Tim Dettmers committed
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
  // C1. Compute val(row_stat*col_stat)/(127*127) (load 1/(127*127 into register))
  // C2. Compute normalization values and store col values in register
  // S1. Store C1 into 16-bit output
  // S2. Store col/row statistics of new buffer in shared memory

  // We allow for sub-tiles to span multiple col32 tiles. This is okay
  // since the items per thread only rely on a single column statistic.


  const int n_out = numRows*numCols;

  int num_row_tiles = (numRows/SUBTILE_ROWS) + (numRows % SUBTILE_ROWS == 0 ? 0 : 1);
  // we have tiles of size numRows*32, thus col only increases every numRows
  // num_row_tiles is the tiles after which the column increases by 32
  // blockIdx.x is the index of the current tile
  int col = ((threadIdx.x % 32) + ((blockIdx.x/num_row_tiles)*32));
  // base_row increases by SUBTILE_ROWS every block. It wraps back to zero once num_row_tiles is reached
  int base_row = (blockIdx.x*SUBTILE_ROWS) % (num_row_tiles*SUBTILE_ROWS);

  // SUBTILE_ROWS is independent from ITEMS_PER_THREAD is independent from THREADS
  // subtiles have 32*SUBTILE_ROWS elements <= THREADS*ITEMS_PER_THREAD
  // Total subtiles should be n/(32*SUBTILE_ROWS) where each subtile has SUBTILE_ROW*32/4 threads.
  // For example for a 1024x1024 matrix with 128 SUBTILE_ROWS and 4 ITEMS_PER_THREAD we have
  // 1024*1024/(128*32) = 256 tiles
  // 256 tiles are 256*128*32/4 = 256*1024 threads

  // 1. Figure out how index relates to the start of the sub-tile
  // 2. Each thread < SUBTILE_ROWS calculates row index
  // 3. Load striped and store in shared memory

  int local_values[ITEMS_PER_THREAD];
  half local_output[ITEMS_PER_THREAD];
  float local_rowStats[ITEMS_PER_THREAD];
  __shared__ float smem_rowStats[SUBTILE_ROWS];

  typedef cub::BlockLoad<int, THREADS, ITEMS_PER_THREAD, cub::BLOCK_LOAD_DIRECT> LoadInt32;
  typedef cub::BlockExchange<int, THREADS, ITEMS_PER_THREAD> ExchangeInt32;
  __shared__ typename LoadInt32::TempStorage loadint32;
  __shared__ typename ExchangeInt32::TempStorage exchangeint32;


  // L1. Load sub-tile row/col statistics. Each thread only holds 1 col, load rows into shared memory.
  float colStat = col >= numCols ? 0.0f : colStats[col];
Tim Dettmers's avatar
Tim Dettmers committed
2357
  float local_biasValue = ((bias == NULL) || (col >= numCols)) ? 0.0f : __half2float(bias[col]);
Tim Dettmers's avatar
Tim Dettmers committed
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
  // no block loads for rows for now -- keep it simple
  for(int j = threadIdx.x; j < SUBTILE_ROWS; j+=blockDim.x)
  {
    // todo: is this global mem access slow due to overlaps or does the L1 cache work well here?
    int row = (base_row+j) % numRows; // wrap around
    // each warp accesses the same element, for four consequitive elements
    // todo: update description about striped shared memory, it is not needed
    // rowidx: [0, 1, 2, 3...] and each warp reads ITEMS_PER_THREAD consequitive elements
    smem_rowStats[j] = rowStats[row];
  }
  __syncthreads();


  // each block processes SUBTILE_ROWS*32 elements
  const int items_per_load = THREADS*ITEMS_PER_THREAD;
  const int rows_per_load = items_per_load/32;

  int subtile_base_row = (threadIdx.x / 32)*ITEMS_PER_THREAD; // row within the tile
  int row_offset = 0;
  // subtile_idx starts at the base_row*32 + the total offset for a full numRow*32 tile is passed
  int subtile_start = (blockIdx.x/num_row_tiles)*(numRows*32) + (base_row*32);
  for(int subtile_idx = subtile_start; subtile_idx < subtile_start + (SUBTILE_ROWS*32); subtile_idx+=items_per_load)
  {
    int valid_rows = numRows - (base_row+row_offset) > rows_per_load ? rows_per_load : numRows - (base_row+row_offset);
    int valid_items = valid_rows*32;
    if(valid_items <= 0) // the sub-tile might have more elements than the tile itself
      break;

2386
    // L2. Load data in warp-striped arrangement (t0 holds colidx [0, 0, 0, 0], rowidx [0, 1, 2, 3])
Tim Dettmers's avatar
Tim Dettmers committed
2387
2388
2389
2390
2391
2392
2393
2394
2395
    LoadInt32(loadint32).Load(&(A[subtile_idx]), local_values, valid_items, 0);
    ExchangeInt32(exchangeint32).BlockedToWarpStriped(local_values, local_values);

    #pragma unroll ITEMS_PER_THREAD
    for(int j = 0; j < ITEMS_PER_THREAD; j++)
      local_rowStats[j] = smem_rowStats[subtile_base_row+row_offset+j];

    #pragma unroll ITEMS_PER_THREAD
    for(int j = 0; j < ITEMS_PER_THREAD; j++)
Tim Dettmers's avatar
Tim Dettmers committed
2396
      local_output[j] = __float2half((local_values[j]*MM_DEQUANT_CONST*local_rowStats[j]*colStat) + local_biasValue);
Tim Dettmers's avatar
Tim Dettmers committed
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
      //absmax_col = fmax(fabsf(local_output[j]), absmax_col);

    // we store data in row major
    // to store data efficiently, we want to use block exchange: [0, 32, 64, 92] -> [0, 1, 2, 3]
    // so that each thread holds ITEMS_PER_THREAD consecutive items for each row
    // this way throughput into storage is increased by a factor of ~2x
    // for now we use a simple store
    #pragma unroll ITEMS_PER_THREAD
    for(int j = 0; j < ITEMS_PER_THREAD; j++)
    {
      int outIdx = col + ((base_row+subtile_base_row+row_offset+j)*numCols);
      if(outIdx< n_out && col < numCols)
        out[outIdx] = local_output[j];
    }

    row_offset += rows_per_load;
  }
}


template <int THREADS, int ITEMS_PER_THREAD, int TILE_ROWS, int TILE_COLS, int SPARSE_DECOMP> __global__ void kDoubleRowColQuant(half *__restrict__ const A, float *__restrict__ const rowStats, float * __restrict__ const colStats, char *out_col_normed, char *out_row_normed, int *rowidx, int *colidx, half *val, int * __restrict__ nnz_block_ptr, float threshold, int rows, int cols, int tiledCols)
{
  // assumes TILE_SIZE == THREADS*ITEMS_PER_THREAD
  // Each thread reads the same column but multiple rows
  // Rows are loaded in shared memory and access is shared across the threadblock (broadcast)

  // 0. Load row stats data into shared memory; load col stat (1 fixed per thread)
  // 1. Load data row by row (should be at least with TILE_SIZE = 512)
  // 2. quantize data with row/col stats
  // 3. Store data (TILE_SIZE = 512 is a bit slow, but should still be close enough to good performance)

  // each block loads TILE_COLs columns and TILE_ROW rows
  // after reading a tile the row counter increase by TILE_ROWS
  // the col counter reset after reading TILE_COL elements
  const int base_row = ((blockIdx.x*TILE_COLS)/tiledCols)*TILE_ROWS;
  // col increases by TILE_SIZE for each block and wraps back to 0 after tiledCols is reached
  const int base_col = (blockIdx.x*TILE_COLS) % tiledCols;
  const int base_idx = (base_row*cols) + base_col;
  const int items_per_load = ITEMS_PER_THREAD*THREADS;

  typedef cub::BlockLoad<half, THREADS, ITEMS_PER_THREAD, cub::BLOCK_LOAD_VECTORIZE> LoadHalf;
  __shared__ typename LoadHalf::TempStorage loadhalf;
  typedef cub::BlockStore<char, THREADS, ITEMS_PER_THREAD, cub::BLOCK_STORE_VECTORIZE> StoreInt8;
  __shared__ typename StoreInt8::TempStorage storeint8;

  __shared__ float smem_row_stats[TILE_ROWS];
  __shared__ unsigned int smem_nnz_row_idx[TILE_ROWS];

  half local_data[ITEMS_PER_THREAD];
  float local_col_stats[ITEMS_PER_THREAD];
  char local_quantized_data[ITEMS_PER_THREAD];

  // 0. Load row stats data into shared memory; load col stat (1 fixed per thread)
  #pragma unroll ITEMS_PER_THREAD
  for(int j = 0; j < ITEMS_PER_THREAD; j++)
    if(base_col+(threadIdx.x*ITEMS_PER_THREAD) + j < cols)
      local_col_stats[j] = __fdividef(127.0f, colStats[base_col+(threadIdx.x*ITEMS_PER_THREAD)+j]);

  for(int i = threadIdx.x; i < TILE_ROWS; i+=blockDim.x)
  {
    if(base_row + i < rows)
      smem_row_stats[i] = rowStats[base_row+i];

    if(SPARSE_DECOMP)
      smem_nnz_row_idx[i] = nnz_block_ptr[(TILE_ROWS*blockIdx.x) + i];
  }
  __syncthreads();

  // we load row after row from the base_position
  // 1. Load data row by row (should be at least with TILE_SIZE = 512)
  for(int row = 0; row < TILE_ROWS; row++)
  {
    if(base_row + row >= rows){ break; }
    int i = base_idx + (row*cols);
    int valid_items = cols - base_col > items_per_load ? items_per_load : cols - base_col;


    LoadHalf(loadhalf).Load(&(A[i]), local_data, valid_items, 0.0f);
    float row_stat = __fdividef(127.0f, smem_row_stats[row]);

    // 2. quantize data with row/col stats
    #pragma unroll ITEMS_PER_THREAD
    for(int j = 0; j < ITEMS_PER_THREAD; j++)
    {
      // we already pre-normalized the col/row stat:
      // what this does is float/absmax*127 = int8
      if(SPARSE_DECOMP)
      {
        if(fabsf((float)local_data[j]) >= threshold)
        {
          local_quantized_data[j] = 0;

					int old_idx = atomicInc(&smem_nnz_row_idx[row], UINT_MAX);

          rowidx[old_idx] = base_row+row;
          colidx[old_idx] = base_col+(threadIdx.x*ITEMS_PER_THREAD)+j;
          val[old_idx] = local_data[j];
        }
				else
				{
					local_quantized_data[j] = (char)(rintf(__half2float(local_data[j])*row_stat));
				}
      }
      else
        local_quantized_data[j] = (char)(rintf(__half2float(local_data[j])*row_stat));
    }

    StoreInt8(storeint8).Store(&(out_row_normed[i]), local_quantized_data, valid_items);

    // 2. quantize data with row/col stats
    #pragma unroll ITEMS_PER_THREAD
    for(int j = 0; j < ITEMS_PER_THREAD; j++)
    {
      // we already pre-normalized the col/row stat:
      // what this does is float/absmax*127 = int8
			local_quantized_data[j] = (char)(rintf(__half2float(local_data[j])*local_col_stats[j]));
    }

    __syncthreads();
    StoreInt8(storeint8).Store(&(out_col_normed[i]), local_quantized_data, valid_items);

  }
}

template <int THREADS, int ITEMS_PER_THREAD, int TILE_ROWS, int TILE_COLS, int TRANSPOSE, int FORMAT> __global__ void kTransformRowToFormat(char *__restrict__ const A, char *out, int rows, int cols, int tiledCols, int outRows, int outCols)
{

  // 0. Load data into 32*32 shared memory tiles
  // 1. transpose / reorder in shared memory
  // 2. store

  // COL32 FORMAT:
  // rows*32 tiles

  // TURING FORMAT:
  // 8*32 tiles with 4*4 subtiles
  // the 8*32 subtile has first all 4*4 subtiles of even rows (max 4*4*4 = 64 elements)
  // the subsequent 4*4 subtiles are for all odd rows if some rows columns are empty the values are zero
  // the tile repeats again after the 8*32 tile in a major column order, meaning: (next 8 rows are A[8:16, 0:32])
  // the next tile is the next 8 rows for the same 32 columns. Once all rows are finished, the column
  // index increases by 32

  // AMPERE FORMAT:
  // 32*32 tiles with 8*32 subtiles. The rows are interleaved in pairs of two rows with offset of 8 between pairs of two rows:
	// row idx (each number stands for 32 values): [0 1 8 9 16 17 24 25] [2 3 10 11 18 19 26 27]...
  // the tiles are column-major ordered, so after 1024*1024 values we process: A[32:64, 0:32]


  // To have efficient loads and stores if we transpose we need 128 consequitive bytes which at 1 byte are 128 values
2546
  // As such we need:
Tim Dettmers's avatar
Tim Dettmers committed
2547
2548
2549
2550
2551
2552
2553
2554
2555
  // at least 32*4 shared memory tiles for col32; preferably 32*32
  // at least 32*6 shared memory tiles for col32_ampere: preferably 32*32
  // at least 32*8 shared memory tiles for col4_turing: preferably 32*32
  // for efficient loading of row major we need to load 128 elements and repeat this 32 items
  // this would imply a 32x128 shared memory tile -> 4kb
  // It is more efficient to have more than 1 warp, so with 64 threads we need 32x128 -> 8 kb
  // we have 64k sharded mem per SM in Turing which is 8 blocks per SM which is 2*8 = 32 warps = 100% occupancy
  // for turing and 50% for A100 and 75% for RTX 30s / A40 which is probably good enough
  // register pressure should be low with: 8 registers from local memoryh per block and 64 registers per SM
2556
  //
Tim Dettmers's avatar
Tim Dettmers committed
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
  // to make the shared memory work with that occupancy we might need to union the block loads/stores

  // each block loads TILE_COLs columns and TILE_ROW rows
  // after reading a tile the row counter increase by TILE_ROWS
  // the col counter reset after reading TILE_COL elements
  const int base_row = ((blockIdx.x*TILE_COLS)/tiledCols)*TILE_ROWS;
  // col increases by TILE_SIZE for each block and wraps back to 0 after tiledCols is reached
  const int base_col = (blockIdx.x*TILE_COLS) % tiledCols;
  const int base_idx = (base_row*cols) + base_col;

  // we load 128 bytes per warp with
  // 32 rows for transposes that fill col32 types
  // so that we can have contiguous stores
  __shared__ char smem_data[32*33*ITEMS_PER_THREAD];
  char local_data[ITEMS_PER_THREAD];
  typedef cub::BlockExchange<char, THREADS, ITEMS_PER_THREAD> BlockExchange;

  // we load row after row from the base_position
  // Load data row by row
  int warps = blockDim.x/32;
  int warp_id = threadIdx.x/32;
  int warp_lane = threadIdx.x % 32;
  int offset = 0;

  int smem_row = 0;
  // each warp loads one row of 128 bytes
  for(int row = warp_id; row < TILE_ROWS; row+=warps)
  {
    int i = base_idx + (row*cols);
    // we load up to 128 bytes/items per load
    int valid_items = cols - base_col > 32*ITEMS_PER_THREAD ? 32*ITEMS_PER_THREAD : cols - base_col;

    // 0. Load data into 32*32 shared memory tiles
    if(base_row + row < rows)
    {
      #pragma unroll ITEMS_PER_THREAD
      for(int j = 0; j < ITEMS_PER_THREAD; j++)
      {
        int col_idx = warp_lane+(j*32);
        if(col_idx < valid_items)
          local_data[j] = A[i+col_idx];
        else
          local_data[j] = 0;
      }
    }
    else
    {
      #pragma unroll ITEMS_PER_THREAD
      for(int j = 0; j < ITEMS_PER_THREAD; j++)
        local_data[j] = 0;
    }

    if(TRANSPOSE)
    {
      #pragma unroll ITEMS_PER_THREAD
      for(int j = 0; j < ITEMS_PER_THREAD; j++)
      {
        int local_col = (32*j)+warp_lane;
        //int local_row = row;
        // store as 256x32
        smem_data[(local_col*33) + row] = local_data[j];
      }
    }
    else
    {
      // treat smem as 32x256, that is 32 rows and 256 columns
      #pragma unroll ITEMS_PER_THREAD
      for(int j = 0; j < ITEMS_PER_THREAD; j++)
        smem_data[row*32*ITEMS_PER_THREAD + (warp_lane) + (j*32)] = local_data[j];
    }



    smem_row += warps;

    // 1. transpose / reorder in shared memory
    if(smem_row % 32 == 0)
    {
      smem_row = 0;
      __syncthreads();

      for(int subrow = warp_id; subrow < 32; subrow+=warps)
      {
        for(int j = 0; j < ITEMS_PER_THREAD; j++)
        {

          switch(FORMAT)
          {
2645
              case COL32:
Tim Dettmers's avatar
Tim Dettmers committed
2646
2647
2648
2649
2650
2651
2652
                if(TRANSPOSE)
                {
                  // data lies in shared memory in the following way:
                  // row0 [col0 col1 ... col31]
                  // row1 [col0 col1 ... col31]
                  // ...
                  //
2653
                  // As such we read consecutive entries with 256 threads (8rows x 32 columns)
Tim Dettmers's avatar
Tim Dettmers committed
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
                  // as j increase, the row increase by a factor of 8
                  // We load 8 rows per subrow loop, and subrow increase by 8 per loop
                  // so we have an offset of 8 rows every loop or (subrow/warps)*8 = (subrow/8)*8
                  const int jrow = j*ITEMS_PER_THREAD; // 8 rows per j
                  const int subrow_loop_row = (subrow/warps)*ITEMS_PER_THREAD*ITEMS_PER_THREAD; // 8 rows per j; 8j per subrow loop (subrow/warps)
                  //const int local_row =  warp_id; // each warp_id is one row
                  //const int block_row = base_col; // block offset for row
                  //const int local_col = warp_lane
                  //const int global_col = base_row; // block offset for col
                  if((base_col + subrow_loop_row + jrow + warp_id < outRows) && (base_row+warp_lane < rows))
                  {
                    // each row hae 32 columns and is offset by 1 to prevent bank conflict during storage into smem
                    char data = smem_data[(subrow_loop_row + jrow + warp_id)*33 + warp_lane];

                    // each 32 columns we have new tile
                    // each tile has size outRows*32 and base_row is done in increments of 32
2670
                    offset = base_row*outRows;
Tim Dettmers's avatar
Tim Dettmers committed
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
                    out[offset + (base_col + jrow + subrow_loop_row)*32 + threadIdx.x] = data;
                  }
                }
                else
                {
                  if(((base_row+subrow) < rows) && (base_col+(j*32)+warp_lane < outCols))
                  {
                    offset = (base_col/32)*(32*rows);
                    char data = smem_data[(subrow*32*ITEMS_PER_THREAD) + (j*32) + warp_lane];
                    out[offset+(base_row+subrow)*32 + ((j)*rows*32)+warp_lane] = data;
                  }
                }
                break;
              case COL_TURING:
                // TURING FORMAT:
                // 8*32 tiles with 4*4 subtiles
                // the 8*32 subtile has first all 4*4 subtiles of even rows (max 4*4*4 = 64 elements)
                // the subsequent 4*4 subtiles are for all odd rows if some rows columns are empty the values are zero
                // the tile repeats again after the 8*32 tile in a major column order, meaning: (next 8 rows are A[8:16, 0:32])
                // the next tile is the next 8 rows for the same 32 columns. Once all rows are finished, the column
                // index increases by 32
                //
                // [0 0 0 0, 2 2 2 2, 4 4 4 4, 6 6 6 6, 0 0 0 0 ...]
                if(TRANSPOSE)
                {
                  const int jrow = j*ITEMS_PER_THREAD; // 8 rows per j
                  const int subrow_loop_row = (subrow/warps)*ITEMS_PER_THREAD*ITEMS_PER_THREAD; // 8 rows per j; 8j per subrow loop (subrow/warps)
                  //const int local_row =  warp_id; // each warp_id is one row
                  //const int block_row = base_col; // block offset for row
                  //const int local_col = warp_lane
                  //const int global_col = base_row; // block offset for col
                  if((base_col + subrow_loop_row + jrow + warp_id < outRows) && (base_row+warp_lane < rows))
                  {
                    // each row hae 32 columns and is offset by 1 to prevent bank conflict during storage into smem
                    char data = smem_data[(subrow_loop_row + jrow + warp_id)*33 + warp_lane];

                    // each 32 columns we have new tile
                    // each tile has size 8*32 = 256 elements offset
                    // for each row offset of 8 we increaes the tile first
                    // after all rows are exhausted, we increase the col
                    int row_offset = ((base_col+jrow+subrow_loop_row+warp_id)/8)*256; // global_row+jrow+subrow_loop_row+local_row, increase tile(=256) every 8 rows

                    // we increase by row_tile_column every 32 columns
                    // base_row increase in increments of 32
                    //int row_tile_column = 256*outRows/8; // there are outRows/8 row tiles, and each tile is 256 elements
2716
                    //int col_offset = (base_row/32)*row_tile_column;
Tim Dettmers's avatar
Tim Dettmers committed
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
                    // -> we can remove the divisions to speed up compute since outRows is always a multiple of 8
                    // 256*outRows/8*base_row/32 = outRows*base_row
                    int col_offset = outRows*base_row;

                    offset = row_offset+col_offset;

                    // since we process even number of rows with each j (8) and with each subrow (8j) we can determine
                    // odd or even rows with the warp_id (each warp processes one row)
                    // the col is warp_lane (max 32 columns per row) and the row warp_id
                    if(warp_id % 2 == 1)
                      // odd
                      offset += 128 + (warp_lane/4)*16 + (warp_lane%4) + (((warp_id%8)-1)*2);
                    else
                      // even
                      offset += 0   + (warp_lane/4)*16 + (warp_lane%4) + ((warp_id%8)*2);

                    out[offset] = data;
                  }
                }
                else
                {
                  if(((base_row+subrow) < rows) && (base_col+(j*32)+warp_lane < outCols))
                  {
                    char data = smem_data[(subrow*32*ITEMS_PER_THREAD) + (j*32) + warp_lane];
                    // set offset designates the tile offset among the 8*32 tiles
                    // we first increase rows and then columns. Since we load 128 columns at once
                    // we increase the offset by outRows*32 every 32 columns
                    // additionally, we increase the offset by 8*32=256 every 8 rows
                    offset = ((base_col+(j*32))/32)*outRows*32 + (((base_row+subrow)/8)*256); // global offset (8x32 tile)
                    // first 4 rows are reserved for even rows, [0, 2, 4, 6], the next 4 for odd
                    // each of these has 32 values in total for 32*4 = 128 as offset if odd
                    // every set of 4 columns increases the total offset by 16
                    // each even row increase the offset by 4, for example row 2 is offset by 4, 4 by 6 etc so: subrow/2*4 = subrow*2
2750
                    // this happens every 8 rows anew (subrow % 8)
Tim Dettmers's avatar
Tim Dettmers committed
2751
2752
                    // one writes 4 columns at once that is (col % 4) for the particular index in the subtile
                    int subcol = warp_lane;
2753

Tim Dettmers's avatar
Tim Dettmers committed
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
                    // add local offset (4x4 sub-tile)
                    if(subrow % 2 == 1)
                      // odd
                      offset += 128 + (subcol/4)*16 + (subcol%4) + (((subrow%8)-1)*2);
                    else
                      // even
                      offset += 0   + (subcol/4)*16 + (subcol%4) + ((subrow%8)*2);

                    out[offset] = data;
                  }
                }
                break;
								case COL_AMPERE:
									// AMPERE FORMAT:
									// 32*32 tiles with 8*32 subtiles. The rows are interleaved in pairs of two rows with offset of 8 between pairs of two rows:
									// row idx (each number stands for 32 values): [0 1 8 9 16 17 24 25] [2 3 10 11 18 19 26 27]...
									// the tiles are column-major ordered, so after 1024*1024 values we process: A[32:64, 0:32]
									if(TRANSPOSE)
									{
										const int jrow = j*ITEMS_PER_THREAD; // 8 rows per j
										const int subrow_loop_row = (subrow/warps)*ITEMS_PER_THREAD*ITEMS_PER_THREAD; // 8 rows per j; 8j per subrow loop (subrow/warps)
										//const int local_row =  warp_id; // each warp_id is one row
										//const int block_row = base_col; // block offset for row
										//const int local_col = warp_lane
										//const int global_col = base_row; // block offset for col
										if((base_col + subrow_loop_row + jrow + warp_id < outRows) && (base_row+warp_lane < rows))
										{
											// each row hae 32 columns and is offset by 1 to prevent bank conflict during storage into smem
											char data = smem_data[(subrow_loop_row + jrow + warp_id)*33 + warp_lane];

											// each 32 columns we have new tile
											// each tile has size 32*32 = 1024 elements offset
											// for each row offset of 32 we increaes the tile first
											// after all rows are exhausted, we increase the col
											int row_offset = ((base_col+jrow+subrow_loop_row+warp_id)/32)*1024; // global_row+jrow+subrow_loop_row+local_row, increase tile(=256) every 8 rows

											// we increase by row_tile_column every 32 columns
											// base_row increase in increments of 32
											//int row_tile_column = 1024*outRows/32; // there are outRows/32 row tiles, and each tile is 1024 elements
2793
											//int col_offset = (base_row/32)*row_tile_column;
Tim Dettmers's avatar
Tim Dettmers committed
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
											// -> we can remove the divisions to speed up compute since outRows is always a multiple of 8
											// 1024*outRows/32*base_row/32 = outRows*base_row
											int col_offset = outRows*base_row;

											offset = row_offset+col_offset;


											// same as in the non-transpose case (see below)
											// the difference is that now rows = cols
											// in this case warp_id = subrow

											// [0 1 8 9 16 17 24 25] [2 3 10 11 18 19 26 27]...
											// subrow % 8 -> [0,1] in tile0, [2, 3] in tile 1 etc
											// subrow % 2 -> 0 for 1st row in the pair, 1 for the 2nd row
											// every 2 rows, the offset increases by two [0, 1, 8, 9...]
											// every 2 rows, the row index increase by 8 [0, 1, 8, 9...]
											int local_row = (jrow + warp_id) % 32; // offset for row > 32 is already calculated into row_offset
											int ampere_row = ((local_row % 8)/2)*8 + (local_row/8)*2 + (local_row % 2);

											// global offset + row with 32 cols each + 32 cols per j + col_idx=warp_lane
											out[offset + (ampere_row*32) + warp_lane] = data;
										}
									}
									else
									{
										if(((base_row+subrow) < rows) && (base_col+(j*32)+warp_lane < outCols))
										{
											char data = smem_data[(subrow*32*ITEMS_PER_THREAD) + (j*32) + warp_lane];

											// set offset designates the tile offset among the 32*32 tiles
											// we first increase rows and then columns. Since we load 128 columns at once
											// we increase the offset by outRows*32 every 32 columns
											// additionally, we increase the offset by 32*32=1024 every 32 rows
											offset = ((base_col+(j*32))/32)*outRows*32 + (((base_row+subrow)/32)*1024); // global offset (32x32 tile)

											// [0 1 8 9 16 17 24 25] [2 3 10 11 18 19 26 27]...
											// subrow % 8 -> [0,1] in tile0, [2, 3] in tile 1 etc
											// subrow % 2 -> 0 for 1st row in the pair, 1 for the 2nd row
											// every 2 rows, the offset increases by two [0, 1, 8, 9...]
											// every 2 rows, the row index increase by 8 [0, 1, 8, 9...]
											int local_row = ((subrow % 8)/2)*8 + (subrow/8)*2 + (subrow % 2);

											// global offset + row with 32 cols each + 32 cols per j + col_idx
											out[offset + (local_row*32) + warp_lane] = data;
										}
									}
								break;
          }
        }
      }
    }
  }
}

Tim Dettmers's avatar
Tim Dettmers committed
2848
#define DENORM 1.0f/127.0f
Tim Dettmers's avatar
Tim Dettmers committed
2849
2850
#define MAX_SPARSE_COUNT 32
#define SMEM_SIZE 8*256
2851
template <typename T, int SPMM_ITEMS, int BITS>
2852
__global__ void kspmm_coo_very_sparse_naive(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, T *B, half *out, float * __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB)
Tim Dettmers's avatar
Tim Dettmers committed
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
{

  // 0. load balancing: We process rows with most columns first (count_vec)and we process one row per block
  //    If a block finishes, the next one is scheduled. Since the last blocks like have fewer
  //    elements they finish faster "fillin up" the gaps left by larger blocks

  // without tensor cores
  // 1. use rowidx_length to find what to load (as many blocks as there are rows)
  // 2. Load A into registers
  // 3. each warp loads all required rows of B but each warp is offset by k
  // 4. Do mma operations that accumulate into registers
  // 5. Each warp stores its output row into matrix C

  const int count = max_count[blockIdx.x];
  const int local_max_idx = max_idx[blockIdx.x];
  const int offset = local_max_idx == 0 ? 0 : offset_rowidx[local_max_idx-1];
  const int local_row_idx = rowidx[offset];

  const int warp_id = threadIdx.x / 32;
  const int warp_idx = threadIdx.x % 32;
  const int warp_offset = (warp_id*32)*SPMM_ITEMS;
  const int num_items = BITS == 8 ? 8 : 8;
  int idx_col_B = warp_offset;
  int local_idx_col_B_offset = 0;

  half local_valA[MAX_SPARSE_COUNT];
  int local_colidxA[MAX_SPARSE_COUNT];
  half local_valC[SPMM_ITEMS];
  T local_valsB[num_items];
  half local_valOut[num_items];
  // 128 byte loads per warp == 4 bytes per thread

  // 2. Load A into registers
  for(int j = 0; j < MAX_SPARSE_COUNT; j++)
  {
    local_valA[j] = j < count ? values[offset+j] : __float2half(0.0f);
    local_colidxA[j] = j < count ? colidx[offset+j] : 0;
  }

  // each thread processes SPMM_ITEMS=32 per iteration. We have 256 threads. 32*256=x192
  // we expect each warp to be SPMM_ITEMS*32 apart
  // we have a total of 128 bytes for the bank with a bank size of 4 bytes
  // added 3 bytes = 6 values between warps should reduce bank conflicts
  __shared__ half smem_dequant_stats[SMEM_SIZE];


  while(idx_col_B <  colsB)
  {

    if(dequant_stats != NULL)
    {
      for(int i = threadIdx.x; i < SMEM_SIZE; i+=blockDim.x)
        if((idx_col_B+i-local_idx_col_B_offset) < colsB)
2906
          smem_dequant_stats[i] = dequant_stats[idx_col_B+i-local_idx_col_B_offset];
Tim Dettmers's avatar
Tim Dettmers committed
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951

      __syncthreads();
    }

    #pragma unroll SPMM_ITEMS
    for(int j = 0; j < SPMM_ITEMS; j++)
      local_valC[j] = 0.0f;

    #pragma unroll
    for(int i = 0; i < count; i++)
    {
        // 3. each warp loads all required rows of B but each warp is offset by k
        int row_offset = colsB*local_colidxA[i];

        #pragma unroll SPMM_ITEMS
        for(int j = 0; j < SPMM_ITEMS; j+=num_items)
        {
          // 4. Multiply the tile -> accumulate outputs in shared memory until 128 bytes it reached
          int idx = idx_col_B + (warp_idx*SPMM_ITEMS) + j;
          if(idx >= colsB){ break; }
          if((idx+num_items < colsB))
          {
            if(BITS == 8)
              reinterpret_cast<float2(&)[num_items]>(local_valsB)[0] = reinterpret_cast<float2*>(B)[(row_offset+ idx)/num_items];
            else
              reinterpret_cast<float4(&)[num_items]>(local_valsB)[0] = reinterpret_cast<float4*>(B)[(row_offset+ idx)/num_items];
          }
          else
          {
            #pragma unroll num_items
            for(int k = 0; k < num_items; k++)
              if(idx+k < colsB)
                local_valsB[k] = B[row_offset+idx+k];
              else
                local_valsB[k] = 0.0f;
          }
          #pragma unroll num_items
          for(int k = 0; k < num_items; k++)
          {
            if(BITS == 8 && dequant_stats != NULL)
              // we do texture cache reads (__ldg) on dequant_stats which should be super fast
            {
              float valB = local_valsB[k];
              float valA = local_valA[i];
              if(valB != 0.0 && valA != 0.0)
Tim Dettmers's avatar
Tim Dettmers committed
2952
                local_valC[j+k] = (float)local_valC[j+k] + ((float)smem_dequant_stats[idx+k-local_idx_col_B_offset])*DENORM*valB*valA;
Tim Dettmers's avatar
Tim Dettmers committed
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
            }
            else
              local_valC[j+k] = (float)local_valC[j+k] + (float)local_valsB[k]*(float)local_valA[i];
          }
        }
    }

    int idx_row_C = (colsB*local_row_idx);

    #pragma unroll SPMM_ITEMS
    for(int j = 0; j < SPMM_ITEMS; j+=num_items)
    {
      //int idx_col_C =  idx_col_B + (32*j) + warp_idx;
      int idx_col_C =  idx_col_B + warp_idx*SPMM_ITEMS + j;
      int idx_val = idx_col_C + idx_row_C;

      if(idx_col_C +num_items < colsB)
      {

          // load outputs to do inplace addition
          reinterpret_cast<float4(&)[num_items/4]>(local_valOut)[0] = reinterpret_cast<float4*>(out)[idx_val/num_items];

          #pragma unroll num_items
          for(int k = 0; k < num_items; k++)
            local_valC[(j/num_items) + k] = (float)local_valC[(j/num_items) + k] + (float)local_valOut[k];
2978

Tim Dettmers's avatar
Tim Dettmers committed
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
          reinterpret_cast<float4*>(out)[idx_val/num_items] = reinterpret_cast<float4(&)[num_items]>(local_valC)[j/num_items];
      }
      else
      {
        #pragma unroll num_items
        for(int k = 0; k < num_items; k++)
         if(idx_col_C + k < colsB)
           out[idx_val+k] = (float)out[idx_val+k]+(float)local_valC[j+k];
      }
    }

    idx_col_B += blockDim.x*SPMM_ITEMS;
    local_idx_col_B_offset += blockDim.x*SPMM_ITEMS;
2992
  }
Tim Dettmers's avatar
Tim Dettmers committed
2993
2994
}

2995
template <int FORMAT> __global__ void kExtractOutliers(char *A, int *idx, char *out, int idx_size, int rowsA, int colsA, int tiledRowsA, int tiledColsA)
2996
{
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
	int local_colidx = idx[blockIdx.x];

	if(FORMAT==COL_TURING)
	{
		// TURING FORMAT:
		// 8*32 tiles with 4*4 subtiles
		// the 8*32 subtile has first all 4*4 subtiles of even rows (max 4*4*8 = 128 elements)
		// the subsequent 4*4 subtiles are for all odd rows if some rows columns are empty the values are zero
		// the tile repeats again after the 8*32 tile in a major column order, meaning: (next 8 rows are A[8:16, 0:32])
		// the next tile is the next 8 rows for the same 32 columns. Once all rows are finished, the column
		// index increases by 32
		// columns are grouped in increments of 4, meaning that one has the following rows and columns
		// rows: [0 0 0 0, 2 2 2 2, 4 4 4 4, 6 6 6 6, 0 0 0 0 ...]
		// cols: [0 1 2 3, 0 1 2 4, 0 1 2 3, 0 1 2 3, 4 5 6 7 ...]

		// each thread reads 1 element = 1 row
		for(int row = threadIdx.x; row < rowsA; row+= blockDim.x)
		{
			int offset_per_col_tile = ((rowsA+7)/8)*32*8;
			int tile_offset_rows = (row/8)*32*8;
			int tile_offset_cols = (local_colidx/32)*offset_per_col_tile;
			int offset = 0;
			int subtile_col_idx = local_colidx%32;
			int subtile_row_idx = row % 8;
			if(row % 2 == 1)
				offset += 128 + (subtile_col_idx/4)*16 + (subtile_col_idx%4) + ((subtile_row_idx-1)*2);
			else
				// even
				offset += 0   + (subtile_col_idx/4)*16 + (subtile_col_idx%4) + (subtile_row_idx*2);

			offset += tile_offset_rows + tile_offset_cols;

3029
			char val = A[offset];
3030
3031

			int out_idx = (row*idx_size) + blockIdx.x;
3032
			out[out_idx] = val;
3033
		}
3034
3035
3036
	}
	else if(FORMAT == COL_AMPERE)
	{
3037

3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
		for(int row = threadIdx.x; row < rowsA; row+= blockDim.x)
		{
			// we got 32x32 tiles and we use the magic equation from the cublasLt doc to get the element
			// within each tile.
			int offset_per_col_tile = ((rowsA+31)/32)*32*32;
			int tile_offset_rows = (row/32)*32*32;
			int tile_offset_cols = (local_colidx/32)*offset_per_col_tile;
			int subtile_col_idx = local_colidx%32;
			int subtile_row_idx = row % 32;
			// this magic is taken from the cublasLt doc (search for COL32)
			int offset = (((subtile_row_idx%8)/2*4+subtile_row_idx/8)*2+subtile_row_idx%2)*32+subtile_col_idx;
			offset += tile_offset_cols + tile_offset_rows;

			char val = A[offset];
			int out_idx = (row*idx_size) + blockIdx.x;
			out[out_idx] = val;
		}
3055
	}
3056
}
3057

Tim Dettmers's avatar
Tim Dettmers committed
3058

Tim Dettmers's avatar
Tim Dettmers committed
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
//template <int QUANT_TYPE, typename INPT, typename COMPT, typename OUTT> __global__ void kMatmul_inference_4bit(INPT *A, unsigned char *B, OUTT *out, int lda, int ldb, int rowsA, int colsA, int colsB)
//{
//// element-wise kernel
//// 1. Load batch x k into registers
//// 2. Load k x k into registers
//// 3. dequantize and store in second pair of k x k
//// 4. matmul
//// 5. sum with cub
//// 6. store outputs
//// TC kernel
//// use k warps per thread block
//// 1. threadblock use read-only cache to read in register tile for A into shared memory
//// 2. each warp loops over shared memory tiles of A of size 8x16 and loads them into fragments
3072
//// 3. each warp reads a segment of values 16x32 from B
Tim Dettmers's avatar
Tim Dettmers committed
3073
3074
3075
//// 4. do dequantization from register of B into second pair of registers
//// 5. store (4) into fragment
//// 6. matmul aggregate into fragment C
3076
//// 7. aggregate files of C into shared memory block C
Tim Dettmers's avatar
Tim Dettmers committed
3077
3078
3079
//// 8. sum (7)
//// 9. write outputs to matmul output matrix
//}
Tim Dettmers's avatar
Tim Dettmers committed
3080

Tim Dettmers's avatar
Tim Dettmers committed
3081
template <typename T, typename TCAST, int ITEMS> __device__ inline void vector_load(T *local, T * __restrict__ const buffer, int idx, int limit_base, int limit, float zero_value = 0.0f)
Tim Dettmers's avatar
Tim Dettmers committed
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
{
    if(limit_base + ITEMS <= limit)
      reinterpret_cast<TCAST*>(local)[0] = reinterpret_cast<TCAST*>(buffer)[idx/ITEMS];
    else
    {
      for(int k = 0; k < ITEMS; k++)
      {
        if(limit_base + k < limit)
          local[k] = buffer[idx+k];
        else
Tim Dettmers's avatar
Tim Dettmers committed
3092
          local[k] = (T)zero_value;
Tim Dettmers's avatar
Tim Dettmers committed
3093
3094
3095
3096
      }
    }
}

3097
#define WARPS 3
Tim Dettmers's avatar
Tim Dettmers committed
3098
template <typename T, int BITS, int THREADS> __global__ void gemm_device(int M, int N, int K, T * __restrict__ const A,  T* B,  T * out,  int lda, int ldb, int ldc)
Tim Dettmers's avatar
Tim Dettmers committed
3099
{
Tim Dettmers's avatar
Tim Dettmers committed
3100
3101
3102

#if __CUDA_ARCH__ >= 750
	using namespace nvcuda;
Tim Dettmers's avatar
Tim Dettmers committed
3103
  int col_offset = blockIdx.x *32;
Tim Dettmers's avatar
Tim Dettmers committed
3104
  const int warp_id = threadIdx.x / 32;
Tim Dettmers's avatar
Tim Dettmers committed
3105
3106
  const int half_warp_id = threadIdx.x / 16;
  const int half_warp_lane = threadIdx.x % 16;
Tim Dettmers's avatar
Tim Dettmers committed
3107
  const int batch_size_warps = (WARPS-1)*2;
3108
  const int val_per_iter = blockDim.x-32;
Tim Dettmers's avatar
Tim Dettmers committed
3109

3110
3111
  T local_A[4];
  T local_B[128];
Tim Dettmers's avatar
Tim Dettmers committed
3112

Tim Dettmers's avatar
Tim Dettmers committed
3113
  const int a_tile_offset = 16;
Tim Dettmers's avatar
Tim Dettmers committed
3114
  const int b_tile_offset = (16*32 + 16);
Tim Dettmers's avatar
Tim Dettmers committed
3115

Tim Dettmers's avatar
Tim Dettmers committed
3116
  __shared__ T smem_A[8*16 + (2*16*(batch_size_warps-1))];
Tim Dettmers's avatar
Tim Dettmers committed
3117
  __shared__ T smem_B[2*batch_size_warps*16*32 + (2*16*(batch_size_warps-1))];
Tim Dettmers's avatar
Tim Dettmers committed
3118
  //__shared__ T smem_C[8*32];
Tim Dettmers's avatar
Tim Dettmers committed
3119

Tim Dettmers's avatar
Tim Dettmers committed
3120
3121
3122
   wmma::fragment<wmma::matrix_a, 8, 32, 16, half, wmma::row_major> a_frag;
   wmma::fragment<wmma::matrix_b, 8, 32, 16, half, wmma::col_major> b_frag;
   wmma::fragment<wmma::accumulator, 8, 32, 16, half> c_frag;
Tim Dettmers's avatar
Tim Dettmers committed
3123
3124
   wmma::fill_fragment(c_frag, 0.0f);

Tim Dettmers's avatar
Tim Dettmers committed
3125
3126
  int ticktock = 0;
  int idx = 0 + threadIdx.x;
Tim Dettmers's avatar
Tim Dettmers committed
3127
  int loaded_values = 0;
Tim Dettmers's avatar
Tim Dettmers committed
3128
3129
  // prefetch
  if(idx < K && warp_id < (WARPS-1))
3130
  {
Tim Dettmers's avatar
Tim Dettmers committed
3131
3132
3133
    if(loaded_values == 0)
    {
      local_A[0] = A[idx];
3134
3135
3136
      local_A[1] = A[idx+(1*val_per_iter)];
      local_A[2] = A[idx+(2*val_per_iter)];
      local_A[3] = A[idx+(3*val_per_iter)];
Tim Dettmers's avatar
Tim Dettmers committed
3137

Tim Dettmers's avatar
Tim Dettmers committed
3138
3139
3140
3141
      #pragma unroll 32
      for(int col = 0; col < 32; col++)
      {
        local_B[col] = B[(col_offset+col)*ldb+idx];
3142
3143
3144
        local_B[col+32] = B[(col_offset+col)*ldb+idx+(1*val_per_iter)];
        local_B[col+64] = B[(col_offset+col)*ldb+idx+(2*val_per_iter)];
        local_B[col+96] = B[(col_offset+col)*ldb+idx+(3*val_per_iter)];
Tim Dettmers's avatar
Tim Dettmers committed
3145
      }
3146
      loaded_values = 3;
Tim Dettmers's avatar
Tim Dettmers committed
3147
3148
3149
3150
    }
    else
    {

3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
      if(loaded_values == 3)
      {
        local_A[0] = local_A[1];
        #pragma unroll 32
        for(int col = 0; col < 32; col++)
          local_B[col] = local_B[col+(32)];
      }
      else if(loaded_values == 2)
      {
        local_A[0] = local_A[2];
        #pragma unroll 32
        for(int col = 0; col < 32; col++)
          local_B[col] = local_B[col+(64)];
      }
      else
      {
        local_A[0] = local_A[3];
        #pragma unroll 32
        for(int col = 0; col < 32; col++)
          local_B[col] = local_B[col+(96)];
      }
      loaded_values--;
Tim Dettmers's avatar
Tim Dettmers committed
3173
    }
Tim Dettmers's avatar
Tim Dettmers committed
3174

Tim Dettmers's avatar
Tim Dettmers committed
3175
    smem_A[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*a_tile_offset)] = local_A[0];
Tim Dettmers's avatar
Tim Dettmers committed
3176

Tim Dettmers's avatar
Tim Dettmers committed
3177
3178
    #pragma unroll 32
    for(int col = 0; col < 32; col++)
Tim Dettmers's avatar
Tim Dettmers committed
3179
        smem_B[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*b_tile_offset) + (col*16)] = local_B[col];
Tim Dettmers's avatar
Tim Dettmers committed
3180
  }
Tim Dettmers's avatar
Tim Dettmers committed
3181
3182
3183
  else if(warp_id < (WARPS-1))
  {
    local_A[0] = T(0.0);
Tim Dettmers's avatar
Tim Dettmers committed
3184
    smem_A[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*a_tile_offset)] =  0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
3185
3186
3187

    #pragma unroll 32
    for(int col = 0; col < 32; col++)
Tim Dettmers's avatar
Tim Dettmers committed
3188
      local_B[col] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
3189
3190
3191

    #pragma unroll 32
    for(int col = 0; col < 32; col++)
Tim Dettmers's avatar
Tim Dettmers committed
3192
      smem_B[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*b_tile_offset) + (col*16)] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
3193
  }
Tim Dettmers's avatar
Tim Dettmers committed
3194
  ticktock = ticktock == 0 ? 1 : 0;
Tim Dettmers's avatar
Tim Dettmers committed
3195

3196
  //for(int base_idx = blockDim.x-32; base_idx < K; base_idx+=blockDim.x-32)
Tim Dettmers's avatar
Tim Dettmers committed
3197
  for(int base_idx = blockDim.x-32; base_idx < K; base_idx+=blockDim.x-32)
Tim Dettmers's avatar
Tim Dettmers committed
3198
3199
  {
    idx = base_idx + threadIdx.x;
Tim Dettmers's avatar
Tim Dettmers committed
3200

Tim Dettmers's avatar
Tim Dettmers committed
3201
3202
3203
    __syncthreads();
    if(idx < K && warp_id < (WARPS-1))
    {
Tim Dettmers's avatar
Tim Dettmers committed
3204
      //local_A[0] = A[idx];
Tim Dettmers's avatar
Tim Dettmers committed
3205

Tim Dettmers's avatar
Tim Dettmers committed
3206
3207
3208
3209
3210
3211
      //#pragma unroll 32
      //for(int col = 0; col < 32; col++)
      //  local_B[col] = B[(col_offset+col)*ldb+idx];
      if(loaded_values == 0)
      {
        local_A[0] = A[idx];
3212
3213
3214
        local_A[1] = A[idx+(1*val_per_iter)];
        local_A[2] = A[idx+(2*val_per_iter)];
        local_A[3] = A[idx+(3*val_per_iter)];
Tim Dettmers's avatar
Tim Dettmers committed
3215
3216
3217
3218
3219

        #pragma unroll 32
        for(int col = 0; col < 32; col++)
        {
          local_B[col] = B[(col_offset+col)*ldb+idx];
3220
3221
3222
          local_B[col+32] = B[(col_offset+col)*ldb+idx+(1*val_per_iter)];
          local_B[col+64] = B[(col_offset+col)*ldb+idx+(2*val_per_iter)];
          local_B[col+96] = B[(col_offset+col)*ldb+idx+(3*val_per_iter)];
Tim Dettmers's avatar
Tim Dettmers committed
3223
        }
3224
3225
        loaded_values = 3;

Tim Dettmers's avatar
Tim Dettmers committed
3226
3227
3228
3229
      }
      else
      {

3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
        if(loaded_values == 3)
        {
          local_A[0] = local_A[1];
          #pragma unroll 32
          for(int col = 0; col < 32; col++)
            local_B[col] = local_B[col+(32)];
        }
        else if(loaded_values == 2)
        {
          local_A[0] = local_A[2];
          #pragma unroll 32
          for(int col = 0; col < 32; col++)
            local_B[col] = local_B[col+(64)];
        }
        else
        {
          local_A[0] = local_A[3];
          #pragma unroll 32
          for(int col = 0; col < 32; col++)
            local_B[col] = local_B[col+(96)];
        }
        loaded_values--;
Tim Dettmers's avatar
Tim Dettmers committed
3252
      }
Tim Dettmers's avatar
Tim Dettmers committed
3253
3254
3255

      smem_A[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*a_tile_offset)] = local_A[0];

Tim Dettmers's avatar
Tim Dettmers committed
3256
3257
      #pragma unroll 32
      for(int col = 0; col < 32; col++)
Tim Dettmers's avatar
Tim Dettmers committed
3258
          smem_B[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*b_tile_offset) + (col*16)] = local_B[col];
Tim Dettmers's avatar
Tim Dettmers committed
3259
    }
Tim Dettmers's avatar
Tim Dettmers committed
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
    else if(warp_id < (WARPS-1))
    {
      local_A[0] = T(0.0);
      smem_A[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*a_tile_offset)] =  0.0f;

      #pragma unroll 32
      for(int col = 0; col < 32; col++)
        local_B[col] = 0.0f;

      #pragma unroll 32
      for(int col = 0; col < 32; col++)
        smem_B[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*b_tile_offset) + (col*16)] = 0.0f;
    }
Tim Dettmers's avatar
Tim Dettmers committed
3273
    ticktock = ticktock == 0 ? 1 : 0;
Tim Dettmers's avatar
Tim Dettmers committed
3274
3275
3276
3277
3278
3279
3280
3281

    if(warp_id == (WARPS-1))
      for(int k = 0; k < batch_size_warps; k++)
      {
        wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock*batch_size_warps + k)*a_tile_offset]), 16); //  111 mu
        wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock*batch_size_warps + k)*b_tile_offset]), 16); // 35 mu
        wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
      }
Tim Dettmers's avatar
Tim Dettmers committed
3282
  }
Tim Dettmers's avatar
Tim Dettmers committed
3283

Tim Dettmers's avatar
Tim Dettmers committed
3284
  __syncthreads();
Tim Dettmers's avatar
Tim Dettmers committed
3285
3286
3287
3288
  if(warp_id != (WARPS-1)){ return; }
  // only warp_id == (WARPS-1) from here
  int warp_lane = threadIdx.x % 32;

Tim Dettmers's avatar
Tim Dettmers committed
3289
  ticktock = ticktock == 0 ? 1 : 0;
Tim Dettmers's avatar
Tim Dettmers committed
3290
3291
3292
3293
3294
3295
  for(int k = 0; k < batch_size_warps; k++)
  {
    wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock*batch_size_warps + k)*a_tile_offset]), 16); //  111 mu
    wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock*batch_size_warps + k)*b_tile_offset]), 16); // 35 mu
    wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
  }
3296

Tim Dettmers's avatar
Tim Dettmers committed
3297
  // 129 mu
Tim Dettmers's avatar
Tim Dettmers committed
3298
  if(warp_id == (WARPS-1))
Tim Dettmers's avatar
Tim Dettmers committed
3299
    wmma::store_matrix_sync(&(smem_A[0]), c_frag, 32, wmma::mem_row_major);
3300

Tim Dettmers's avatar
Tim Dettmers committed
3301
3302
  if(col_offset + warp_lane < M)
    out[col_offset + warp_lane] = smem_A[warp_lane];
Tim Dettmers's avatar
Tim Dettmers committed
3303
#endif
Tim Dettmers's avatar
Tim Dettmers committed
3304
3305
}

Tim Dettmers's avatar
Tim Dettmers committed
3306

3307
template <typename T> __device__ void printnonzero(T *A, int num_values, const char * strval)
Tim Dettmers's avatar
Tim Dettmers committed
3308
3309
3310
{
  for(int i = 0; i < num_values; i++)
    if((float)A[i] != 0.0)
3311
      printf("%s %i %f\n", strval, i, (float)A[i]);
Tim Dettmers's avatar
Tim Dettmers committed
3312
3313
}

3314
3315
template __device__ void printnonzero<float>(float *A, int num_values, const char*strval);
template __device__ void printnonzero<half>(half *A, int num_values, const char*strval);
Tim Dettmers's avatar
Tim Dettmers committed
3316

Tim Dettmers's avatar
Tim Dettmers committed
3317
__device__ static float nf4_data[16] = {-1.0, -0.6961928009986877, -0.5250730514526367, -0.39491748809814453, -0.28444138169288635, -0.18477343022823334, -0.09105003625154495, 0.0, 0.07958029955625534, 0.16093020141124725, 0.24611230194568634, 0.33791524171829224, 0.44070982933044434, 0.5626170039176941, 0.7229568362236023, 1.0};
Tim Dettmers's avatar
Tim Dettmers committed
3318
3319
3320
template <typename T, int THREADS> __global__ void kgemm_4bit_inference(int M, int N, int K, T * __restrict__ const A, unsigned char *B,  float *absmax, T * out,  int lda, int ldb, int ldc, int blocksize)
{

3321
#if __CUDA_ARCH__ >= 750
Tim Dettmers's avatar
Tim Dettmers committed
3322
	using namespace nvcuda;
3323
3324
  int col_offset = blockIdx.x *32;
  const int warp_id = threadIdx.x / 32;
3325
  const int warp_idx = threadIdx.x % 32;
3326
3327
3328
  const int half_warp_id = threadIdx.x / 16;
  const int half_warp_lane = threadIdx.x % 16;
  const int batch_size_warps = (WARPS-1)*2;
Tim Dettmers's avatar
Tim Dettmers committed
3329

Tim Dettmers's avatar
Tim Dettmers committed
3330
3331
3332
3333
3334
  T quant_map[16];

  #pragma unroll 16
  for(int i = 0; i < 16; i++)
    quant_map[i] = nf4_data[i];
3335
  //__shared__ T quant_map[16*160];
Tim Dettmers's avatar
Tim Dettmers committed
3336

3337
3338
3339
  T local_A[2];
  T local_B[64];
  unsigned char local_B_4bit[32];
Tim Dettmers's avatar
Tim Dettmers committed
3340

3341

3342
3343
  const int a_tile_offset = 16;
  const int b_tile_offset = (16*32 + 16);
Tim Dettmers's avatar
Tim Dettmers committed
3344

3345
  __shared__ T smem_A[8*16 + (16*(batch_size_warps-1))];
3346
  __shared__ T smem_B[2*batch_size_warps*16*32 + (2*16*(batch_size_warps-1))];
3347
  __shared__ T smem_C[8*32];
Tim Dettmers's avatar
Tim Dettmers committed
3348

3349
3350
3351
3352
   wmma::fragment<wmma::matrix_a, 8, 32, 16, half, wmma::row_major> a_frag;
   wmma::fragment<wmma::matrix_b, 8, 32, 16, half, wmma::col_major> b_frag;
   wmma::fragment<wmma::accumulator, 8, 32, 16, half> c_frag;
   wmma::fill_fragment(c_frag, 0.0f);
Tim Dettmers's avatar
Tim Dettmers committed
3353

3354
3355
3356
3357
3358
  for(int i = threadIdx.x; i < (8*32); i+=blockDim.x)
    smem_C[i] = 0.0f;

  __syncthreads();

3359
3360
3361
3362
3363
  int ticktock = 0;
  int idx = 0 + threadIdx.x;
  int loaded_values = 0;
  // prefetch
  if(idx < K && warp_id < (WARPS-1))
Tim Dettmers's avatar
Tim Dettmers committed
3364
  {
3365
3366
3367
3368
    if(loaded_values == 0)
    {
      local_A[0] = A[idx];
      local_A[1] = A[idx+blockDim.x-32];
Tim Dettmers's avatar
Tim Dettmers committed
3369

3370
3371
3372
      #pragma unroll 32
      for(int col = 0; col < 32; col++)
        local_B_4bit[col] = B[(col_offset+col)*ldb+idx];
Tim Dettmers's avatar
Tim Dettmers committed
3373

3374
3375
3376
      loaded_values = 1;
    }
    else
Tim Dettmers's avatar
Tim Dettmers committed
3377
    {
3378
3379
      local_A[0] = local_A[1];
      loaded_values--;
Tim Dettmers's avatar
Tim Dettmers committed
3380

3381
3382
3383
      #pragma unroll 64
      for(int col = 0; col < 64; col+=2)
      {
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
        //local_B[col] = dhDequantizeNF4(local_B_4bit[col/2] >> 4)*T(1.0f);
        //local_B[col+1] = dhDequantizeNF4(local_B_4bit[col/2] & 0x0F)*T(1.0f);
        //local_B[col] = d2DequantizeFP4(local_B_4bit[col/2] >> 4)*(float)(17.0);
        //local_B[col+1] = d2DequantizeFP4(local_B_4bit[col/2] & 0x0F)*(float)(17.0);
        //local_B[col] = 127*(local_B_4bit[col/2] >> 4)*(float)(17.0);
        //local_B[col+1] = 127*(local_B_4bit[col/2] & 0x0F)*(float)(17.0);

        //local_B[col] = quant_map[(local_B_4bit[col/2] >> 4)]*T(17.0);
        //local_B[col+1] = quant_map[(local_B_4bit[col/2] & 0x0F)]*T(17.0);
        local_B[col] = quant_map[160*(local_B_4bit[col/2] >> 4)+warp_idx]*T(17.0);
        local_B[col+1] = quant_map[160*(local_B_4bit[col/2] & 0x0F)+warp_idx]*T(17.0);
3395
3396
      }
    }
Tim Dettmers's avatar
Tim Dettmers committed
3397

3398
    smem_A[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*a_tile_offset)] = local_A[0];
Tim Dettmers's avatar
Tim Dettmers committed
3399

3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
    #pragma unroll 32
    for(int col = 0; col < 32; col++)
        smem_B[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*b_tile_offset) + (col*16)] = local_B[col];
  }
  else if(warp_id < (WARPS-1))
  {
    local_A[0] = T(0.0);
    smem_A[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*a_tile_offset)] =  0.0f;

    #pragma unroll 32
    for(int col = 0; col < 32; col++)
      local_B[col] = 0.0f;

    #pragma unroll 32
    for(int col = 0; col < 32; col++)
      smem_B[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*b_tile_offset) + (col*16)] = 0.0f;
  }
  ticktock = ticktock == 0 ? 1 : 0;
3418
3419
    //if(threadIdx.x == 0)
      //printf("aa %i %i\n", idx, loaded_values);
Tim Dettmers's avatar
Tim Dettmers committed
3420

3421
3422
3423
3424
  //for(int base_idx = blockDim.x-32; base_idx < K; base_idx+=blockDim.x-32)
  for(int base_idx = blockDim.x-32; base_idx < K; base_idx+=blockDim.x-32)
  {
    idx = base_idx + threadIdx.x;
3425
3426
    //if(threadIdx.x == 0)
      //printf("%i %i\n", idx, loaded_values);
3427

3428
    //__syncthreads();
3429
3430
3431
    if(idx < K && warp_id < (WARPS-1))
    {
      if(loaded_values == 0)
Tim Dettmers's avatar
Tim Dettmers committed
3432
      {
3433
3434
        local_A[0] = A[idx];
        local_A[1] = A[idx+blockDim.x-32];
Tim Dettmers's avatar
Tim Dettmers committed
3435

3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
        #pragma unroll 32
        for(int col = 0; col < 32; col++)
        {
          local_B_4bit[col] = B[(col_offset+col)*ldb+idx];
          local_B_4bit[col+16] = B[(col_offset+col)*ldb+idx];
        }

        loaded_values = 1;
      }
      else
      {
        local_A[0] = local_A[1];
        loaded_values--;

        int absidx = (idx + col_offset)/blocksize;
        half local_absmax = __ldg(&(absmax[absidx]));

        #pragma unroll 64
        for(int col = 0; col < 64; col+=2)
        {
3456
3457
3458
3459
3460
3461
3462
3463
3464
          //local_B[col] = dhDequantizeNF4(local_B_4bit[col/2] >> 4)*T(absidx);
          //local_B[col+1] = dhDequantizeNF4(local_B_4bit[col/2] & 0x0F)*T(absidx);
          //local_B[col] = T(127)*T(local_B_4bit[col/2] >> 4)*T(absidx);
          //local_B[col+1] = T(127)*T(local_B_4bit[col/2] & 0x0F)*T(absidx);

          //local_B[col] = quant_map[160*(local_B_4bit[col/2] >> 4)+warp_idx]*T(local_absmax);
          //local_B[col+1] = quant_map[160*(local_B_4bit[col/2] & 0x0F)+warp_idx]*T(local_absmax);
          local_B[col] = quant_map[(local_B_4bit[col/2] >> 4)]*T(absidx);
          local_B[col+1] = quant_map[(local_B_4bit[col/2] & 0x0F)]*T(absidx);
3465
        }
3466
        //printnonzero<T>(local_B, 128, "");
Tim Dettmers's avatar
Tim Dettmers committed
3467
3468
      }

3469
3470
      smem_A[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*a_tile_offset)] = local_A[0];

Tim Dettmers's avatar
Tim Dettmers committed
3471
      #pragma unroll 32
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
      for(int col = 0; col < 32; col++)
          smem_B[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*b_tile_offset) + (col*16)] = local_B[col];
    }
    else if(warp_id < (WARPS-1))
    {
      local_A[0] = T(0.0);
      smem_A[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*a_tile_offset)] =  0.0f;

      #pragma unroll 32
      for(int col = 0; col < 32; col++)
        local_B[col] = 0.0f;

      #pragma unroll 32
      for(int col = 0; col < 32; col++)
        smem_B[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*b_tile_offset) + (col*16)] = 0.0f;
    }
    ticktock = ticktock == 0 ? 1 : 0;

    if(warp_id == (WARPS-1))
      for(int k = 0; k < batch_size_warps; k++)
Tim Dettmers's avatar
Tim Dettmers committed
3492
      {
3493
3494
3495
        wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock*batch_size_warps + k)*a_tile_offset]), 16); //  111 mu
        wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock*batch_size_warps + k)*b_tile_offset]), 16); // 35 mu
        wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
Tim Dettmers's avatar
Tim Dettmers committed
3496
3497
3498
      }
  }

3499
  __syncthreads();
3500
3501
3502
3503
3504
  //if(threadIdx.x == 0)
  //{
  //  printnonzero<T>(smem_A, 8*16 + (2*16*(batch_size_warps-1)), "A: ");
  //  printnonzero<T>(smem_B, 2*batch_size_warps*16*32 + (2*16*(batch_size_warps-1)), "B: ");
  //}
3505
3506
3507
  if(warp_id != (WARPS-1)){ return; }
  // only warp_id == (WARPS-1) from here
  int warp_lane = threadIdx.x % 32;
Tim Dettmers's avatar
Tim Dettmers committed
3508

3509
3510
  ticktock = ticktock == 0 ? 1 : 0;
  for(int k = 0; k < batch_size_warps; k++)
Tim Dettmers's avatar
Tim Dettmers committed
3511
  {
3512
3513
    //if(warp_lane == 0)
      //printf("%i %i %i %i\n", (ticktock*batch_size_warps + k)*a_tile_offset, k, ticktock, threadIdx.x);
3514
3515
3516
    wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock*batch_size_warps + k)*a_tile_offset]), 16); //  111 mu
    wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock*batch_size_warps + k)*b_tile_offset]), 16); // 35 mu
    wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
Tim Dettmers's avatar
Tim Dettmers committed
3517
3518
  }

3519
3520
  // 129 mu
  if(warp_id == (WARPS-1))
3521
    wmma::store_matrix_sync(&(smem_C[0]), c_frag, 32, wmma::mem_row_major);
Tim Dettmers's avatar
Tim Dettmers committed
3522

3523
  //printnonzero<T>(smem_C, 32, "");
Tim Dettmers's avatar
Tim Dettmers committed
3524

3525
  if(col_offset + warp_lane < M)
3526
    out[col_offset + warp_lane] = smem_C[warp_lane];
3527
#endif
Tim Dettmers's avatar
Tim Dettmers committed
3528
3529
}

3530
#define num_values_4bit 32
3531
template <typename T, int THREADS, int BITS> __global__ void kgemm_4bit_inference_naive(int M, int N, int K, T * __restrict__ const A, unsigned char *B,  float *absmax, const float *datatype, T * out,  int lda, int ldb, int ldc, int blocksize)
3532
3533
{

3534
  // per threadblock:
3535
  // load step-by-step in chunks of [32,warps]: 1x32 * [32,warps] -> [1,warps]
3536
  // 4 warps -> 4 loads per iter
3537
  // 1x32 * 32x4 -> 1x4 outputs per thread block
3538
  typedef cub::WarpReduce<float> WarpReduce;
3539
  __shared__ typename WarpReduce::TempStorage temp_storage[THREADS/32];
3540
3541
3542

  const int warp_idx = threadIdx.x / 32;
  const int warp_lane = threadIdx.x % 32;
3543
3544
  const int row_B = (THREADS/32)*blockIdx.x + warp_idx;
  const int num_values_8bit = num_values_4bit/2;
3545
  float local_C = 0.0f;
3546

3547
  unsigned char local_B_4bit[num_values_8bit];
Tim Dettmers's avatar
Tim Dettmers committed
3548
3549
  T local_B[num_values_4bit/4];
  T local_A[num_values_4bit/4];
3550
3551
  __shared__ T quant_map[16];
	T local_absmax = T(0.0f);
3552

3553
  for(int i = threadIdx.x; i < 16; i++)
3554
    quant_map[i] = T(datatype[i]);
3555
  __syncthreads();
3556
3557
3558
3559
3560

  // A: [1, K]
  // B: [N, K]
  for(int inner_idx = warp_lane*num_values_4bit; inner_idx < K; inner_idx += 32*num_values_4bit)
  {
3561
3562
3563
    int inner_idx_halved = inner_idx/2;
    int offset_B = ldb*row_B;
    int absidx = ((2*offset_B)+inner_idx)/blocksize;
3564
	  local_absmax = __ldg(&(absmax[absidx]));
3565

3566
    if(row_B < M)
3567
    {
Tim Dettmers's avatar
Tim Dettmers committed
3568
      if((inner_idx_halved + num_values_8bit) < (K/2))
3569
      {
3570
        // this is the most important for performance considerations
3571
3572
        reinterpret_cast<int4(&)[num_values_8bit]>(local_B_4bit)[0] = reinterpret_cast<int4*>(B)[(offset_B+(inner_idx_halved))/(num_values_8bit)];
      }
3573
      else
3574
3575
3576
      {
        #pragma unroll
        for(int j = 0; j < (num_values_8bit); j++)
Tim Dettmers's avatar
Tim Dettmers committed
3577
          if((inner_idx_halved) + j < (K/2))
3578
3579
            local_B_4bit[j] = B[offset_B+inner_idx_halved + j];
          else
3580
3581
            local_B_4bit[j] = 0b01110111;
      }
3582
    }
Tim Dettmers's avatar
Tim Dettmers committed
3583
3584
3585
3586
3587
3588
    else
    {
      #pragma unroll
      for(int j = 0; j < (num_values_8bit); j++)
          local_B_4bit[j] = 0b01110111;
    }
3589

Tim Dettmers's avatar
Tim Dettmers committed
3590
    for(int i = 0; i < 4; i++)
3591
    {
Tim Dettmers's avatar
Tim Dettmers committed
3592
3593
      #pragma unroll
      for(int k = 0; k < num_values_8bit/4; k++)
3594
      {
Tim Dettmers's avatar
Tim Dettmers committed
3595
3596
3597
3598
3599
3600
3601
3602
        #if __CUDA_ARCH__ >= 800
          local_B[k*2] = quant_map[local_B_4bit[(i*num_values_8bit/4) + k] >> 4]*local_absmax;
          local_B[k*2 + 1] = quant_map[local_B_4bit[(i*num_values_8bit/4) + k] & 0x0F]*local_absmax;
        #else
          // bf16 multipliation not supported
          local_B[k*2] = T((float)quant_map[local_B_4bit[(i*num_values_8bit/4) + k] >> 4]*(float)local_absmax);
          local_B[k*2 + 1] = T((float)quant_map[local_B_4bit[(i*num_values_8bit/4) + k] & 0x0F]*(float)local_absmax);
        #endif
3603
      }
3604

Tim Dettmers's avatar
Tim Dettmers committed
3605
3606
3607
3608
3609
3610
3611
      if(inner_idx+(num_values_4bit/4) + (i*num_values_4bit/4) < K)
      {
        // this is also relatively important for performance
        if(BITS==16)
        {
          reinterpret_cast<int4(&)[num_values_4bit]>(local_A)[0] = reinterpret_cast<int4*>(A)[inner_idx/(num_values_4bit/4) + i];
        }
3612
        else
Tim Dettmers's avatar
Tim Dettmers committed
3613
3614
3615
3616
        {
          reinterpret_cast<int4(&)[num_values_4bit]>(local_A)[0] = reinterpret_cast<int4*>(A)[inner_idx/(num_values_4bit/8) + (2*i) + 0];
          reinterpret_cast<int4(&)[num_values_4bit]>(local_A)[1] = reinterpret_cast<int4*>(A)[inner_idx/(num_values_4bit/8) + (2*i) + 1];
        }
3617

Tim Dettmers's avatar
Tim Dettmers committed
3618
3619
3620
3621
3622
3623
3624
3625
      }
      else
        #pragma unroll
        for(int k = 0; k < num_values_4bit/4; k++)
          if(inner_idx + (i*num_values_4bit/4) + k < K)
            local_A[k] = A[inner_idx + k + (i*num_values_4bit/4)];
          else
            local_A[k] = T(0.0f);
3626

Tim Dettmers's avatar
Tim Dettmers committed
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638

      // accumulate in float; small performance hit for Ampere, but lower error for outputs
      #pragma unroll
      for(int k = 0; k < num_values_4bit/4; k++)
      {
        #if __CUDA_ARCH__ >= 800
          local_C += (float)(local_A[k]*local_B[k]);
        #else
          // bf16 multipliation not supported
          local_C += ((float)local_A[k]*(float)local_B[k]);
        #endif
      }
3639
    }
3640
3641
3642
3643
3644
  }

  local_C = WarpReduce(temp_storage[warp_idx]).Sum(local_C);

  if(row_B < M && warp_lane == 0)
3645
    out[row_B] = T(local_C);
3646
3647
3648
3649

}


3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
//#define ROWS 2
//template <typename T, int ITEMS, int THREADS> __global__ void gemm_device(int M, int N, int K, T const* A,  T* B,  T * out,  int lda, int ldb, int ldc)
//{
//// 0. We want to fill a 8x128 tile for a thread block so we have 8x16 tile for each warp
//// 1. Load dataB into register
//// 2. Dequantize B
//// 3. Fetch data from A and multiply
//
//  typedef cub::BlockLoad<T, THREADS , ITEMS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadA;
//  //__shared__ typename LoadA::TempStorage loada;
//  typedef cub::BlockLoad<T, THREADS , ITEMS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadB;
//  //__shared__ typename LoadB::TempStorage loadb;
//  typedef cub::BlockReduce<T, THREADS> BlockReduce;
//  // Allocate shared memory for BlockReduce
//  //__shared__ typename BlockReduce::TempStorage reduce;
//
//  __shared__ union {
//    typename BlockReduce::TempStorage reduce;
//    typename LoadB::TempStorage loadb;
//    typename LoadA::TempStorage loada;
//  } temp_storage;
//
//
//	T dataA[ITEMS];
//  T local_B[ITEMS];
//  T local_accC[ROWS];
//	int valid_items = 0;
//  const int col_offset = blockIdx.x * 8;
//
//	__shared__ T tileA[ROWS*THREADS*ITEMS];
//	__shared__ T accumulatorC[ROWS*8];
//
//  //#pragma unroll 8
//  //for(int i = 0; i < 8; i++)
//  //  tileA[threadIdx.x + (i*256)] = 0.0f;
//  //__syncthreads();
//  if(threadIdx.x < 64)
//    accumulatorC[threadIdx.x] = 0.0f;
//  __syncthreads();
//
//
//	for(int inner_idx = 0; inner_idx < K; inner_idx+= THREADS*ITEMS)
//	{
//		valid_items = K - inner_idx > THREADS*ITEMS ? THREADS*ITEMS : K - inner_idx;
//		int baserow = 0;
//		for(int row = baserow; row < (baserow+ROWS) && row < N; row++)
//		{
//			LoadA(temp_storage.loada).Load(&(A[(row*K) + inner_idx]), dataA, valid_items, 0.0f);
//
//      #pragma unroll ITEMS
//      for(int k = 0; k < ITEMS; k++)
//          tileA[row*THREADS*ITEMS + threadIdx.x + (k*THREADS)] = dataA[k];
//
//		__syncthreads();
//		}
//		baserow += ROWS;
//
//    // load 16 columns from B at a time. B is transposed, so its like loading rows
//    // each warp loads one row
//    // each thread loads 128 byte
//
//    // col: inner_idx + warp_lane
//    // row: ldb*(offset + warp_id)
//    for(int col = 0; col < 8 && (col_offset + col) < M; col++)
//    {
//      int colB = col_offset + col;
//
//      for(int k = 0; k < ROWS; k++)
//        local_accC[k] = 0.0f;
//
//      int base_idxB = ldb*colB;
//      valid_items = K - inner_idx > THREADS*ITEMS ? THREADS*ITEMS : K - inner_idx;
//      LoadB(temp_storage.loadb).Load(&(B[base_idxB + inner_idx]), local_B, valid_items, 0.0f);
//      __syncthreads();
//
//      for(int row = 0; row < ROWS && row < N; row++)
//      {
//        #pragma unroll ITEMS
//        for(int k = 0; k < ITEMS; k++)
//        {
//          int idxA = row*THREADS*ITEMS + threadIdx.x + (THREADS*k);
//          local_accC[row] += tileA[idxA]*local_B[k];
//        }
//
//        local_accC[row] = BlockReduce(temp_storage.reduce).Reduce(local_accC[row], cub::Sum());
//        if(threadIdx.x == 0)
//          atomicAdd(&accumulatorC[row*8 + col], local_accC[row]);
//      }
//    }
//	}
//
//  for(int row = 0; row < ROWS && row < N; row++)
//  {
//    int out_idx = ldc*row + col_offset;
//
//    //if(threadIdx.x < 8)
//    //  if(accumulatorC[row*8 + threadIdx.x] != 0.0)
//    //    printf("%i %i %i %i %f idx %i %i %i\n", row, col_offset, threadIdx.x, N, accumulatorC[row*8 + threadIdx.x], ldc, out_idx, blockIdx.x);
//
//    if(threadIdx.x < 8 && (col_offset + threadIdx.x) < M)
//    {
//      //printf("%i %i %i %i %f idx %i %i\n", row, col_offset, threadIdx.x, N, accumulatorC[row*8 + threadIdx.x], ldc, out_idx);
//      out[out_idx + threadIdx.x] = accumulatorC[row*8 + threadIdx.x];
//    }
//  }
//
//
//
//}

Tim Dettmers's avatar
Tim Dettmers committed
3760

Tim Dettmers's avatar
Tim Dettmers committed
3761
template <typename T, int FUNC> __global__ void kfunc(T *A, T *B, T value, long n)
Tim Dettmers's avatar
Tim Dettmers committed
3762
{
Tim Dettmers's avatar
Tim Dettmers committed
3763
3764
3765
3766
  for(long i = (blockDim.x*blockIdx.x) + threadIdx.x; i < n; i+=(blockDim.x*gridDim.x))
  {
    switch(FUNC)
    {
3767
      case FILL:
Tim Dettmers's avatar
Tim Dettmers committed
3768
3769
3770
3771
3772
3773
3774
3775
        A[i] = (T)value;
        break;
      case ARANGE:
        A[i] = (T)i;
        break;
      case _MUL:
        A[i] = A[i]*B[i];
        break;
Tim Dettmers's avatar
Tim Dettmers committed
3776
    }
Tim Dettmers's avatar
Tim Dettmers committed
3777
  }
Tim Dettmers's avatar
Tim Dettmers committed
3778
3779
}

Tim Dettmers's avatar
Tim Dettmers committed
3780

Tim Dettmers's avatar
Tim Dettmers committed
3781
3782
3783
3784
//==============================================================
//                   TEMPLATE DEFINITIONS
//==============================================================

Tim Dettmers's avatar
Tim Dettmers committed
3785
3786
3787
3788
template __global__ void kfunc<float, FILL>(float *A, float *B, float value, long n);
template __global__ void kfunc<unsigned char, FILL>(unsigned char *A, unsigned char *B, unsigned char value, long n);
template __global__ void kfunc<float, ARANGE>(float *A, float *B, float value, long n);
template __global__ void kfunc<float, _MUL>(float *A, float *B, float value, long n);
Tim Dettmers's avatar
Tim Dettmers committed
3789
3790

// these are not used and make no sense, but the compiler needs them
Tim Dettmers's avatar
Tim Dettmers committed
3791
//template __global__ void gemm_device<float, 16, 128>(int M, int N, int K, float * __restrict__ const A,  float* B,  float * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3792
template __global__ void gemm_device<half, 32, 256>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3793
template __global__ void gemm_device<half, 32, 192>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3794
template __global__ void gemm_device<half, 32, 160>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3795
template __global__ void gemm_device<half, 32, 128>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3796
3797
//template __global__ void gemm_device<float, 16, 32>(int M, int N, int K, float * __restrict__ const A,  float* B,  float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 32, 32>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3798
template __global__ void gemm_device<half, 32, 64>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3799
template __global__ void gemm_device<half, 32, 96>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3800
3801
// these are not used and make no sense, but the compiler needs them

Tim Dettmers's avatar
Tim Dettmers committed
3802
//template __global__ void gemm_device<float, 32, 128>(int M, int N, int K, float * __restrict__ const A,  float* B,  float * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3803
template __global__ void gemm_device<half, 16, 256>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3804
template __global__ void gemm_device<half, 16, 192>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3805
template __global__ void gemm_device<half, 16, 160>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
3806
template __global__ void gemm_device<half, 16, 128>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3807
3808
//template __global__ void gemm_device<float, 32, 32>(int M, int N, int K, float * __restrict__ const A,  float* B,  float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 16, 32>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3809
template __global__ void gemm_device<half, 16, 64>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3810
template __global__ void gemm_device<half, 16, 96>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3811

3812
template __global__ void kgemm_4bit_inference<half, 96>(int M, int N, int K, half * __restrict__ const A, unsigned char *B,  float *absmax, half * out,  int lda, int ldb, int ldc, int blocksize);
Tim Dettmers's avatar
Tim Dettmers committed
3813
template __global__ void kgemm_4bit_inference<half, 128>(int M, int N, int K, half * __restrict__ const A, unsigned char *B,  float *absmax, half * out,  int lda, int ldb, int ldc, int blocksize);
3814
template __global__ void kgemm_4bit_inference<half, 160>(int M, int N, int K, half * __restrict__ const A, unsigned char *B,  float *absmax, half * out,  int lda, int ldb, int ldc, int blocksize);
3815
3816
template __global__ void kgemm_4bit_inference<half, 256>(int M, int N, int K, half * __restrict__ const A, unsigned char *B,  float *absmax, half * out,  int lda, int ldb, int ldc, int blocksize);

3817
3818
3819
template __global__ void kgemm_4bit_inference_naive<half, 128, 16>(int M, int N, int K, half * __restrict__ const A, unsigned char *B,  float *absmax, const float *datatype, half * out,  int lda, int ldb, int ldc, int blocksize);
template __global__ void kgemm_4bit_inference_naive<__nv_bfloat16, 128, 16>(int M, int N, int K, __nv_bfloat16 * __restrict__ const A, unsigned char *B,  float *absmax, const float *datatype, __nv_bfloat16 * out,  int lda, int ldb, int ldc, int blocksize);
template __global__ void kgemm_4bit_inference_naive<float, 128, 32>(int M, int N, int K, float * __restrict__ const A, unsigned char *B,  float *absmax, const float *datatype, float * out,  int lda, int ldb, int ldc, int blocksize);
Tim Dettmers's avatar
Tim Dettmers committed
3820

3821
3822
template __global__ void kExtractOutliers<COL_TURING>(char *A, int *idx, char *out, int idx_size, int rowsA, int colsA, int tiledRowsA, int tiledColsA);
template __global__ void kExtractOutliers<COL_AMPERE>(char *A, int *idx, char *out, int idx_size, int rowsA, int colsA, int tiledRowsA, int tiledColsA);
3823

James Wyatt's avatar
James Wyatt committed
3824
3825
3826
3827
3828
3829
template __global__ void kspmm_coo_very_sparse_naive<half, 8, 16>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, half *B, half *out, float * __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB);
template __global__ void kspmm_coo_very_sparse_naive<half, 16, 16>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, half *B, half *out, float * __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB);
template __global__ void kspmm_coo_very_sparse_naive<half, 32, 16>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, half *B, half *out, float * __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB);
template __global__ void kspmm_coo_very_sparse_naive<signed char, 8, 8>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, signed char *B, half *out, float * __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB);
template __global__ void kspmm_coo_very_sparse_naive<signed char, 16, 8>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, signed char *B, half *out, float * __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB);
template __global__ void kspmm_coo_very_sparse_naive<signed char, 32, 8>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, signed char *B, half *out, float * __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB);
Tim Dettmers's avatar
Tim Dettmers committed
3830
3831
3832
3833
3834
3835
3836
3837

template __global__ void kTransformRowToFormat<256, 8, 32, 32*8, 0, COL32>(char *__restrict__ const A, char *out, int rows, int cols, int tiledCols, int outRows, int outCols);
template __global__ void kTransformRowToFormat<256, 8, 32, 32*8, 1, COL32>(char *__restrict__ const A, char *out, int rows, int cols, int tiledCols, int outRows, int outCols);
template __global__ void kTransformRowToFormat<256, 8, 32, 32*8, 0, COL_TURING>(char *__restrict__ const A, char *out, int rows, int cols, int tiledCols, int outRows, int outCols);
template __global__ void kTransformRowToFormat<256, 8, 32, 32*8, 1, COL_TURING>(char *__restrict__ const A, char *out, int rows, int cols, int tiledCols, int outRows, int outCols);
template __global__ void kTransformRowToFormat<256, 8, 32, 32*8, 0, COL_AMPERE>(char *__restrict__ const A, char *out, int rows, int cols, int tiledCols, int outRows, int outCols);
template __global__ void kTransformRowToFormat<256, 8, 32, 32*8, 1, COL_AMPERE>(char *__restrict__ const A, char *out, int rows, int cols, int tiledCols, int outRows, int outCols);

3838
template __global__ void kdequant_mm_int32_fp16<4, 128, 512>(int *__restrict__ const A, float *__restrict__ const rowStats, float *__restrict__ const colStats, half *out, float* newRowStats, float* newcolStats, half * __restrict__ const bias, const int numRows, const int numCols, const int tileCols, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
3839
3840
3841
3842

template __global__ void kDoubleRowColQuant<64, 4, 16, 64*4, 0>(half *__restrict__ const A, float *__restrict__ const rowStats, float * __restrict__ const colStats, char *out_col_normed, char *out_row_normed, int *rowidx, int *colidx, half *val, int * __restrict__ nnz_block_ptr, float threshold, int rows, int cols, int tiledCols);
template __global__ void kDoubleRowColQuant<64, 4, 16, 64*4, 1>(half *__restrict__ const A, float *__restrict__ const rowStats, float * __restrict__ const colStats, char *out_col_normed, char *out_row_normed, int *rowidx, int *colidx, half *val, int * __restrict__ nnz_block_ptr, float threshold, int rows, int cols, int tiledCols);

Tim Dettmers's avatar
Tim Dettmers committed
3843
3844
3845
3846
3847
3848
3849
3850
3851
template __device__ unsigned char dQuantize<0>(float* smem_code, const float rand, float x);
template __device__ unsigned char dQuantize<1>(float* smem_code, const float rand, float x);

template __global__ void kEstimateQuantiles(float *__restrict__ const A, float *code, const float offset, const float max_val, const int n);
template __global__ void kEstimateQuantiles(half *__restrict__ const A, float *code, const float offset, const half max_val, const int n);

#define MAKE_PreconditionOptimizer32bit1State(oname, gtype) \
template __global__ void kPreconditionOptimizer32bit1State<gtype, oname, 4096, 8>(gtype* g, gtype* p, \
                float* state1, float *unorm, \
3852
                const float beta1, const float beta2, const float eps, const float weight_decay, \
Tim Dettmers's avatar
Tim Dettmers committed
3853
3854
3855
3856
3857
3858
                const int step, const float lr, const float gnorm_scale, const int n); \

MAKE_PreconditionOptimizer32bit1State(MOMENTUM, half)
MAKE_PreconditionOptimizer32bit1State(MOMENTUM, float)
MAKE_PreconditionOptimizer32bit1State(RMSPROP, half)
MAKE_PreconditionOptimizer32bit1State(RMSPROP, float)
3859
3860
MAKE_PreconditionOptimizer32bit1State(LION, half)
MAKE_PreconditionOptimizer32bit1State(LION, float)
Tim Dettmers's avatar
Tim Dettmers committed
3861
MAKE_PreconditionOptimizer32bit1State(LION, __nv_bfloat16)
3862
3863
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, half)
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, float)
Tim Dettmers's avatar
Tim Dettmers committed
3864
3865
3866

#define MAKE_Optimizer32bit1State(oname, gtype) \
template __global__ void kOptimizer32bit1State<gtype, oname>(gtype* g, gtype* p, float* state1, float *unorm, const float max_unorm, const float param_norm, \
3867
    const float beta1, const float beta2, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n); \
Tim Dettmers's avatar
Tim Dettmers committed
3868
3869
3870
3871
3872

MAKE_Optimizer32bit1State(MOMENTUM, half)
MAKE_Optimizer32bit1State(MOMENTUM, float)
MAKE_Optimizer32bit1State(RMSPROP, half)
MAKE_Optimizer32bit1State(RMSPROP, float)
3873
3874
MAKE_Optimizer32bit1State(LION, half)
MAKE_Optimizer32bit1State(LION, float)
Tim Dettmers's avatar
Tim Dettmers committed
3875
MAKE_Optimizer32bit1State(LION, __nv_bfloat16)
3876
3877
MAKE_Optimizer32bit1State(ADAGRAD, half)
MAKE_Optimizer32bit1State(ADAGRAD, float)
Tim Dettmers's avatar
Tim Dettmers committed
3878
3879
3880
3881
3882
3883
3884
3885

#define MAKE_PreconditionOptimizer32bit2State(oname, gtype) \
template __global__ void kPreconditionOptimizer32bit2State<gtype, oname, 4096, 8>(gtype* g, gtype* p,  \
                float* state1, float* state2, float *unorm, \
                const float beta1, const float beta2, const float eps, const float weight_decay, \
                const int step, const float lr, const float gnorm_scale, const int n); \

MAKE_PreconditionOptimizer32bit2State(ADAM, float)
3886
3887
MAKE_PreconditionOptimizer32bit2State(ADAM, half)
MAKE_PreconditionOptimizer32bit2State(ADAM, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
3888

3889
3890
template __global__ void kOptimizer32bit2State<float, ADAM>(float* g, float* p, float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
3891
template __global__ void kOptimizer32bit2State<half, ADAM>(half* g, half* p, float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
3892
    const float beta1, const float beta2, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
3893
template __global__ void kOptimizer32bit2State<__nv_bfloat16, ADAM>(__nv_bfloat16* g, __nv_bfloat16* p, float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
3894
    const float beta1, const float beta2, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
3895
3896
3897
3898
3899

#define MAKE_PreconditionStatic8bit1State(oname, gtype) \
template __global__ void kPreconditionOptimizerStatic8bit1State<gtype, oname>(gtype* p, gtype* __restrict__ const g, unsigned char*__restrict__  const state1,  \
                float *unorm,  \
                const float beta1,  \
3900
                const float beta2,  \
Tim Dettmers's avatar
Tim Dettmers committed
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
                const float eps, const int step,  \
                float* __restrict__ const quantiles1,  \
                float* max1, float* new_max1,  \
                const float weight_decay, \
                const float gnorm_scale,  \
                const int n); \

MAKE_PreconditionStatic8bit1State(MOMENTUM, half)
MAKE_PreconditionStatic8bit1State(MOMENTUM, float)
MAKE_PreconditionStatic8bit1State(RMSPROP, half)
MAKE_PreconditionStatic8bit1State(RMSPROP, float)
3912
3913
MAKE_PreconditionStatic8bit1State(LION, half)
MAKE_PreconditionStatic8bit1State(LION, float)
Tim Dettmers's avatar
Tim Dettmers committed
3914
3915
3916
3917
3918

#define MAKE_optimizerStatic8bit1State(oname, gtype) \
template __global__ void kOptimizerStatic8bit1State<gtype, oname>(gtype* p, gtype* const g, unsigned char* state1,  \
                const float *unorm, const float max_unorm, const float param_norm, \
                const float beta1,  \
3919
                const float beta2,  \
Tim Dettmers's avatar
Tim Dettmers committed
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
                const float eps, const int step, const float lr, \
                float* __restrict__ const quantiles1,  \
                float* max1, float* new_max1,  \
                float weight_decay, \
                const float gnorm_scale,  \
                const int n); \

MAKE_optimizerStatic8bit1State(MOMENTUM, half)
MAKE_optimizerStatic8bit1State(MOMENTUM, float)
MAKE_optimizerStatic8bit1State(RMSPROP, half)
MAKE_optimizerStatic8bit1State(RMSPROP, float)
3931
3932
MAKE_optimizerStatic8bit1State(LION, half)
MAKE_optimizerStatic8bit1State(LION, float)
Tim Dettmers's avatar
Tim Dettmers committed
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963

#define MAKE_PreconditionStatic8bit2State(oname, gtype) \
template __global__ void kPreconditionOptimizerStatic8bit2State<gtype, oname>(gtype* p, gtype* __restrict__ const g, unsigned char*__restrict__  const state1, unsigned char* __restrict__ const state2, \
                float *unorm, \
                const float beta1, const float beta2, \
                const float eps, const int step,  \
                float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, \
                float* max1, float* max2, float* new_max1, float* new_max2, \
                const float gnorm_scale,  \
                const int n); \

MAKE_PreconditionStatic8bit2State(ADAM, half)
MAKE_PreconditionStatic8bit2State(ADAM, float)

#define MAKE_optimizerStatic8bit2State(oname, gtype) \
template __global__ void kOptimizerStatic8bit2State<gtype, oname>(gtype* p, gtype* const g, unsigned char* state1, unsigned char* state2, \
                const float *unorm, const float max_unorm, const float param_norm, \
                const float beta1, const float beta2, \
                const float eps, const int step, const float lr, \
                float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, \
                float* max1, float* max2, float* new_max1, float* new_max2, \
                float weight_decay, \
                const float gnorm_scale,  \
                const int n); \

MAKE_optimizerStatic8bit2State(ADAM, half)
MAKE_optimizerStatic8bit2State(ADAM, float)

template __global__ void kPercentileClipping<float, 2048, 4>(float * __restrict__ g, float *gnorm_vec, int step, const int n);
template __global__ void kPercentileClipping<half, 2048, 4>(half * __restrict__ g, float *gnorm_vec, int step, const int n);

Tim Dettmers's avatar
Tim Dettmers committed
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
#define MAKE_kQuantizeBlockwise(dtype, blocksize, num_per_thread, stochastic, data_type_name) \
template __global__ void kQuantizeBlockwise<dtype, blocksize, num_per_thread, stochastic, data_type_name>(float * code, dtype * __restrict__ const A, float *absmax, unsigned char *out, float * __restrict__ const rand, const int rand_offset, const int n); \

MAKE_kQuantizeBlockwise(half,  4096, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(half,  4096, 4, 1, General8bit)
MAKE_kQuantizeBlockwise(half,  2048, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(half,  1024, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(half,   512, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half,   256, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half,   128, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half,    64, 2, 0, General8bit)
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
MAKE_kQuantizeBlockwise(half,  4096, 4, 0, FP4)
MAKE_kQuantizeBlockwise(half,  2048, 4, 0, FP4)
MAKE_kQuantizeBlockwise(half,  1024, 4, 0, FP4)
MAKE_kQuantizeBlockwise(half,   512, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half,   256, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half,   128, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half,    64, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half,  4096, 4, 0, NF4)
MAKE_kQuantizeBlockwise(half,  2048, 4, 0, NF4)
MAKE_kQuantizeBlockwise(half,  1024, 4, 0, NF4)
MAKE_kQuantizeBlockwise(half,   512, 2, 0, NF4)
MAKE_kQuantizeBlockwise(half,   256, 2, 0, NF4)
MAKE_kQuantizeBlockwise(half,   128, 2, 0, NF4)
MAKE_kQuantizeBlockwise(half,    64, 2, 0, NF4)
Tim Dettmers's avatar
Tim Dettmers committed
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
MAKE_kQuantizeBlockwise(float, 4096, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 4096, 4, 1, General8bit)
MAKE_kQuantizeBlockwise(float, 2048, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 1024, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(float,  512, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float,  256, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float,  128, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float,   64, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 4096, 4, 0, FP4)
MAKE_kQuantizeBlockwise(float, 2048, 4, 0, FP4)
MAKE_kQuantizeBlockwise(float, 1024, 4, 0, FP4)
MAKE_kQuantizeBlockwise(float,  512, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float,  256, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float,  128, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float,   64, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float, 4096, 4, 0, NF4)
MAKE_kQuantizeBlockwise(float, 2048, 4, 0, NF4)
MAKE_kQuantizeBlockwise(float, 1024, 4, 0, NF4)
MAKE_kQuantizeBlockwise(float,  512, 2, 0, NF4)
MAKE_kQuantizeBlockwise(float,  256, 2, 0, NF4)
MAKE_kQuantizeBlockwise(float,  128, 2, 0, NF4)
MAKE_kQuantizeBlockwise(float,   64, 2, 0, NF4)

4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 1, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 2048, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 1024, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  512, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  256, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  128, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16,   64, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 2048, 4, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 1024, 4, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  512, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  256, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  128, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16,   64, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 2048, 4, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 1024, 4, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  512, 2, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  256, 2, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  128, 2, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16,   64, 2, 0, NF4)

Tim Dettmers's avatar
Tim Dettmers committed
4035
4036
4037
template __global__ void kDequantizeBlockwise<half, 512, 64, 8, FP4>(float *code, unsigned char * A, float * absmax, half *out, const int blocksize, const int n);
template __global__ void kDequantizeBlockwise<half, 512, 64, 8, General8bit>(float *code, unsigned char * A, float * absmax, half *out, const int blocksize, const int n);
template __global__ void kDequantizeBlockwise<half, 512, 64, 8, NF4>(float *code, unsigned char * A, float * absmax, half *out, const int blocksize, const int n);
4038
4039
template __global__ void kDequantizeBlockwise<float, 512, 64, 8, FP4>(float *code, unsigned char * A, float * absmax, float *out, const int blocksize, const int n);
template __global__ void kDequantizeBlockwise<float, 512, 64, 8, General8bit>(float *code, unsigned char * A, float * absmax, float *out, const int blocksize, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
4040
template __global__ void kDequantizeBlockwise<float, 512, 64, 8, NF4>(float *code, unsigned char * A, float * absmax, float *out, const int blocksize, const int n);
4041
4042
4043
template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, FP4>(float *code, unsigned char * A, float * absmax, __nv_bfloat16 *out, const int blocksize, const int n);
template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, General8bit>(float *code, unsigned char * A, float * absmax, __nv_bfloat16 *out, const int blocksize, const int n);
template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, NF4>(float *code, unsigned char * A, float * absmax, __nv_bfloat16 *out, const int blocksize, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
4044
4045
4046
4047
4048
4049
4050
4051

#define MAKE_OptimizerStatic8bit2StateBlockwise(oname, gtype, block_size, num_per_thread) \
template __global__ void kOptimizerStatic8bit2StateBlockwise<gtype, oname, block_size, num_per_thread>(gtype* p, gtype* __restrict__ const g, unsigned char* state1, unsigned char* state2, \
                const float beta1, const float beta2, \
                const float eps, const int step, const float lr, \
                float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, \
                float* absmax1, float* absmax2,  \
                float weight_decay, \
4052
                const float gnorm_scale, const bool skip_zeros, const int n); \
Tim Dettmers's avatar
Tim Dettmers committed
4053
4054
4055

MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, float, 2048, 8)
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, half, 2048, 8)
Tim Dettmers's avatar
Tim Dettmers committed
4056
4057
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, __nv_bfloat16, 2048, 8)

Tim Dettmers's avatar
Tim Dettmers committed
4058
4059
4060
4061
4062
4063
4064
4065
4066

#define MAKE_OptimizerStatic8bit1StateBlockwise(oname, gtype, block_size, num_per_thread) \
template __global__ void kOptimizerStatic8bit1StateBlockwise<gtype, oname, block_size, num_per_thread>( \
		gtype* p, gtype* __restrict__ const g, unsigned char* state1, \
                const float beta1, const float beta2, \
                const float eps, const int step, const float lr, \
                float* __restrict__ const quantiles1, \
                float* absmax1, \
                float weight_decay, \
4067
                const float gnorm_scale, const bool skip_zeros, const int n); \
Tim Dettmers's avatar
Tim Dettmers committed
4068
4069
4070
4071
4072

MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, float, 2048, 8)
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, half, 2048, 8)
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, float, 2048, 8)
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, half, 2048, 8)
4073
4074
MAKE_OptimizerStatic8bit1StateBlockwise(LION, float, 2048, 8)
MAKE_OptimizerStatic8bit1StateBlockwise(LION, half, 2048, 8)
Tim Dettmers's avatar
Tim Dettmers committed
4075
MAKE_OptimizerStatic8bit1StateBlockwise(LION, __nv_bfloat16, 2048, 8)
4076
4077
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, float, 2048, 8)
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, half, 2048, 8)