"server/text_generation_server/models/mpt.py" did not exist on "e6d3eb5d5d257fb20caf1f86fb3cd2ef530fb555"
kernels.cu 126 KB
Newer Older
1
2
3
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
Tim Dettmers's avatar
Tim Dettmers committed
4
5
// LICENSE file in the root directory of this source tree.

6
#include "common.cuh"
7
#include "kernels.cuh"
Tim Dettmers's avatar
Tim Dettmers committed
8
#include <cub/block/block_discontinuity.cuh>
9
10
#include <cub/block/block_load.cuh>
#include <cub/block/block_radix_sort.cuh>
Tim Dettmers's avatar
Tim Dettmers committed
11
#include <cub/block/block_reduce.cuh>
12
#include <cub/block/block_store.cuh>
Tim Dettmers's avatar
Tim Dettmers committed
13
#include <cub/cub.cuh>
14
15
#include <cub/warp/warp_reduce.cuh>
#include <cuda_fp16.h>
Tim Dettmers's avatar
Tim Dettmers committed
16
#include <math_constants.h>
Tim Dettmers's avatar
Tim Dettmers committed
17
#include <mma.h>
Tim Dettmers's avatar
Tim Dettmers committed
18

19
20
21
22
23
24
25
26
#if CCCL_VERSION >= 2008002
#include <cuda/std/functional>
#define CUB_REDUCTIONOP_MAX                                                                                            \
    cuda::maximum<> {}
#else
#define CUB_REDUCTIONOP_MAX cub::Max()
#endif

Tim Dettmers's avatar
Tim Dettmers committed
27
28
29
30
31
#define HLF_MAX 65504
#define TH 1024
#define NUM 4
#define NUM_BLOCK 4096

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
__device__ static float fp4_dequantization_lut[8] = {
    0.0f,            // 0b000
    0.005208333333f, // 0b001
    0.66666667f,     // 0b010
    1.0f,            // 0b011
    0.33333333f,     // 0b100
    0.5f,            // 0b101
    0.16666667f,     // 0b110
    0.25f            // 0b111
};

__device__ static float nf4_dequantization_lut[16] = {
    -1.0f,                 // 0b0000
    -0.6961928009986877f,  // 0b0001
    -0.5250730514526367f,  // 0b0010
    -0.39491748809814453f, // 0b0011
    -0.28444138169288635f, // 0b0100
    -0.18477343022823334f, // 0b0101
    -0.09105003625154495f, // 0b0110
    0.0f,                  // 0b0111
    0.07958029955625534f,  // 0b1000
    0.16093020141124725f,  // 0b1001
    0.24611230194568634f,  // 0b1010
    0.33791524171829224f,  // 0b1011
    0.44070982933044434f,  // 0b1100
    0.5626170039176941f,   // 0b1101
    0.7229568362236023f,   // 0b1110
    1.0f                   // 0b1111
60
};
Tim Dettmers's avatar
Tim Dettmers committed
61

Tim Dettmers's avatar
Tim Dettmers committed
62
63
// source: https://stackoverflow.com/questions/17399119/how-do-i-use-atomicmax-on-floating-point-values-in-cuda
__device__ float atomicMax(float* address, float val) {
64
65
66
67
68
69
70
    int* address_as_i = reinterpret_cast<int*>(address);
    int old = *address_as_i, assumed;
    do {
        assumed = old;
        old = atomicCAS(reinterpret_cast<int*>(address), assumed, __float_as_int(fmaxf(val, __int_as_float(assumed))));
    } while (assumed != old);
    return __int_as_float(old);
Tim Dettmers's avatar
Tim Dettmers committed
71
72
}

73
74
75
__device__ __forceinline__ float dDequantizeFP4Tree(unsigned char val) {
    float sign = 1.0f - 2 * ((val & 0b1000) >> 3);
    return fp4_dequantization_lut[val & 0b111] * sign;
Tim Dettmers's avatar
Tim Dettmers committed
76
77
}

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
__device__ unsigned char dQuantizeFP4(float x) {
    // FP4 with bias of 3
    // first bit is a sign
    // subnormals
    // 0b000 = 0
    // 0b001 = 0.0625
    // 0b110 = 2
    // 0b111 = 3
    // 0b100 = 4
    // 0b101 = 6
    // 0b010 = 8
    // 0b011 = 12

    // we do a binary search
    // the pivots are divided by 12 (the FP4 absmax)
    // since we assume input data is in [-1.0, 1.0]

    // !be careful here, its easy to make a mistake
    // that is difficult to notice if you add an extra
    // zero somewhere!

    int sign = x < 0 ? 0b1000 : 0b0000;
    x = fabsf(x);
    if (x > 0.29166667f)
        if (x > 0.583333f)
            if (x > 0.8333333f)
                return 0b0011 + sign;
            else
                return 0b0010 + sign;
        else if (x > 0.4166667f)
            return 0b101 + sign;
        else
            return 0b100 + sign;
    else if (x > 0.0859375f)
        if (x > 0.20833333f)
            return 0b0111 + sign;
        else
            return 0b0110 + sign;
    else if (x > 0.00260417f)
        return 0b0001 + sign;
Tim Dettmers's avatar
Tim Dettmers committed
118
    else
119
        return 0b0000 + sign;
Tim Dettmers's avatar
Tim Dettmers committed
120
121
}

122
__device__ __forceinline__ float dDequantizeNF4(unsigned char val) { return nf4_dequantization_lut[val & 0x0F]; }
Tim Dettmers's avatar
Tim Dettmers committed
123

124
__device__ unsigned char dQuantizeNF4(float x) {
Tim Dettmers's avatar
Tim Dettmers committed
125

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    // the values for this tree was generated by test_normal_map_tree
    // in the file tests/test_functional.py
    if (x > 0.03979014977812767f)
        if (x > 0.3893125355243683f)         // 1
            if (x > 0.6427869200706482f)     // 11
                if (x > 0.8614784181118011f) // 111
                    return 0b1111;
                else
                    return 0b1110;
            else if (x > 0.5016634166240692f) // 110
                return 0b1101;
            else
                return 0b1100;
        else if (x > 0.2035212516784668f) // 10
            if (x > 0.2920137718319893f)  // 101
                return 0b1011;
            else
                return 0b1010;
        else if (x > 0.1202552504837513f) // 100
            return 0b1001;
Tim Dettmers's avatar
Tim Dettmers committed
146
        else
147
148
149
150
151
152
153
154
155
            return 0b1000;
    else if (x > -0.33967943489551544f)     // 0
        if (x > -0.13791173323988914f)      // 01
            if (x > -0.045525018125772476f) // 011
                return 0b0111;
            else
                return 0b0110;
        else if (x > -0.23460740596055984f) // 010
            return 0b0101;
Tim Dettmers's avatar
Tim Dettmers committed
156
        else
157
158
159
160
            return 0b0100;
    else if (x > -0.6106329262256622f) // 00
        if (x > -0.4599952697753906f)  // 001
            return 0b0011;
Tim Dettmers's avatar
Tim Dettmers committed
161
        else
162
163
164
            return 0b0010;
    else if (x > -0.8480964004993439f) // 000
        return 0b0001;
165
    else
166
        return 0b0000;
167
}
168

169
170
171
// sign function for lion
// taken from https://stackoverflow.com/a/4609795, but not sure if there's a proper way to do this in CUDA

172
template <typename T> __device__ int sgn(T val) { return (T(0) < val) - (val < T(0)); }
173

174
template <int STOCHASTIC> __device__ unsigned char dQuantize(float* smem_code, const float rand, float x) {
Tim Dettmers's avatar
Tim Dettmers committed
175
176
177
178
179
180
181
182
183
    int pivot = 127;
    int upper_pivot = 255;
    int lower_pivot = 0;

    float lower = -1.0f;
    float upper = 1.0f;

    float val = smem_code[pivot];
    // i>>=1 = {32, 16, 8, 4, 2, 1}
184
185
    for (int i = 64; i > 0; i >>= 1) {
        if (x > val) {
Tim Dettmers's avatar
Tim Dettmers committed
186
187
            lower_pivot = pivot;
            lower = val;
188
189
            pivot += i;
        } else {
Tim Dettmers's avatar
Tim Dettmers committed
190
191
            upper_pivot = pivot;
            upper = val;
192
            pivot -= i;
Tim Dettmers's avatar
Tim Dettmers committed
193
194
195
196
        }
        val = smem_code[pivot];
    }

197
    if (upper_pivot == 255)
Tim Dettmers's avatar
Tim Dettmers committed
198
        upper = smem_code[upper_pivot];
199
    if (lower_pivot == 0)
Tim Dettmers's avatar
Tim Dettmers committed
200
201
        lower = smem_code[lower_pivot];

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
    if (!STOCHASTIC) {
        if (x > val) {
            float midpoint = (upper + val) * 0.5f;
            if (x > midpoint) {
                return upper_pivot;
            } else
                return pivot;
        } else {
            float midpoint = (lower + val) * 0.5f;
            if (x < midpoint)
                return lower_pivot;
            else
                return pivot;
        }
    } else {
        if (x > val) {
            float dist_to_upper = fabsf(upper - x);
            float dist_full = upper - val;
            if (rand >= dist_to_upper / dist_full)
                return upper_pivot;
            else
                return pivot;
        } else {
            float dist_to_lower = fabsf(lower - x);
            float dist_full = val - lower;
            if (rand >= dist_to_lower / dist_full)
                return lower_pivot;
            else
                return pivot;
Tim Dettmers's avatar
Tim Dettmers committed
231
232
233
234
235
        }
    }
}

template <int SIGNED>
236
237
__device__ __forceinline__ unsigned char
    quantize_2D(float* __restrict__ quadrants, float* __restrict__ const smem_code, float x) {
Tim Dettmers's avatar
Tim Dettmers committed
238
239
240
241
242
243
244
245
246
247
248
249
    int pivot = 127;
    int upper_pivot = 255;
    int lower_pivot = 0;

    float lower = SIGNED ? -1.0f : 0.0f;
    float upper = 1.0f;
    float midpoint;
    float val = quadrants[1];
    int local_pivot = 1;
    int offset = 1;

    // i>>=1 = {32, 16, 8, 4, 2, 1}
250
251
    for (int i = 64; i > 0; i >>= 1) {
        if (x > val) {
Tim Dettmers's avatar
Tim Dettmers committed
252
253
            lower_pivot = pivot;
            lower = val;
254
255
            pivot += i;
            // val = i == 64 ? quadrants[2] : smem_code[pivot];
Tim Dettmers's avatar
Tim Dettmers committed
256
            local_pivot += offset;
257
        } else {
Tim Dettmers's avatar
Tim Dettmers committed
258
259
            upper_pivot = pivot;
            upper = val;
260
261
            pivot -= i;
            // val = i == 64 ? quadrants[0] : smem_code[pivot];
Tim Dettmers's avatar
Tim Dettmers committed
262
263
264
265
266
267
            local_pivot -= offset;
        }
        val = i >= 64 ? quadrants[local_pivot] : smem_code[pivot];
        offset -= 1;
    }

268
269
270
271
272
273
274
275
276
277
278
279
    if (x > val) {
        midpoint = (upper + val) * 0.5f;
        if (x > midpoint)
            return upper_pivot;
        else
            return pivot;
    } else {
        midpoint = (lower + val) * 0.5f;
        if (x < midpoint)
            return lower_pivot;
        else
            return pivot;
Tim Dettmers's avatar
Tim Dettmers committed
280
281
282
    }
}

283
284
285
286
287
__launch_bounds__(TH, 4) __global__
    void kQuantize(float* code, float* __restrict__ const A, unsigned char* out, const int n) {
    const int n_full = (NUM_BLOCK * (n / NUM_BLOCK)) + (n % NUM_BLOCK == 0 ? 0 : NUM_BLOCK);
    int valid_items = (blockIdx.x + 1 == gridDim.x) ? n - (blockIdx.x * NUM_BLOCK) : NUM_BLOCK;
    const int base_idx = (blockIdx.x * NUM_BLOCK);
Tim Dettmers's avatar
Tim Dettmers committed
288

289
290
291
    float vals[NUM];
    unsigned char qvals[NUM];
    // const int lane_id = threadIdx.x % 2;
Tim Dettmers's avatar
Tim Dettmers committed
292

293
294
    typedef cub::BlockLoad<float, TH, NUM, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockStore<unsigned char, TH, NUM, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
Tim Dettmers's avatar
Tim Dettmers committed
295

296
297
298
299
    __shared__ typename LoadFloat::TempStorage loadf;
    __shared__ typename StoreChar::TempStorage storec;
    __shared__ float smem_code[256];
    //__shared__ float smem_code[2][257];
Tim Dettmers's avatar
Tim Dettmers committed
300

301
302
303
304
305
    if (threadIdx.x < 256) {
        smem_code[threadIdx.x] = code[threadIdx.x];
        // smem_code[0][threadIdx.x] = code[threadIdx.x];
        // smem_code[1][threadIdx.x] = smem_code[0][threadIdx.x];
    }
Tim Dettmers's avatar
Tim Dettmers committed
306

307
308
309
310
311
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * NUM_BLOCK) {
        // number of values already processed in blocks +
        // number of values already processed in this block +
        // rand_offset % mod value
        valid_items = n - i > NUM_BLOCK ? NUM_BLOCK : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
312

313
314
        __syncthreads();
        LoadFloat(loadf).Load(&(A[i]), vals, valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
315

316
317
318
#pragma unroll 4
        for (int j = 0; j < NUM; j++)
            qvals[j] = dQuantize<0>(smem_code, 0.0f, vals[j]);
Tim Dettmers's avatar
Tim Dettmers committed
319

320
321
322
        __syncthreads();
        StoreChar(storec).Store(&(out[i]), qvals, valid_items);
    }
Tim Dettmers's avatar
Tim Dettmers committed
323
324
}

325
template <typename T, int BLOCK_SIZE, int NUM_PER_TH, int STOCHASTIC, int DATA_TYPE>
326
//__launch_bounds__(TH, 4)
327
328
329
330
331
332
333
__global__ void kQuantizeBlockwise(
    float* code, T* __restrict__ const A, float* absmax, unsigned char* out, float* __restrict__ const rand,
    const int rand_offset, const int n
) {
    const int n_full = gridDim.x * BLOCK_SIZE;
    int valid_items = 0;
    const int base_idx = (blockIdx.x * BLOCK_SIZE);
Tim Dettmers's avatar
Tim Dettmers committed
334

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
    T vals[NUM_PER_TH];
    float rand_vals[NUM_PER_TH];
    unsigned char qvals[(DATA_TYPE > 0) ? NUM_PER_TH / 2 : NUM_PER_TH];
    // float local_abs_max = -FLT_MAX;
    float local_abs_max = 0.0f;
    int local_rand_idx = 0;

    typedef cub::BlockLoad<T, BLOCK_SIZE / NUM_PER_TH, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockStore<
        unsigned char, BLOCK_SIZE / NUM_PER_TH, (DATA_TYPE > 0) ? NUM_PER_TH / 2 : NUM_PER_TH,
        cub::BLOCK_STORE_WARP_TRANSPOSE>
        StoreChar;
    typedef cub::BlockReduce<float, BLOCK_SIZE / NUM_PER_TH> BlockReduce;
    typedef cub::BlockLoad<float, BLOCK_SIZE / NUM_PER_TH, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;

    __shared__ typename LoadT::TempStorage loadt;
    __shared__ typename LoadFloat::TempStorage loadf;
    __shared__ typename StoreChar::TempStorage storec;
    __shared__ typename BlockReduce::TempStorage reduce;
    __shared__ float smem_code[256];
    __shared__ float smem_absmax_value[1];

    if (DATA_TYPE == General8bit)
        for (int i = threadIdx.x; i < 256; i += blockDim.x)
            smem_code[i] = code[i];

    for (int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
        valid_items = n - i > BLOCK_SIZE ? BLOCK_SIZE : n - i;
        local_abs_max = -FLT_MAX;
Tim Dettmers's avatar
Tim Dettmers committed
364

365
366
        __syncthreads();
        LoadT(loadt).Load(&(A[i]), vals, valid_items, (T)0.0f);
Tim Dettmers's avatar
Tim Dettmers committed
367

368
369
370
        // 1. compute local max
        // 2. broadcast local max
        // 3. normalize inputs and quantize
Tim Dettmers's avatar
Tim Dettmers committed
371

372
373
374
#pragma unroll NUM_PER_TH
        for (int j = 0; j < NUM_PER_TH; j++)
            local_abs_max = fmaxf(local_abs_max, fabsf((float)vals[j]));
Tim Dettmers's avatar
Tim Dettmers committed
375

376
        local_abs_max = BlockReduce(reduce).Reduce(local_abs_max, CUB_REDUCTIONOP_MAX, valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
377

378
379
380
381
382
        if (threadIdx.x == 0) {
            smem_absmax_value[0] = 1.0f / local_abs_max;
            absmax[i / BLOCK_SIZE] = local_abs_max;
        }
        __syncthreads();
Tim Dettmers's avatar
Tim Dettmers committed
383

384
        local_abs_max = smem_absmax_value[0];
Tim Dettmers's avatar
Tim Dettmers committed
385

386
387
388
389
390
391
        if (STOCHASTIC) {
            local_rand_idx = ((blockIdx.x * NUM_BLOCK) + (threadIdx.x * NUM) + rand_offset) % (1024 - 4);
            LoadFloat(loadf).Load(&rand[local_rand_idx], rand_vals, BLOCK_SIZE, 0);
        }

        switch (DATA_TYPE) {
Tim Dettmers's avatar
Tim Dettmers committed
392
        case General8bit:
393
394
395
396
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH; j++) {
                if (!STOCHASTIC)
                    qvals[j] = dQuantize<0>(smem_code, 0.0f, ((float)vals[j]) * local_abs_max);
Tim Dettmers's avatar
Tim Dettmers committed
397
                else
398
                    qvals[j] = dQuantize<1>(smem_code, rand_vals[j], ((float)vals[j]) * local_abs_max);
Tim Dettmers's avatar
Tim Dettmers committed
399
400
401
            }
            break;
        case FP4:
402
403
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH / 2; j++) {
404
405
                qvals[j] = dQuantizeFP4(((float)vals[2 * j]) * local_abs_max) << 4;
                qvals[j] |= dQuantizeFP4(((float)vals[2 * j + 1]) * local_abs_max);
Tim Dettmers's avatar
Tim Dettmers committed
406
407
408
            }
            break;
        case NF4:
409
410
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH / 2; j++) {
411
412
                qvals[j] = dQuantizeNF4(((float)vals[2 * j]) * local_abs_max) << 4;
                qvals[j] |= dQuantizeNF4(((float)vals[2 * j + 1]) * local_abs_max);
Tim Dettmers's avatar
Tim Dettmers committed
413
414
            }
            break;
415
        }
Tim Dettmers's avatar
Tim Dettmers committed
416

417
418
419
420
421
        __syncthreads();
        StoreChar(storec).Store(
            &(out[(DATA_TYPE > 0) ? i / 2 : i]), qvals, (DATA_TYPE > 0) ? (valid_items + 1) / 2 : valid_items
        );
    }
Tim Dettmers's avatar
Tim Dettmers committed
422
423
}

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
template <typename T, int TILE_SIZE, int THREADS, int NUM_PER_TH, int DATA_TYPE>
__global__ void
    kDequantizeBlockwise(float* code, unsigned char* A, float* absmax, T* out, const int blocksize, const int n) {

    const int n_load = (gridDim.x * TILE_SIZE);
    int valid_items_load = 0;
    int valid_items_store = 0;
    const int base_idx = (blockIdx.x * TILE_SIZE);

    T vals[NUM_PER_TH * ((DATA_TYPE > 0) ? 2 : 1)];
    unsigned char qvals[NUM_PER_TH];
    float local_abs_max = -FLT_MAX;

    typedef cub::BlockLoad<unsigned char, THREADS, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;
    typedef cub::BlockStore<T, THREADS, NUM_PER_TH*((DATA_TYPE > 0) ? 2 : 1), cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ typename LoadChar::TempStorage loadchar;
    __shared__ typename StoreT::TempStorage storet;

    for (int i = base_idx; i < n_load; i += gridDim.x * TILE_SIZE) {
        if (DATA_TYPE > 0) {
            valid_items_load = min(TILE_SIZE, (n + 1) / 2 - i);
            valid_items_store = min(TILE_SIZE * 2, n - i * 2);
        } else {
            valid_items_load = min(TILE_SIZE, n - i);
            valid_items_store = valid_items_load;
        }
Tim Dettmers's avatar
Tim Dettmers committed
451

452
453
454
455
        // Since blocksize will always be a power-of-2, we avoid more expensive
        // division by the blocksize and instead use a shift operation.
        // This is equivalent to (i+threadId.x*NUM_PER_TH)/blocksize.
        local_abs_max = __ldg(&absmax[(i + threadIdx.x * NUM_PER_TH) >> (31 - __clz(blocksize))]);
Tim Dettmers's avatar
Tim Dettmers committed
456

457
458
        __syncthreads();
        LoadChar(loadchar).Load(&(A[i]), qvals, valid_items_load, 128);
Tim Dettmers's avatar
Tim Dettmers committed
459

460
461
462
463
464
465
466
467
468
469
        switch (DATA_TYPE) {
        case General8bit:
// load code through read-only cache via __ldg
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH; j++)
                vals[j] = __ldg(&code[qvals[j]]) * local_abs_max;
            break;
        case FP4:
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH; j++) {
470
471
                vals[j * 2] = dDequantizeFP4Tree(qvals[j] >> 4) * local_abs_max;
                vals[j * 2 + 1] = dDequantizeFP4Tree(qvals[j] & 0x0F) * local_abs_max;
472
473
474
475
476
477
478
479
480
481
            }
            break;
        case NF4:
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH; j++) {
                vals[j * 2] = dDequantizeNF4(qvals[j] >> 4) * local_abs_max;
                vals[j * 2 + 1] = dDequantizeNF4(qvals[j] & 0x0F) * local_abs_max;
            }
            break;
        }
Tim Dettmers's avatar
Tim Dettmers committed
482

483
484
        __syncthreads();
        StoreT(storet).Store(&(out[(DATA_TYPE > 0) ? i * 2 : i]), vals, valid_items_store);
485
    }
486
}
487

488
489
490
__global__ void kDequantize(float* code, unsigned char* A, float* out, const int n) {
    const unsigned int numThreads = blockDim.x * gridDim.x;
    const int idx = (blockIdx.x * blockDim.x) + threadIdx.x;
Tim Dettmers's avatar
Tim Dettmers committed
491

492
493
494
    __shared__ float smem_code[256];
    if (threadIdx.x < 256) {
        smem_code[threadIdx.x] = code[threadIdx.x];
495
    }
Tim Dettmers's avatar
Tim Dettmers committed
496

497
    __syncthreads();
498
499
500
501

    for (int i = idx; i < n; i += numThreads) {
        out[i] = smem_code[A[i]];
    }
Tim Dettmers's avatar
Tim Dettmers committed
502
503
}

504
505
506
507
508
509
510
511
512
513
514
template <typename T, int OPTIMIZER, int BLOCK_SIZE, int NUM_VALS>
__launch_bounds__(BLOCK_SIZE / NUM_VALS, 1) __global__ void kPreconditionOptimizer32bit2State(
    T* g, T* p, float* state1, float* state2, float* unorm, const float beta1, const float beta2, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const int n
) {

    const int n_full = (BLOCK_SIZE * (n / BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
    const int base_idx = (blockIdx.x * blockDim.x * NUM_VALS);
    int valid_items = 0;

    T g_vals[NUM_VALS];
Tim Dettmers's avatar
Tim Dettmers committed
515

516
517
    float s1_vals[NUM_VALS];
    float s2_vals[NUM_VALS];
Tim Dettmers's avatar
Tim Dettmers committed
518

519
520
    const float correction1 = 1.0f / (1.0f - powf(beta1, step));
    const float correction2 = 1.0f / (1.0f - powf(beta2, step));
Tim Dettmers's avatar
Tim Dettmers committed
521

522
523
524
    typedef cub::BlockLoad<T, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
    typedef cub::BlockLoad<float, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockReduce<float, BLOCK_SIZE / NUM_VALS> BlockReduce;
Tim Dettmers's avatar
Tim Dettmers committed
525

526
527
528
529
530
    __shared__ union {
        typename Load::TempStorage load;
        typename LoadFloat::TempStorage loadf;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;
Tim Dettmers's avatar
Tim Dettmers committed
531

532
533
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
        valid_items = n - i >= (BLOCK_SIZE) ? (BLOCK_SIZE) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
534

535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
        __syncthreads();
        Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items, 0.0f);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items, 0.0f);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state2[i]), s2_vals, valid_items, 0.0f);

#pragma unroll NUM_VALS
        for (unsigned int j = 0; j < NUM_VALS; j++)
            g_vals[j] = gnorm_scale * ((float)g_vals[j]);

#pragma unroll NUM_VALS
        for (unsigned int j = 0; j < NUM_VALS; j++) {
            switch (OPTIMIZER) {
            case ADAM:
                s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * ((float)g_vals[j]));
                s2_vals[j] = s2_vals[j] * beta2 + ((1.0f - beta2) * (((float)g_vals[j]) * ((float)g_vals[j])));
                s1_vals[j] *= correction1;
                s2_vals[j] *= correction2;
                s1_vals[j] = s1_vals[j] / (sqrtf(s2_vals[j]) + eps); // update
                s1_vals[j] *= s1_vals[j];                            // update l2 norm (update*update)
                break;
            }
        }

#pragma unroll NUM_VALS - 1
        for (unsigned int j = 1; j < NUM_VALS; j++)
            s1_vals[0] += s1_vals[j];
Tim Dettmers's avatar
Tim Dettmers committed
563

564
565
        __syncthreads();
        s1_vals[0] = BlockReduce(temp_storage.reduce).Sum(s1_vals[0]);
Tim Dettmers's avatar
Tim Dettmers committed
566

567
568
569
570
571
572
        if (threadIdx.x == 0)
            atomicAdd(&unorm[0], s1_vals[0]);

        __syncwarp();
    }
}
Tim Dettmers's avatar
Tim Dettmers committed
573
574
575

#define NUM_PER_THREAD 4

576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
template <typename T, int OPTIMIZER>
__launch_bounds__(TH, 1) __global__ void kOptimizer32bit2State(
    T* g, T* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
) {

    const int n_full = ((TH * NUM_PER_THREAD) * (n / (TH * NUM_PER_THREAD))) +
                       (n % (TH * NUM_PER_THREAD) == 0 ? 0 : (TH * NUM_PER_THREAD));
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
    int valid_items = 0;
    float update_scale = 0.0f;
    T g_vals[NUM_PER_THREAD];
    T p_vals[NUM_PER_THREAD];

    float s1_vals[NUM_PER_THREAD];
    float s2_vals[NUM_PER_THREAD];

    // AdEMAMix has an additional state buffer, which we packed
    // into state1. We need thread-local storage here for these.
    // TODO: Mark with [[maybe_unused]] after upgrade to min compiler.
    float s3_vals[NUM_PER_THREAD];

    const float correction1 = 1.0f - powf(beta1, step);
    const float correction2 = sqrtf(1.0f - powf(beta2, step));
    const float step_size = -lr * correction2 / correction1;

    if (max_unorm > 0.0f) {
        update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
        if (update_scale > max_unorm * param_norm) {
            update_scale = (max_unorm * param_norm) / update_scale;
        } else {
            update_scale = 1.0f;
        }
    } else {
        update_scale = 1.0f;
    }

    typedef cub::BlockLoad<T, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
    typedef cub::BlockStore<T, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> Store;

    typedef cub::BlockLoad<float, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockStore<float, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreFloat;

    __shared__ union {
        typename Load::TempStorage load;
        typename Store::TempStorage store;
        typename LoadFloat::TempStorage loadf;
        typename StoreFloat::TempStorage storef;
    } temp_storage;

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * TH * NUM_PER_THREAD) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;

        __syncthreads();
        Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items);
635
        __syncthreads();
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
        LoadFloat(temp_storage.loadf).Load(&(state2[i]), s2_vals, valid_items);
        __syncthreads();
        Load(temp_storage.load).Load(&(p[i]), p_vals, valid_items);

        // Load additional state1 data for AdEMAMix
        // TODO: Make constexpr after updating min compiler
        if (OPTIMIZER == ADEMAMIX) {
            __syncthreads();
            LoadFloat(temp_storage.loadf).Load(&(state1[n + i]), s3_vals, valid_items);
        }

#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD; j++)
            g_vals[j] = gnorm_scale * ((float)g_vals[j]);

#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD; j++) {
            switch (OPTIMIZER) {
            case ADEMAMIX:
655
656
657
658
659
660
661
662
663
                // m1 update: m1 = beta1 * m1 + (1-beta1) * g
                s1_vals[j] = (s1_vals[j] * beta1) + ((1.0f - beta1) * (float)g_vals[j]);

                // m2 update: m2 = m2 * beta3 + (1-beta3) * g
                s3_vals[j] = (s3_vals[j] * beta3) + ((1.0f - beta3) * (float)g_vals[j]);

                // nu update: nu = beta2 * nu + (1-beta2) * g^2
                s2_vals[j] = (s2_vals[j] * beta2) + ((1.0f - beta2) * (float)g_vals[j] * (float)g_vals[j]);

664
665
                p_vals[j] = (float)p_vals[j] - lr * (((s1_vals[j] / correction1) + (alpha * s3_vals[j])) /
                                                     ((sqrtf(s2_vals[j]) / correction2) + eps));
666
667
668
669

                if (weight_decay > 0.0f)
                    p_vals[j] = ((float)p_vals[j]) * (1.0f - (lr * weight_decay));

670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
                break;
            case ADAM:

                if (!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f))) {
                    s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * ((float)g_vals[j]));
                    s2_vals[j] = s2_vals[j] * beta2 + ((1.0f - beta2) * (((float)g_vals[j]) * ((float)g_vals[j])));
                    p_vals[j] = ((float)p_vals[j]) +
                                (update_scale * step_size * (s1_vals[j] / (sqrtf(s2_vals[j]) + (eps * correction2))));

                    if (weight_decay > 0.0f)
                        p_vals[j] = ((float)p_vals[j]) * (1.0f - (lr * weight_decay));
                }
                break;
            }
        }

686
        __syncthreads();
687
688
689
690
691
692
693
694
695
696
697
        Store(temp_storage.store).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreFloat(temp_storage.storef).Store(&(state1[i]), s1_vals, valid_items);
        __syncthreads();
        StoreFloat(temp_storage.storef).Store(&(state2[i]), s2_vals, valid_items);

        if (OPTIMIZER == ADEMAMIX) {
            __syncthreads();
            StoreFloat(temp_storage.storef).Store(&(state1[n + i]), s3_vals, valid_items);
        }
    }
Tim Dettmers's avatar
Tim Dettmers committed
698
699
}

700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
template <typename T, int OPTIMIZER, int BLOCK_SIZE, int NUM_VALS>
__launch_bounds__(BLOCK_SIZE / NUM_VALS, 1) __global__ void kPreconditionOptimizer32bit1State(
    T* g, T* p, float* state1, float* unorm, const float beta1, const float beta2, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const int n
) {

    const int n_full = (BLOCK_SIZE * (n / BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
    const int base_idx = (blockIdx.x * blockDim.x * NUM_VALS);
    int valid_items = 0;

    T g_vals[NUM_VALS];

    float s1_vals[NUM_VALS];

    typedef cub::BlockLoad<T, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
    typedef cub::BlockLoad<float, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockReduce<float, BLOCK_SIZE / NUM_VALS> BlockReduce;

    __shared__ union {
        typename Load::TempStorage load;
        typename LoadFloat::TempStorage loadf;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
        valid_items = n - i >= (BLOCK_SIZE) ? (BLOCK_SIZE) : n - i;

        __syncthreads();
        Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items, 0.0f);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items, 0.0f);

#pragma unroll NUM_VALS
        for (unsigned int j = 0; j < NUM_VALS; j++)
            g_vals[j] = gnorm_scale * ((float)g_vals[j]);

#pragma unroll NUM_VALS
        for (unsigned int j = 0; j < NUM_VALS; j++) {
            switch (OPTIMIZER) {
            case MOMENTUM:
                if (step == 1)
Tim Dettmers's avatar
Tim Dettmers committed
741
                    s1_vals[j] = (float)g_vals[j]; // state update
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
                else
                    s1_vals[j] = s1_vals[j] * beta1 + ((float)g_vals[j]); // state update
                s1_vals[j] = s1_vals[j] * s1_vals[j];                     // update norm
                break;
            case LION:
                s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * (float)g_vals[j]); // state update
                break;
            case RMSPROP:
                s1_vals[j] =
                    s1_vals[j] * beta1 + ((1.0f - beta1) * ((float)g_vals[j]) * ((float)g_vals[j])); // state update
                s1_vals[j] = __fdividef((float)g_vals[j], sqrtf(s1_vals[j]) + eps);                  // update value
                s1_vals[j] = s1_vals[j] * s1_vals[j];                                                // update norm
                break;
            case ADAGRAD:
                s1_vals[j] = s1_vals[j] + ((float)g_vals[j]) * ((float)g_vals[j]);  // state update
                s1_vals[j] = __fdividef((float)g_vals[j], sqrtf(s1_vals[j]) + eps); // update value
                s1_vals[j] = s1_vals[j] * s1_vals[j];                               // update norm
                break;
            }
        }
Tim Dettmers's avatar
Tim Dettmers committed
762

763
764
765
766
767
768
769
770
771
772
773
774
#pragma unroll
        for (unsigned int j = 1; j < NUM_VALS; j++)
            s1_vals[0] += s1_vals[j];

        __syncthreads();
        s1_vals[0] = BlockReduce(temp_storage.reduce).Sum(s1_vals[0], valid_items);

        if (threadIdx.x == 0)
            atomicAdd(&unorm[0], s1_vals[0]);

        __syncwarp();
    }
Tim Dettmers's avatar
Tim Dettmers committed
775
776
}

777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
template <typename T, int OPTIMIZER>
__launch_bounds__(TH, 1) __global__ void kOptimizer32bit1State(
    T* g, T* p, float* state1, float* unorm, const float max_unorm, const float param_norm, const float beta1,
    const float beta2, const float eps, const float weight_decay, const int step, const float lr,
    const float gnorm_scale, const bool skip_zeros, const int n
) {

    const int n_full = ((TH * NUM_PER_THREAD) * (n / (TH * NUM_PER_THREAD))) +
                       (n % (TH * NUM_PER_THREAD) == 0 ? 0 : (TH * NUM_PER_THREAD));
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
    int valid_items = 0;
    float update_scale = 0.0f;

    if (max_unorm > 0.0f) {
        update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
        if (update_scale > max_unorm * param_norm + eps) {
            update_scale = (max_unorm * param_norm + eps) / update_scale;
        } else {
            update_scale = 1.0f;
        }
    } else {
        update_scale = 1.0f;
    }

    T g_vals[NUM_PER_THREAD];
    T p_vals[NUM_PER_THREAD];

    float s1_vals[NUM_PER_THREAD];

    typedef cub::BlockLoad<T, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
    typedef cub::BlockStore<T, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> Store;

    typedef cub::BlockLoad<float, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockStore<float, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreFloat;

    __shared__ union {
        typename Load::TempStorage load;
        typename Store::TempStorage store;
        typename LoadFloat::TempStorage loadf;
        typename StoreFloat::TempStorage storef;
    } temp_storage;

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * TH * NUM_PER_THREAD) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;

        __syncthreads();
        Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items);
        __syncthreads();
        Load(temp_storage.load).Load(&(p[i]), p_vals, valid_items);

#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD; j++) {
            g_vals[j] = gnorm_scale * ((float)g_vals[j]);
            if (weight_decay > 0.0f)
                g_vals[j] = (float)g_vals[j] + (((float)p_vals[j]) * weight_decay);
        }

#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD; j++) {
            if (!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f))) {
                switch (OPTIMIZER) {
                case MOMENTUM:
                    if (step == 1)
                        s1_vals[j] = (float)g_vals[j];
                    else
                        s1_vals[j] = s1_vals[j] * beta1 + ((float)g_vals[j]);

                    p_vals[j] = ((float)p_vals[j]) + update_scale * (-lr * (s1_vals[j]));
                    break;
                case LION:
                    p_vals[j] =
                        ((float)p_vals[j]) -
                        update_scale * (lr * sgn(((float)s1_vals[j]) * beta1 + ((1.0f - beta1) * ((float)g_vals[j]))));
                    s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * ((float)g_vals[j]));
                    break;
                case RMSPROP:
                    s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * ((float)g_vals[j]) * ((float)g_vals[j]));
                    p_vals[j] = ((float)p_vals[j]) -
                                update_scale * (lr * __fdividef((float)g_vals[j], sqrtf((float)s1_vals[j]) + eps));
                    break;
                case ADAGRAD:
                    s1_vals[j] = s1_vals[j] + ((float)g_vals[j]) * ((float)g_vals[j]);
                    p_vals[j] = ((float)p_vals[j]) - lr * __fdividef((float)g_vals[j], sqrtf((float)s1_vals[j]) + eps);
                    break;
                }
            }
        }

        __syncthreads();
        Store(temp_storage.store).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreFloat(temp_storage.storef).Store(&(state1[i]), s1_vals, valid_items);
    }
}
Tim Dettmers's avatar
Tim Dettmers committed
873
874
875
876
877

#define NUM8BIT 16
#define NUM_THREADS 256
#define NUM_PER_BLOCK 4096

878
879
880
881
882
883
884
template <typename T, int OPTIMIZER>
__global__ void __launch_bounds__(NUM_THREADS, 2) kPreconditionOptimizerStatic8bit2State(
    T* p, T* __restrict__ const g, unsigned char* __restrict__ const state1, unsigned char* __restrict__ const state2,
    float* unorm, const float beta1, const float beta2, const float eps, const int step,
    float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* max1, float* max2,
    float* new_max1, float* new_max2, const float gnorm_scale, const int n
) {
Tim Dettmers's avatar
Tim Dettmers committed
885
886
    const int n_full = gridDim.x * NUM_PER_BLOCK;
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
887
888
    int valid_items =
        n - (blockIdx.x * NUM_PER_BLOCK) > NUM_PER_BLOCK ? NUM_PER_BLOCK : n - (blockIdx.x * NUM_PER_BLOCK);
Tim Dettmers's avatar
Tim Dettmers committed
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
    float g_val = 0.0f;
    float local_max_s1 = -FLT_MAX;
    float local_max_s2 = -FLT_MAX;
    float local_unorm = 0.0f;

    float s2_vals[NUM8BIT];
    float s1_vals[NUM8BIT];
    T g_vals[NUM8BIT];
    unsigned char m_c1[NUM8BIT];
    unsigned char r_c2[NUM8BIT];

    typedef cub::BlockLoad<T, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadUInt8;
    typedef cub::BlockReduce<float, NUM_THREADS> BlockReduce;

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadUInt8::TempStorage loadc;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;

    __shared__ float smem_quantiles1[256];
    __shared__ float smem_quantiles2[256];

913
    if (threadIdx.x < 256) {
Tim Dettmers's avatar
Tim Dettmers committed
914
915
916
917
918
919
        smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
        smem_quantiles2[threadIdx.x] = quantiles2[threadIdx.x];
    }

    __syncthreads();

920
921
    for (unsigned int i = base_idx; i < n_full; i += NUM_THREADS * gridDim.x * NUM8BIT) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
922
923
924
925
926
927
928
929

        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadUInt8(temp_storage.loadc).Load(&(state1[i]), m_c1, valid_items, 128);
        __syncthreads();
        LoadUInt8(temp_storage.loadc).Load(&(state2[i]), r_c2, valid_items, 128);
        __syncthreads();

930
931
#pragma unroll 16
        for (int j = 0; j < NUM8BIT; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
932
933
            g_val = g_vals[j];
            g_val *= gnorm_scale;
934
935
            s1_vals[j] = smem_quantiles1[m_c1[j]] * max1[0] * beta1;
            s1_vals[j] += (1.0f - beta1) * g_val;
Tim Dettmers's avatar
Tim Dettmers committed
936
937
938
            local_max_s1 = fmaxf(local_max_s1, fabsf(s1_vals[j]));
        }

939
940
#pragma unroll 16
        for (int j = 0; j < NUM8BIT; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
941
942
            g_val = g_vals[j];
            g_val *= gnorm_scale;
943
944
            s2_vals[j] = smem_quantiles2[r_c2[j]] * max2[0] * beta2;
            s2_vals[j] += (1.0f - beta2) * g_val * g_val;
Tim Dettmers's avatar
Tim Dettmers committed
945
946
947
            local_max_s2 = fmaxf(local_max_s2, fabsf(s2_vals[j]));
        }

948
949
950
951
952
953
954
955
956
957
        if (unorm != NULL) {
#pragma unroll 16
            for (int j = 0; j < NUM8BIT; j++) {
                float correction1 = __fdividef(1.0f, 1.0f - powf(beta1, step));
                float correction2 = __fdividef(1.0f, 1.0f - powf(beta2, step));
                s1_vals[j] *= correction1;
                s2_vals[j] *= correction2;
                float update_val = s1_vals[j] / (sqrtf(s2_vals[j]) + eps); // update
                local_unorm += update_val * update_val;
            }
Tim Dettmers's avatar
Tim Dettmers committed
958
959
960
961
        }
    }

    __syncthreads();
962
    local_max_s1 = BlockReduce(temp_storage.reduce).Reduce(local_max_s1, CUB_REDUCTIONOP_MAX, valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
963
    __syncthreads();
964
    local_max_s2 = BlockReduce(temp_storage.reduce).Reduce(local_max_s2, CUB_REDUCTIONOP_MAX, valid_items);
965
966
    if (unorm != NULL) {
        __syncthreads();
967
        local_unorm = BlockReduce(temp_storage.reduce).Sum(local_unorm, valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
968
969
    }

970
    if (threadIdx.x == 0) {
Tim Dettmers's avatar
Tim Dettmers committed
971
972
        atomicMax(&new_max1[0], local_max_s1);
        atomicMax(&new_max2[0], local_max_s2);
973
974
975
        if (unorm != NULL) {
            atomicAdd(&unorm[0], local_unorm);
        }
Tim Dettmers's avatar
Tim Dettmers committed
976
977
978
979
980
981
982
    }
}

#define NUM_PER_THREAD2 4
#define NUM_THREADS2 1024
#define NUM_PER_BLOCK2 4096

983
984
985
986
987
988
989
990
991
template <typename T, int OPTIMIZER>
__global__ void __launch_bounds__(NUM_THREADS2, 1) kOptimizerStatic8bit2State(
    T* p, T* const g, unsigned char* state1, unsigned char* state2, const float* unorm, const float max_unorm,
    const float param_norm, const float beta1, const float beta2, const float eps, const int step, const float lr,
    float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* max1, float* max2,
    float* new_max1, float* new_max2, float weight_decay, const float gnorm_scale, const int n
) {

    const int n_full = (blockDim.x * gridDim.x) * NUM_PER_THREAD2;
Tim Dettmers's avatar
Tim Dettmers committed
992
993
994
995
996
997
998
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD2);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[NUM_PER_THREAD2];
    float s2_vals[NUM_PER_THREAD2];
    const float correction1 = 1.0f - powf(beta1, step);
    const float correction2 = sqrtf(1.0f - powf(beta2, step));
999
1000
1001
1002
    const float step_size = -lr * correction2 / correction1;
    // const float step_size = -lr*correction2/correction1;
    float new_max_val1 = 1.0f / new_max1[0];
    float new_max_val2 = 1.0f / new_max2[0];
Tim Dettmers's avatar
Tim Dettmers committed
1003
1004
    float update_scale = 1.0f;

1005
1006
1007
1008
1009
1010
1011
1012
1013
    if (max_unorm > 0.0f) {
        update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
        if (update_scale > max_unorm * param_norm) {
            update_scale = (max_unorm * param_norm) / update_scale;
        } else {
            update_scale = 1.0f;
        }
    } else {
        update_scale = 1.0f;
Tim Dettmers's avatar
Tim Dettmers committed
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
    }

    unsigned char c1s[NUM_PER_THREAD2];
    unsigned char c2s[NUM_PER_THREAD2];
    T p_vals[NUM_PER_THREAD2];
    T g_vals[NUM_PER_THREAD2];
    typedef cub::BlockLoad<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;

    typedef cub::BlockStore<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ float smem_quantiles1[256];
    __shared__ float smem_quantiles2[256];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;

1036
1037
    if (threadIdx.x < 512) {
        if (threadIdx.x < 256)
Tim Dettmers's avatar
Tim Dettmers committed
1038
1039
            smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
        else
1040
            smem_quantiles2[threadIdx.x - 256] = quantiles2[threadIdx.x - 256];
Tim Dettmers's avatar
Tim Dettmers committed
1041
1042
1043
1044
    }

    __syncthreads();

1045
1046
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * NUM_THREADS2 * NUM_PER_THREAD2) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
1047
1048
1049
1050
1051
1052
1053
1054
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state2[i]), c2s, valid_items, 0);
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items);

1055
1056
1057
        if ((i + (threadIdx.x * NUM_PER_THREAD2) + NUM_PER_THREAD2) > n) {
            continue;
        }
Tim Dettmers's avatar
Tim Dettmers committed
1058

1059
1060
#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD2; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1061
1062
1063
            g_val = float(g_vals[j]);
            g_val *= gnorm_scale;
            s1_vals[j] = smem_quantiles1[c1s[j]];
1064
            s1_vals[j] = s1_vals[j] * max1[0];
Tim Dettmers's avatar
Tim Dettmers committed
1065

1066
            s1_vals[j] = (s1_vals[j] * beta1) + (((1.0f - beta1) * g_val));
Tim Dettmers's avatar
Tim Dettmers committed
1067

1068
            c1s[j] = dQuantize<0>(smem_quantiles1, 0.0f, s1_vals[j] * new_max_val1);
Tim Dettmers's avatar
Tim Dettmers committed
1069
1070
1071

            // make sure state1 term has still the same sign after quantization
            // (not needed for state2 term which has only positive values)
1072
1073
1074
1075
1076
            if (signbit(smem_quantiles1[c1s[j]]) != signbit(s1_vals[j])) {
                if (s1_vals[j] > 0.0f)
                    c1s[j] += 1;
                else
                    c1s[j] -= 1;
Tim Dettmers's avatar
Tim Dettmers committed
1077
1078
1079
            }

            s2_vals[j] = smem_quantiles2[c2s[j]];
1080
1081
1082
            s2_vals[j] = s2_vals[j] * max2[0];
            s2_vals[j] = (s2_vals[j] * beta2) + (((1.0f - beta2) * g_val * g_val));
            c2s[j] = dQuantize<0>(smem_quantiles2, 0.0f, s2_vals[j] * new_max_val2);
Tim Dettmers's avatar
Tim Dettmers committed
1083
1084
        }

1085
1086
1087
1088
1089
1090
#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD2; j++) {
            p_vals[j] = (T)(((float)p_vals[j]) +
                            ((update_scale * step_size * (s1_vals[j] / (sqrtf(s2_vals[j]) + (correction2 * eps))))));
            if (weight_decay > 0.0f)
                p_vals[j] = update_scale * ((float)p_vals[j]) * (1.0f - (lr * weight_decay));
Tim Dettmers's avatar
Tim Dettmers committed
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
        }

        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state2[i]), c2s, valid_items);
        __syncthreads();
    }
}

1102
1103
1104
1105
1106
1107
template <typename T, int OPTIMIZER>
__global__ void __launch_bounds__(NUM_THREADS, 2) kPreconditionOptimizerStatic8bit1State(
    T* p, T* __restrict__ const g, unsigned char* __restrict__ const state1, float* unorm, const float beta1,
    const float beta2, const float eps, const int step, float* __restrict__ const quantiles1, float* max1,
    float* new_max1, const float weight_decay, const float gnorm_scale, const int n
) {
Tim Dettmers's avatar
Tim Dettmers committed
1108
1109
    const int n_full = gridDim.x * NUM_PER_BLOCK;
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
1110
1111
    int valid_items =
        n - (blockIdx.x * NUM_PER_BLOCK) > NUM_PER_BLOCK ? NUM_PER_BLOCK : n - (blockIdx.x * NUM_PER_BLOCK);
Tim Dettmers's avatar
Tim Dettmers committed
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
    float g_val = 0.0f;
    float local_max_s1 = -FLT_MAX;
    float local_unorm = 0.0f;

    float s1_vals[NUM8BIT];
    T g_vals[NUM8BIT];
    unsigned char m_c1[NUM8BIT];

    typedef cub::BlockLoad<T, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadUInt8;
    typedef cub::BlockReduce<float, NUM_THREADS> BlockReduce;

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadUInt8::TempStorage loadc;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;

    __shared__ float smem_quantiles1[256];

1132
1133
    if (threadIdx.x < 256)
        smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
Tim Dettmers's avatar
Tim Dettmers committed
1134
1135
1136

    __syncthreads();

1137
1138
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * NUM_THREADS * NUM8BIT) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
1139
1140
1141
1142
1143
1144

        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadUInt8(temp_storage.loadc).Load(&(state1[i]), m_c1, valid_items, 128);

1145
1146
#pragma unroll 16
        for (int j = 0; j < NUM8BIT; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1147
1148
            g_val = g_vals[j];
            g_val *= gnorm_scale;
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
            s1_vals[j] = smem_quantiles1[m_c1[j]] * max1[0];
            switch (OPTIMIZER) {
            case ADAGRAD:
            case MOMENTUM:
                if (step == 1)
                    s1_vals[j] = (float)g_vals[j];
                else
                    s1_vals[j] = s1_vals[j] * beta1 + ((float)g_vals[j]);
                if (unorm != NULL)
                    local_unorm += s1_vals[j] * s1_vals[j];
                break;
            case LION:
                s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * g_val);
                break;
            case RMSPROP:
                s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * (g_val * g_val));
                break;
Tim Dettmers's avatar
Tim Dettmers committed
1166
1167
1168
1169
1170
1171
1172
            }

            local_max_s1 = fmaxf(local_max_s1, fabsf(s1_vals[j]));
        }
    }

    __syncthreads();
1173
    local_max_s1 = BlockReduce(temp_storage.reduce).Reduce(local_max_s1, CUB_REDUCTIONOP_MAX, valid_items);
1174
1175
1176
1177
1178
    if (threadIdx.x == 0) {
        atomicMax(&new_max1[0], local_max_s1);
    }
    if (unorm != NULL) {
        __syncthreads();
1179
        local_unorm = BlockReduce(temp_storage.reduce).Sum(local_unorm, valid_items);
1180
1181
1182
        if (threadIdx.x == 0) {
            atomicAdd(&unorm[0], local_unorm);
        }
Tim Dettmers's avatar
Tim Dettmers committed
1183
1184
1185
    }
}

1186
1187
1188
1189
1190
1191
1192
1193
1194
template <typename T, int OPTIMIZER>
__global__ void __launch_bounds__(1024, 1) kOptimizerStatic8bit1State(
    T* p, T* const g, unsigned char* state1, const float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float eps, const int step, const float lr,
    float* __restrict__ const quantiles1, float* max1, float* new_max1, float weight_decay, const float gnorm_scale,
    const int n
) {

    const int n_full = (blockDim.x * gridDim.x) * NUM_PER_THREAD2;
Tim Dettmers's avatar
Tim Dettmers committed
1195
1196
1197
1198
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD2);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[NUM_PER_THREAD2];
1199
    float new_max_val1 = 1.0f / new_max1[0];
Tim Dettmers's avatar
Tim Dettmers committed
1200
1201
    float update_scale = 1.0f;

1202
1203
1204
1205
1206
1207
1208
1209
1210
    if (max_unorm > 0.0f) {
        update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
        if (update_scale > max_unorm * param_norm) {
            update_scale = (max_unorm * param_norm) / update_scale;
        } else {
            update_scale = 1.0f;
        }
    } else {
        update_scale = 1.0f;
Tim Dettmers's avatar
Tim Dettmers committed
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
    }

    unsigned char c1s[NUM_PER_THREAD2];
    T p_vals[NUM_PER_THREAD2];
    T g_vals[NUM_PER_THREAD2];
    typedef cub::BlockLoad<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;

    typedef cub::BlockStore<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ float smem_quantiles1[256];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;

1231
    if (threadIdx.x < 256)
Tim Dettmers's avatar
Tim Dettmers committed
1232
1233
1234
1235
        smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];

    __syncthreads();

1236
1237
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * NUM_THREADS2 * NUM_PER_THREAD2) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
1238
1239
1240
1241
1242
1243
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items);

1244
1245
1246
        if ((i + (threadIdx.x * NUM_PER_THREAD2) + NUM_PER_THREAD2) > n) {
            continue;
        }
Tim Dettmers's avatar
Tim Dettmers committed
1247

1248
1249
#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD2; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1250
1251
            g_val = float(g_vals[j]);
            g_val *= gnorm_scale;
1252

1253
1254
1255
            if (weight_decay > 0.0f) {
                switch (OPTIMIZER) {
                case ADAGRAD:
1256
1257
                case MOMENTUM:
                case RMSPROP:
1258
1259
                    g_val += ((float)p_vals[j]) * weight_decay;
                    break;
1260
                case LION:
1261
1262
1263
                    p_vals[j] = ((float)p_vals[j]) * (1.0f - lr * weight_decay);
                    break;
                }
1264
1265
            }

1266
            s1_vals[j] = smem_quantiles1[c1s[j]] * max1[0];
Tim Dettmers's avatar
Tim Dettmers committed
1267

1268
1269
1270
1271
            switch (OPTIMIZER) {
            case ADAGRAD:
            case MOMENTUM:
                if (step == 1)
Tim Dettmers's avatar
Tim Dettmers committed
1272
                    s1_vals[j] = g_vals[j];
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
                else
                    s1_vals[j] = s1_vals[j] * beta1 + ((float)g_vals[j]);

                p_vals[j] = ((float)p_vals[j]) + (-lr * update_scale * (s1_vals[j]));
                break;
            case LION:
                p_vals[j] =
                    ((float)p_vals[j]) - (lr * sgn(((float)s1_vals[j]) * beta1 + ((1.0f - beta1) * ((float)g_val))));
                s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * g_val);
                break;
            case RMSPROP:
                s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * (g_val * g_val));
                p_vals[j] = ((float)p_vals[j]) - (lr * __fdividef(g_val, sqrtf(s1_vals[j]) + eps));
                break;
Tim Dettmers's avatar
Tim Dettmers committed
1287
1288
            }

1289
            c1s[j] = dQuantize<0>(smem_quantiles1, 0.0f, s1_vals[j] * new_max_val1);
Tim Dettmers's avatar
Tim Dettmers committed
1290
1291

            // make sure state1 term has still the same sign after quantization
1292
1293
1294
1295
1296
            if (signbit(smem_quantiles1[c1s[j]]) != signbit(s1_vals[j])) {
                if (s1_vals[j] > 0.0f)
                    c1s[j] += 1;
                else
                    c1s[j] -= 1;
Tim Dettmers's avatar
Tim Dettmers committed
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
            }
        }

        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
        __syncthreads();
    }
}

1307
1308
1309
1310
1311
1312
1313
template <typename T, int BLOCK_SIZE, int NUM_VALS>
__global__ void kPercentileClipping(T* __restrict__ g, float* gnorm_vec, int step, const int n) {
    const int n_full = (BLOCK_SIZE * (n / BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
    int valid_items = 0;

    typedef cub::BlockReduce<float, BLOCK_SIZE / NUM_VALS> BlockReduce;
    typedef cub::BlockLoad<T, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
Tim Dettmers's avatar
Tim Dettmers committed
1314

1315
    __shared__ typename BlockReduce::TempStorage reduce;
Tim Dettmers's avatar
Tim Dettmers committed
1316

1317
1318
1319
1320
1321
1322
1323
    __shared__ typename LoadT::TempStorage loadT;
    T vals[NUM_VALS];
    float local_sum = 0.0f;

    for (unsigned int i = (blockIdx.x * BLOCK_SIZE); i < n_full; i += gridDim.x * BLOCK_SIZE) {
        valid_items = n - i > BLOCK_SIZE ? BLOCK_SIZE : n - i;
        local_sum = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
1324

1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
        __syncthreads();
        LoadT(loadT).Load(&(g[i]), vals, valid_items, (T)0.0f);

#pragma unroll NUM_VALS
        for (int j = 0; j < NUM_VALS; j++)
            local_sum += ((float)vals[j]) * ((float)vals[j]);

        local_sum = BlockReduce(reduce).Sum(local_sum, valid_items);
        if (threadIdx.x == 0) {
            if (step == 1) {
                // initialize with the same norm for all positions
                // #pragma unroll 10
                for (int j = 0; j < 100; j++)
                    atomicAdd(&gnorm_vec[j], local_sum);
            } else
                atomicAdd(&gnorm_vec[step % 100], local_sum);
        }
    }
}
Tim Dettmers's avatar
Tim Dettmers committed
1344
1345
1346

#define LANES 2
#define QUAD 3
1347
1348
1349
1350
1351
1352
1353

template <typename T, int OPTIMIZER, int BLOCK_SIZE, int N_PER_TH>
__launch_bounds__(256, 3) __global__ void kOptimizerStatic8bit2StateBlockwise(
    T* p, T* __restrict__ const g, unsigned char* state1, unsigned char* state2, const float beta1, const float beta2,
    const float beta3, const float alpha, const float eps, const int step, const float lr,
    float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* absmax1, float* absmax2,
    float weight_decay, const float gnorm_scale, const bool skip_zeros, const int n
1354
) {
Tim Dettmers's avatar
Tim Dettmers committed
1355

1356
    // const int n_full = n + (n%BLOCK_SIZE);
Tim Dettmers's avatar
Tim Dettmers committed
1357
1358
1359
1360
1361
1362
    const int n_full = gridDim.x * BLOCK_SIZE;
    const int base_idx = (blockIdx.x * BLOCK_SIZE);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[N_PER_TH];
    float s2_vals[N_PER_TH];
1363
1364
    float s3_vals[N_PER_TH];

Tim Dettmers's avatar
Tim Dettmers committed
1365
1366
    // 2-5%
    const float correction1 = 1.0f - __powf(beta1, step);
1367
1368
    const float correction2 = sqrtf(1.0f - __powf(beta2, step));
    const float step_size = __fdividef(-lr * correction2, correction1);
Tim Dettmers's avatar
Tim Dettmers committed
1369
1370
1371
    const int lane_id = threadIdx.x % LANES;
    float new_local_abs_max1 = -FLT_MAX;
    float new_local_abs_max2 = -FLT_MAX;
1372
    float new_local_abs_max3 = -FLT_MAX;
Tim Dettmers's avatar
Tim Dettmers committed
1373
1374
1375
1376
1377
    float quadrants1[QUAD];
    float quadrants2[QUAD];

    unsigned char c1s[N_PER_TH];
    unsigned char c2s[N_PER_TH];
1378
1379
    unsigned char c3s[N_PER_TH];

Tim Dettmers's avatar
Tim Dettmers committed
1380
    T g_vals[N_PER_TH];
1381
    T p_vals[N_PER_TH];
1382
1383
    typedef cub::BlockLoad<T, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;
Tim Dettmers's avatar
Tim Dettmers committed
1384

1385
1386
    typedef cub::BlockStore<unsigned char, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;
Tim Dettmers's avatar
Tim Dettmers committed
1387
1388
1389

    __shared__ float smem_quantiles1[LANES][257];
    __shared__ float smem_quantiles2[LANES][257];
1390
1391
1392
    typedef cub::BlockReduce<float, BLOCK_SIZE / N_PER_TH> BlockReduce1;
    typedef cub::BlockReduce<float, BLOCK_SIZE / N_PER_TH> BlockReduce2;
    typedef cub::BlockReduce<float, BLOCK_SIZE / N_PER_TH> BlockReduce3;
Tim Dettmers's avatar
Tim Dettmers committed
1393
1394
    __shared__ typename BlockReduce1::TempStorage reduce1;
    __shared__ typename BlockReduce2::TempStorage reduce2;
1395
    __shared__ typename BlockReduce2::TempStorage reduce3;
Tim Dettmers's avatar
Tim Dettmers committed
1396
1397
    __shared__ float smem_exchange1[1];
    __shared__ float smem_exchange2[1];
1398
    __shared__ float smem_exchange3[1]; // [[maybe_unused]]
Tim Dettmers's avatar
Tim Dettmers committed
1399
1400
1401
1402
1403
1404
1405

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;
1406

Tim Dettmers's avatar
Tim Dettmers committed
1407
1408
1409
    // init: 0.2 -> 0.23

    // 0.23 -> 0.23
1410
1411
1412
1413
    smem_quantiles1[0][threadIdx.x] = quantiles1[threadIdx.x];
    smem_quantiles2[0][threadIdx.x] = quantiles2[threadIdx.x];
#pragma unroll
    for (unsigned int j = 1; j < LANES; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1414
1415
        smem_quantiles1[j][threadIdx.x] = smem_quantiles1[0][threadIdx.x];
        smem_quantiles2[j][threadIdx.x] = smem_quantiles2[0][threadIdx.x];
1416
    }
Tim Dettmers's avatar
Tim Dettmers committed
1417
1418
1419

    __syncthreads();

1420
1421
1422
1423
#pragma unroll
    for (int k = 0; k < QUAD; k++) {
        quadrants1[k] = smem_quantiles1[lane_id][(k * 256 / (QUAD + 1)) + (256 / (QUAD + 1) - 1)];
        quadrants2[k] = smem_quantiles2[lane_id][(k * 256 / (QUAD + 1)) + (256 / (QUAD + 1) - 1)];
Tim Dettmers's avatar
Tim Dettmers committed
1424
1425
    }

1426
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
Tim Dettmers's avatar
Tim Dettmers committed
1427
1428
1429
1430
1431
1432
1433
1434
1435
        // loads: 0.23 -> 0.85/1.44
        valid_items = n - i >= BLOCK_SIZE ? BLOCK_SIZE : n - i;
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state2[i]), c2s, valid_items, 0);

1436
1437
        // AdEMAMix has an additional state packed into state1.
        if (OPTIMIZER == ADEMAMIX) {
1438
1439
            __syncthreads();
            LoadChar(temp_storage.loadc).Load(&(state1[n + i]), c3s, valid_items, 128);
1440
1441
        }

Tim Dettmers's avatar
Tim Dettmers committed
1442
1443
        new_local_abs_max1 = -FLT_MAX;
        new_local_abs_max2 = -FLT_MAX;
1444
        new_local_abs_max3 = -FLT_MAX;
Tim Dettmers's avatar
Tim Dettmers committed
1445

1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
//  update: 2.48/1.57 -> 2.51/1.60
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            if (!isnan((float)g_vals[j]) && !isinf((float)g_vals[j])) {
                s2_vals[j] = smem_quantiles2[lane_id][c2s[j]] * absmax2[i / BLOCK_SIZE];
                g_val = g_vals[j];
                // float ratio = (g_val*g_val)/fmaxf(s2_vals[j], eps*eps);
                // g_val = ratio > 2.0f ? 2.0f*g_val/ratio : g_val;
                g_val *= gnorm_scale;

                s2_vals[j] = (s2_vals[j] * beta2) + (((1.0f - beta2) * g_val * g_val));

                s1_vals[j] = smem_quantiles1[lane_id][c1s[j]] * absmax1[i / BLOCK_SIZE];
                s1_vals[j] = (s1_vals[j] * beta1) + (((1.0f - beta1) * g_val));

                if (OPTIMIZER == ADEMAMIX) {
                    // The absmax for the third state is appended to absmax1
                    s3_vals[j] = smem_quantiles1[lane_id][c3s[j]] * absmax1[(n + i) / BLOCK_SIZE];
                    s3_vals[j] = (s3_vals[j] * beta3) + (((1.0f - beta3) * g_val));
                }
            } else {
                s1_vals[j] = 0.0f;
                s2_vals[j] = 0.0f;
1469

1470
1471
1472
                if (OPTIMIZER == ADEMAMIX) {
                    s3_vals[j] = 0.0f;
                }
1473
            }
Tim Dettmers's avatar
Tim Dettmers committed
1474
1475
1476

            new_local_abs_max1 = fmaxf(new_local_abs_max1, fabsf(s1_vals[j]));
            new_local_abs_max2 = fmaxf(new_local_abs_max2, fabsf(s2_vals[j]));
1477
1478

            if (OPTIMIZER == ADEMAMIX) {
1479
                new_local_abs_max3 = fmaxf(new_local_abs_max3, fabsf(s3_vals[j]));
1480
            }
Tim Dettmers's avatar
Tim Dettmers committed
1481
1482
1483
        }

        //  reduce: 2.51/1.60 -> 2.67/1.69
1484
1485
        new_local_abs_max1 = BlockReduce1(reduce1).Reduce(new_local_abs_max1, CUB_REDUCTIONOP_MAX);
        new_local_abs_max2 = BlockReduce2(reduce2).Reduce(new_local_abs_max2, CUB_REDUCTIONOP_MAX);
Tim Dettmers's avatar
Tim Dettmers committed
1486

1487
        if (OPTIMIZER == ADEMAMIX) {
1488
            new_local_abs_max3 = BlockReduce3(reduce3).Reduce(new_local_abs_max3, CUB_REDUCTIONOP_MAX);
1489
1490
        }

1491
1492
1493
        if (threadIdx.x == 0) {
            smem_exchange1[0] = new_local_abs_max1;
            smem_exchange2[0] = new_local_abs_max2;
1494

1495
1496
1497
            if (OPTIMIZER == ADEMAMIX) {
                smem_exchange3[0] = new_local_abs_max3;
            }
Tim Dettmers's avatar
Tim Dettmers committed
1498
1499
1500
1501
        }

        __syncthreads();

1502
1503
1504
        if (threadIdx.x == 0) {
            absmax1[i / BLOCK_SIZE] = new_local_abs_max1;
            absmax2[i / BLOCK_SIZE] = new_local_abs_max2;
1505

1506
1507
1508
1509
1510
1511
            if (OPTIMIZER == ADEMAMIX) {
                absmax1[(n + i) / BLOCK_SIZE] = new_local_abs_max3;
            }
        } else {
            new_local_abs_max1 = smem_exchange1[0];
            new_local_abs_max2 = smem_exchange2[0];
1512

1513
1514
1515
            if (OPTIMIZER == ADEMAMIX) {
                new_local_abs_max3 = smem_exchange3[0];
            }
Tim Dettmers's avatar
Tim Dettmers committed
1516
1517
1518
        }

        __syncthreads();
1519
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items, (T)0.0f);
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
//  reduce: 2.67/1.69 -> 2.67/1.70
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            // if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
            if (!isnan((float)g_vals[j]) && !isinf((float)g_vals[j])) {
                if (OPTIMIZER == ADEMAMIX) {
                    p_vals[j] =
                        T((float)p_vals[j] - lr * (((s1_vals[j] / correction1) + (alpha * s3_vals[j])) /
                                                   ((sqrtf(s2_vals[j]) / correction2) + eps)));
                } else {
                    p_vals[j] =
                        (T)(((float)p_vals[j]) +
                            ((step_size * (__fdividef(s1_vals[j], (sqrtf(s2_vals[j]) + (correction2 * eps)))))));
                }

                if (weight_decay > 0.0f)
                    p_vals[j] = ((float)p_vals[j]) * (1.0f - (lr * weight_decay));
            }
Tim Dettmers's avatar
Tim Dettmers committed
1538
1539
1540
1541
        }

        //  store: 0.85/1.44 -> 2.48/1.57
        __syncthreads();
1542
        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
1543

1544
1545
1546
1547
1548
//  quantizaztion: 2.67/1.70  -> 3.4/3.3
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            c1s[j] = quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s1_vals[j], new_local_abs_max1));
            c2s[j] = quantize_2D<0>(quadrants2, smem_quantiles2[lane_id], __fdividef(s2_vals[j], new_local_abs_max2));
Tim Dettmers's avatar
Tim Dettmers committed
1549
1550
1551

            // make sure state1 term has still the same sign after quantization
            // (not needed for state2 term which has only positive values)
1552
1553
1554
1555
1556
            if (signbit(smem_quantiles1[lane_id][c1s[j]]) != signbit(s1_vals[j])) {
                if (s1_vals[j] > 0.0f)
                    c1s[j] += 1;
                else
                    c1s[j] -= 1;
Tim Dettmers's avatar
Tim Dettmers committed
1557
            }
1558
1559

            if (OPTIMIZER == ADEMAMIX) {
1560
1561
                c3s[j] =
                    quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s3_vals[j], new_local_abs_max3));
1562

1563
1564
1565
                if (signbit(smem_quantiles1[lane_id][c3s[j]]) != signbit(s3_vals[j])) {
                    c3s[j] += (s3_vals[j] > 0.0f) ? 1 : -1;
                }
1566
            }
Tim Dettmers's avatar
Tim Dettmers committed
1567
1568
1569
1570
1571
1572
        }

        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state2[i]), c2s, valid_items);
1573
1574

        if (OPTIMIZER == ADEMAMIX) {
1575
1576
            __syncthreads();
            StoreChar(temp_storage.storec).Store(&(state1[n + i]), c3s, valid_items);
1577
        }
Tim Dettmers's avatar
Tim Dettmers committed
1578
1579
1580
1581
1582
    }
}

#define LANES 2
#define QUAD 3
1583
1584
1585
1586
1587
1588
1589
1590
1591

template <typename T, int OPTIMIZER, int BLOCK_SIZE, int N_PER_TH>
__launch_bounds__(256, 3) __global__ void kOptimizerStatic8bit1StateBlockwise(
    T* p, T* __restrict__ const g, unsigned char* state1, const float beta1, const float beta2, const float eps,
    const int step, const float lr, float* __restrict__ const quantiles1, float* absmax1, float weight_decay,
    const float gnorm_scale, const bool skip_zeros, const int n
) {

    // const int n_full = n + (n%BLOCK_SIZE);
Tim Dettmers's avatar
Tim Dettmers committed
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
    const int n_full = gridDim.x * BLOCK_SIZE;
    const int base_idx = (blockIdx.x * BLOCK_SIZE);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[N_PER_TH];
    // 2-5%
    const int lane_id = threadIdx.x % LANES;
    float new_local_abs_max1 = -FLT_MAX;
    float quadrants1[QUAD];

    unsigned char c1s[N_PER_TH];
    T g_vals[N_PER_TH];
1604
    T p_vals[N_PER_TH];
Tim Dettmers's avatar
Tim Dettmers committed
1605

1606
1607
    typedef cub::BlockLoad<T, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;
Tim Dettmers's avatar
Tim Dettmers committed
1608

1609
1610
    typedef cub::BlockStore<unsigned char, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;
Tim Dettmers's avatar
Tim Dettmers committed
1611
1612

    __shared__ float smem_quantiles1[LANES][257];
1613
    typedef cub::BlockReduce<float, BLOCK_SIZE / N_PER_TH> BlockReduce1;
Tim Dettmers's avatar
Tim Dettmers committed
1614
1615
1616
1617
1618
1619
1620
1621
1622
    __shared__ typename BlockReduce1::TempStorage reduce1;
    __shared__ float smem_exchange1[1];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;
1623

Tim Dettmers's avatar
Tim Dettmers committed
1624
1625
1626
    // init: 0.2 -> 0.23

    // 0.23 -> 0.23
1627
1628
1629
1630
    smem_quantiles1[0][threadIdx.x] = quantiles1[threadIdx.x];
#pragma unroll
    for (unsigned int j = 1; j < LANES; j++)
        smem_quantiles1[j][threadIdx.x] = smem_quantiles1[0][threadIdx.x];
Tim Dettmers's avatar
Tim Dettmers committed
1631
1632
1633

    __syncthreads();

1634
1635
1636
#pragma unroll
    for (int k = 0; k < QUAD; k++)
        quadrants1[k] = smem_quantiles1[lane_id][(k * 256 / (QUAD + 1)) + (256 / (QUAD + 1) - 1)];
Tim Dettmers's avatar
Tim Dettmers committed
1637

1638
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
Tim Dettmers's avatar
Tim Dettmers committed
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
        // loads: 0.23 -> 0.85/1.44
        valid_items = n - i >= BLOCK_SIZE ? BLOCK_SIZE : n - i;
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items, (T)0.0f);

        new_local_abs_max1 = -FLT_MAX;

1650
1651
1652
//  update: 2.48/1.57 -> 2.51/1.60
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1653
1654
            g_val = float(g_vals[j]);
            g_val *= gnorm_scale;
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
            if (!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f))) {
                if (weight_decay > 0.0f) {
                    switch (OPTIMIZER) {
                    case MOMENTUM:
                    case ADAGRAD:
                    case RMSPROP:
                        g_val += ((float)p_vals[j]) * weight_decay;
                        break;
                    case LION:
                        p_vals[j] = ((float)p_vals[j]) * (1.0f - lr * weight_decay);
                        break;
                    }
                }

                s1_vals[j] = smem_quantiles1[lane_id][c1s[j]] * absmax1[i / BLOCK_SIZE];

                switch (OPTIMIZER) {
                case MOMENTUM:
                    if (step == 1)
                        s1_vals[j] = g_val;
                    else
                        s1_vals[j] = (s1_vals[j] * beta1) + g_val;
                    break;
                case LION:
                    // here, using gvals[j] to store the gradient smoothed by beta1 for the following parameter update,
                    // before the momentum is updated by beta2
                    g_vals[j] = lr * sgn(((float)s1_vals[j]) * beta1 + ((1.0f - beta1) * g_val));
                    s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * g_val);
1683
                    break;
1684
1685
1686
1687
1688
                case RMSPROP:
                    s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * (g_val * g_val));
                    break;
                case ADAGRAD:
                    s1_vals[j] = s1_vals[j] + (g_val * g_val);
1689
1690
                    break;
                }
1691
            }
Tim Dettmers's avatar
Tim Dettmers committed
1692
1693
1694
1695
1696

            new_local_abs_max1 = fmaxf(new_local_abs_max1, fabsf(s1_vals[j]));
        }

        //  reduce: 2.51/1.60 -> 2.67/1.69
1697
        new_local_abs_max1 = BlockReduce1(reduce1).Reduce(new_local_abs_max1, CUB_REDUCTIONOP_MAX);
Tim Dettmers's avatar
Tim Dettmers committed
1698

1699
1700
        if (threadIdx.x == 0)
            smem_exchange1[0] = new_local_abs_max1;
Tim Dettmers's avatar
Tim Dettmers committed
1701
1702
1703

        __syncthreads();

1704
1705
        if (threadIdx.x == 0)
            absmax1[i / BLOCK_SIZE] = new_local_abs_max1;
Tim Dettmers's avatar
Tim Dettmers committed
1706
        else
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
            new_local_abs_max1 = smem_exchange1[0];

//  reduce: 2.67/1.69 -> 2.67/1.70
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            if (!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f))) {
                switch (OPTIMIZER) {
                case MOMENTUM:
                    p_vals[j] = ((float)p_vals[j]) - lr * (s1_vals[j]);
                    break;
                case LION:
                    p_vals[j] = ((float)p_vals[j]) - ((float)g_vals[j]);
                    break;
                case RMSPROP:
                    g_val = g_vals[j];
                    p_vals[j] = ((float)p_vals[j]) - lr * (__fdividef(g_val, sqrtf(s1_vals[j]) + eps));
                    break;
                case ADAGRAD:
                    g_val = g_vals[j];
                    p_vals[j] = ((float)p_vals[j]) - lr * (__fdividef(g_val, sqrtf(s1_vals[j]) + eps));
                    break;
                }
            }
        }
Tim Dettmers's avatar
Tim Dettmers committed
1731
1732
1733
1734
1735

        //  store: 0.85/1.44 -> 2.48/1.57
        __syncthreads();
        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);

1736
1737
1738
1739
//  quantizaztion: 2.67/1.70  -> 3.4/3.3
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            c1s[j] = quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s1_vals[j], new_local_abs_max1));
Tim Dettmers's avatar
Tim Dettmers committed
1740
1741
1742

            // make sure state1 term has still the same sign after quantization
            // (not needed for state2 term which has only positive values)
1743
1744
1745
1746
1747
            if (signbit(smem_quantiles1[lane_id][c1s[j]]) != signbit(s1_vals[j])) {
                if (s1_vals[j] > 0.0f)
                    c1s[j] += 1;
                else
                    c1s[j] -= 1;
Tim Dettmers's avatar
Tim Dettmers committed
1748
1749
1750
1751
1752
1753
1754
1755
            }
        }

        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
    }
}

1756
1757
1758
1759
1760
// Inputs:
//  A [rows, cols]
// Outputs:
//  rowStats [rows]
//  out [rows, cols]
1761
1762
1763
template <typename T, int THREADS, int SPARSE_DECOMP>
__launch_bounds__(1024, BNB_MAX_THREADS_PER_SM / 1024) __global__
    void kInt8VectorQuant(T* __restrict__ A, int8_t* out, float* rowStats, float threshold, int rows, int cols) {
1764

1765
1766
    // For sm50/sm52 and CUDA < 12.2 we need to do the reduction in fp32.
    // Otherwise `T` is `fp16`. This can be removed when Maxwell is dropped.
1767
#if (__CUDACC_VER_MAJOR__ >= 12 && __CUDACC_VER_MINOR >= 2) || BNB_FP16_AVAILABLE
1768
    using TReduction = T;
1769
#else
1770
    using TReduction = float;
1771
#endif
Tim Dettmers's avatar
Tim Dettmers committed
1772

1773
    using BlockReduceT = cub::BlockReduce<TReduction, THREADS>;
Tim Dettmers's avatar
Tim Dettmers committed
1774

1775
1776
1777
1778
1779
1780
    // One block per row.
    // Threads load column values in a striped arrangement.
    // e.g. t0 reads row[0], row[0+nthreads], ..
    // and  t1 reads row[1], row[1+nthreads], ..
    // Each thread will determine its local absmax.
    // We then do a blockwise reduction to determine the row's absmax.
Tim Dettmers's avatar
Tim Dettmers committed
1781

1782
1783
    __shared__ typename BlockReduceT::TempStorage temp_storage;
    __shared__ TReduction smem_row_absmax;
Tim Dettmers's avatar
Tim Dettmers committed
1784

1785
1786
    const int row_id = blockIdx.x;
    const T* row_data = A + (row_id * cols);
Tim Dettmers's avatar
Tim Dettmers committed
1787

1788
1789
1790
1791
    // Threads will read the row values in a striped access pattern and find a local absmax.
    TReduction row_local_absmax = -FLT_MIN;
    for (int i = threadIdx.x; i < cols; i += THREADS) {
        const TReduction absval = fabsf(__ldcs(&(row_data[i])));
Tim Dettmers's avatar
Tim Dettmers committed
1792

1793
1794
1795
1796
1797
1798
1799
        // For sparse decomposition, values outside of the threshold are not to be
        // included when calculating the row's absmax.
        if constexpr (SPARSE_DECOMP) {
            row_local_absmax = fmaxf(row_local_absmax, absval < TReduction(threshold) ? absval : row_local_absmax);
        } else {
            row_local_absmax = fmaxf(row_local_absmax, absval);
        }
Tim Dettmers's avatar
Tim Dettmers committed
1800
    }
1801

1802
    // Reduce thread-local absmax across the block.
1803
    const TReduction row_absmax = BlockReduceT(temp_storage).Reduce(row_local_absmax, CUB_REDUCTIONOP_MAX, cols);
1804
1805
1806
1807
1808
    if (threadIdx.x == 0) {
        // Save our block's absmax to shared memory for the quantization step.
        rowStats[row_id] = smem_row_absmax = row_absmax;
    }
    __syncthreads();
1809

1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
    // Quantize row-wise.
    const float scale = __fdividef(127.0f, smem_row_absmax);
    for (int i = threadIdx.x; i < cols; i += THREADS) {
        float val = row_data[i];

        if constexpr (SPARSE_DECOMP) {
            // For sparse decomposition, we do not want to quantize the outliers.
            // Instead they're zeroed out.
            out[row_id * cols + i] = fabs(val) < threshold ? __float2int_rn(val * scale) : 0;
        } else {
            out[row_id * cols + i] = __float2int_rn(val * scale);
        }
    }
}
1824

1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
template <typename T, int THREADS, int SPARSE_DECOMP>
__launch_bounds__(1024, BNB_MAX_THREADS_PER_SM / 1024) __global__
    void kgetRowStats(T* __restrict__ A, float* rowStats, float threshold, int rows, int cols) {
    using BlockReduceT = cub::BlockReduce<float, THREADS>;

    // One block per row.
    // Threads load column values in a striped arrangement.
    // e.g. t0 reads row[0], row[0+nthreads], ..
    // and  t1 reads row[1], row[1+nthreads], ..
    // Each thread will determine its local absmax.
    // We then do a blockwise reduction to determine the row's absmax.

    __shared__ typename BlockReduceT::TempStorage temp_storage;

    const int row_id = blockIdx.x;
    const T* __restrict__ row_data = A + (row_id * cols);

    // Threads will read the row values in a striped access pattern and find a local absmax.
    float row_local_absmax = -FLT_MIN;
    for (int i = threadIdx.x; i < cols; i += THREADS) {
        const float absval = fabsf(row_data[i]);

        // For sparse decomposition, values outside of the threshold are not to be
        // included when calculating the row's absmax.
        if constexpr (SPARSE_DECOMP) {
            row_local_absmax = fmaxf(row_local_absmax, absval < threshold ? absval : row_local_absmax);
        } else {
            row_local_absmax = fmaxf(row_local_absmax, absval);
        }
    }
1855

1856
1857
    // Reduce thread-local absmax across the block.
    // TODO: Consider algorithm BLOCK_REDUCE_RAKING_COMMUTATIVE_ONLY
1858
    const float row_absmax = BlockReduceT(temp_storage).Reduce(row_local_absmax, CUB_REDUCTIONOP_MAX, cols);
1859
1860
1861
    if (threadIdx.x == 0) {
        // Save our block's absmax to shared memory for the quantization step.
        rowStats[row_id] = row_absmax;
Tim Dettmers's avatar
Tim Dettmers committed
1862
    }
1863
}
Tim Dettmers's avatar
Tim Dettmers committed
1864

1865
1866
1867
1868
template __global__ void
    kgetRowStats<half, 1024, 0>(half* __restrict__ A, float* rowStats, float threshold, int rows, int cols);
template __global__ void
    kgetRowStats<half, 1024, 1>(half* __restrict__ A, float* rowStats, float threshold, int rows, int cols);
Tim Dettmers's avatar
Tim Dettmers committed
1869

1870
1871
1872
1873
1874
1875
template __global__ void kInt8VectorQuant<half, 1024, 0>(
    half* __restrict__ A, int8_t* out, float* rowStats, float threshold, int rows, int cols
);
template __global__ void kInt8VectorQuant<half, 1024, 1>(
    half* __restrict__ A, int8_t* out, float* rowStats, float threshold, int rows, int cols
);
Tim Dettmers's avatar
Tim Dettmers committed
1876

1877
#define MM_DEQUANT_CONST 6.200012e-05f // 1.0f/(127.0f*127.0f)
Tim Dettmers's avatar
Tim Dettmers committed
1878

1879
1880
template <int ITEMS_PER_THREAD, int THREADS>
__global__ void kdequant_mm_int32_fp16(
1881
1882
    int* __restrict__ const A, float* __restrict__ const rowStats, float* __restrict__ const colStats, half* out,
    half* __restrict__ const bias, const int numRows, const int numCols, const int n
1883
) {
1884
    const int n_out = numRows * numCols;
Tim Dettmers's avatar
Tim Dettmers committed
1885

1886
1887
    int block_offset = blockIdx.x * THREADS * ITEMS_PER_THREAD;
    int thread_offset = threadIdx.x * ITEMS_PER_THREAD;
Tim Dettmers's avatar
Tim Dettmers committed
1888

1889
1890
    int local_values[ITEMS_PER_THREAD];
    half local_output[ITEMS_PER_THREAD];
1891

1892
1893
1894
    float local_rowStats[ITEMS_PER_THREAD];
    float local_colStats[ITEMS_PER_THREAD];
    float local_biasValue[ITEMS_PER_THREAD];
Tim Dettmers's avatar
Tim Dettmers committed
1895

1896
1897
    typedef cub::BlockLoad<int, THREADS, ITEMS_PER_THREAD, cub::BLOCK_LOAD_VECTORIZE> LoadInt32;
    __shared__ typename LoadInt32::TempStorage loadint32;
Tim Dettmers's avatar
Tim Dettmers committed
1898

1899
    int row_idx, col_idx;
Tim Dettmers's avatar
Tim Dettmers committed
1900

1901
1902
#pragma unroll ITEMS_PER_THREAD
    for (int j = 0; j < ITEMS_PER_THREAD; ++j) {
Tim Dettmers's avatar
Tim Dettmers committed
1903

1904
1905
        row_idx = (block_offset + thread_offset + j) / numCols;
        col_idx = (block_offset + thread_offset + j) % numCols;
Tim Dettmers's avatar
Tim Dettmers committed
1906

1907
1908
1909
1910
        local_colStats[j] = col_idx >= numCols ? 0.0f : __ldg(&colStats[col_idx]);
        local_rowStats[j] = row_idx >= numRows ? 0.0f : __ldg(&rowStats[row_idx]);
        local_biasValue[j] = ((bias == nullptr) || col_idx >= numCols) ? 0.0f : __half2float(bias[col_idx]);
    }
Tim Dettmers's avatar
Tim Dettmers committed
1911

1912
1913
1914
1915
    // Each block loads THREADS * ITEMS_PER_THREAD values from A
    int valid_items =
        block_offset + THREADS * ITEMS_PER_THREAD < n_out ? THREADS * ITEMS_PER_THREAD : n_out - block_offset;
    LoadInt32(loadint32).Load(&(A[block_offset]), local_values, valid_items, 0);
Tim Dettmers's avatar
Tim Dettmers committed
1916

1917
1918
1919
1920
1921
1922
#pragma unroll ITEMS_PER_THREAD
    for (int j = 0; j < ITEMS_PER_THREAD; ++j) {
        local_output[j] = __float2half(
            fmaf(local_values[j] * local_rowStats[j] * local_colStats[j], MM_DEQUANT_CONST, local_biasValue[j])
        );
    }
Tim Dettmers's avatar
Tim Dettmers committed
1923

1924
1925
1926
1927
1928
1929
#pragma unroll ITEMS_PER_THREAD
    for (int j = 0; j < ITEMS_PER_THREAD; j++) {
        int outIdx = block_offset + thread_offset + j;
        if (outIdx < n_out) {
            out[outIdx] = local_output[j];
        }
Tim Dettmers's avatar
Tim Dettmers committed
1930
1931
1932
    }
}

1933
#define DENORM 1.0f / 127.0f
Tim Dettmers's avatar
Tim Dettmers committed
1934
#define MAX_SPARSE_COUNT 32
1935
1936
#define SMEM_SIZE 8 * 256

1937
template <typename T, int SPMM_ITEMS, int BITS>
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
__global__ void kspmm_coo_very_sparse_naive(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, T* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
) {

    // 0. load balancing: We process rows with most columns first (count_vec)and we process one row per block
    //    If a block finishes, the next one is scheduled. Since the last blocks like have fewer
    //    elements they finish faster "fillin up" the gaps left by larger blocks

    // without tensor cores
    // 1. use rowidx_length to find what to load (as many blocks as there are rows)
    // 2. Load A into registers
    // 3. each warp loads all required rows of B but each warp is offset by k
    // 4. Do mma operations that accumulate into registers
    // 5. Each warp stores its output row into matrix C

    const int count = max_count[blockIdx.x];
    const int local_max_idx = max_idx[blockIdx.x];
    const int offset = local_max_idx == 0 ? 0 : offset_rowidx[local_max_idx - 1];
    const int local_row_idx = rowidx[offset];

    const int warp_id = threadIdx.x / 32;
    const int warp_idx = threadIdx.x % 32;
    const int warp_offset = (warp_id * 32) * SPMM_ITEMS;
    const int num_items = BITS == 8 ? 8 : 8;
    int idx_col_B = warp_offset;
    int local_idx_col_B_offset = 0;

    half local_valA[MAX_SPARSE_COUNT];
    int local_colidxA[MAX_SPARSE_COUNT];
    half local_valC[SPMM_ITEMS];
    T local_valsB[num_items];
    half local_valOut[num_items];
    // 128 byte loads per warp == 4 bytes per thread

    // 2. Load A into registers
    for (int j = 0; j < MAX_SPARSE_COUNT; j++) {
        local_valA[j] = j < count ? values[offset + j] : __float2half(0.0f);
        local_colidxA[j] = j < count ? colidx[offset + j] : 0;
Tim Dettmers's avatar
Tim Dettmers committed
1977
1978
    }

1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
    // each thread processes SPMM_ITEMS=32 per iteration. We have 256 threads. 32*256=x192
    // we expect each warp to be SPMM_ITEMS*32 apart
    // we have a total of 128 bytes for the bank with a bank size of 4 bytes
    // added 3 bytes = 6 values between warps should reduce bank conflicts
    __shared__ half smem_dequant_stats[SMEM_SIZE];

    while (idx_col_B < colsB) {

        if (dequant_stats != NULL) {
            for (int i = threadIdx.x; i < SMEM_SIZE; i += blockDim.x)
                if ((idx_col_B + i - local_idx_col_B_offset) < colsB)
                    smem_dequant_stats[i] = dequant_stats[idx_col_B + i - local_idx_col_B_offset];

            __syncthreads();
        }

#pragma unroll SPMM_ITEMS
        for (int j = 0; j < SPMM_ITEMS; j++)
            local_valC[j] = 0.0f;

#pragma unroll
        for (int i = 0; i < count; i++) {
            // 3. each warp loads all required rows of B but each warp is offset by k
            int row_offset = colsB * local_colidxA[i];

#pragma unroll SPMM_ITEMS
            for (int j = 0; j < SPMM_ITEMS; j += num_items) {
                // 4. Multiply the tile -> accumulate outputs in shared memory until 128 bytes it reached
                int idx = idx_col_B + (warp_idx * SPMM_ITEMS) + j;
                if (idx >= colsB) {
                    break;
                }
                if ((idx + num_items < colsB)) {
                    if (BITS == 8)
                        reinterpret_cast<float2(&)[num_items]>(local_valsB)[0] =
                            reinterpret_cast<float2*>(B)[(row_offset + idx) / num_items];
                    else
                        reinterpret_cast<float4(&)[num_items]>(local_valsB)[0] =
                            reinterpret_cast<float4*>(B)[(row_offset + idx) / num_items];
                } else {
#pragma unroll num_items
                    for (int k = 0; k < num_items; k++)
                        if (idx + k < colsB)
                            local_valsB[k] = B[row_offset + idx + k];
                        else
                            local_valsB[k] = 0.0f;
                }
#pragma unroll num_items
                for (int k = 0; k < num_items; k++) {
                    if (BITS == 8 && dequant_stats != NULL)
                    // we do texture cache reads (__ldg) on dequant_stats which should be super fast
                    {
                        float valB = local_valsB[k];
                        float valA = local_valA[i];
                        if (valB != 0.0 && valA != 0.0)
                            local_valC[j + k] =
                                (float)local_valC[j + k] +
                                ((float)smem_dequant_stats[idx + k - local_idx_col_B_offset]) * DENORM * valB * valA;
                    } else
                        local_valC[j + k] = (float)local_valC[j + k] + (float)local_valsB[k] * (float)local_valA[i];
                }
Tim Dettmers's avatar
Tim Dettmers committed
2040
2041
2042
            }
        }

2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
        int idx_row_C = (colsB * local_row_idx);

#pragma unroll SPMM_ITEMS
        for (int j = 0; j < SPMM_ITEMS; j += num_items) {
            // int idx_col_C =  idx_col_B + (32*j) + warp_idx;
            int idx_col_C = idx_col_B + warp_idx * SPMM_ITEMS + j;
            int idx_val = idx_col_C + idx_row_C;

            if (idx_col_C + num_items < colsB) {

                // load outputs to do inplace addition
                reinterpret_cast<float4(&)[num_items / 4]>(local_valOut)[0] =
                    reinterpret_cast<float4*>(out)[idx_val / num_items];

#pragma unroll num_items
                for (int k = 0; k < num_items; k++)
                    local_valC[(j / num_items) + k] = (float)local_valC[(j / num_items) + k] + (float)local_valOut[k];

                reinterpret_cast<float4*>(out)[idx_val / num_items] =
                    reinterpret_cast<float4(&)[num_items]>(local_valC)[j / num_items];
            } else {
#pragma unroll num_items
                for (int k = 0; k < num_items; k++)
                    if (idx_col_C + k < colsB)
                        out[idx_val + k] = (float)out[idx_val + k] + (float)local_valC[j + k];
            }
        }
Tim Dettmers's avatar
Tim Dettmers committed
2070

2071
2072
2073
        idx_col_B += blockDim.x * SPMM_ITEMS;
        local_idx_col_B_offset += blockDim.x * SPMM_ITEMS;
    }
Tim Dettmers's avatar
Tim Dettmers committed
2074
2075
}

2076
#define WARPS 3
2077
2078
2079

template <typename T, int BITS, int THREADS>
__global__ void gemm_device(int M, int N, int K, T* __restrict__ const A, T* B, T* out, int lda, int ldb, int ldc) {
Tim Dettmers's avatar
Tim Dettmers committed
2080
2081

#if __CUDA_ARCH__ >= 750
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
    using namespace nvcuda;
    int col_offset = blockIdx.x * 32;
    const int warp_id = threadIdx.x / 32;
    const int half_warp_id = threadIdx.x / 16;
    const int half_warp_lane = threadIdx.x % 16;
    const int batch_size_warps = (WARPS - 1) * 2;
    const int val_per_iter = blockDim.x - 32;

    T local_A[4];
    T local_B[128];

    const int a_tile_offset = 16;
    const int b_tile_offset = (16 * 32 + 16);

    __shared__ T smem_A[8 * 16 + (2 * 16 * (batch_size_warps - 1))];
    __shared__ T smem_B[2 * batch_size_warps * 16 * 32 + (2 * 16 * (batch_size_warps - 1))];
    //__shared__ T smem_C[8*32];

    wmma::fragment<wmma::matrix_a, 8, 32, 16, half, wmma::row_major> a_frag;
    wmma::fragment<wmma::matrix_b, 8, 32, 16, half, wmma::col_major> b_frag;
    wmma::fragment<wmma::accumulator, 8, 32, 16, half> c_frag;
    wmma::fill_fragment(c_frag, 0.0f);

    int ticktock = 0;
    int idx = 0 + threadIdx.x;
    int loaded_values = 0;
    // prefetch
    if (idx < K && warp_id < (WARPS - 1)) {
        if (loaded_values == 0) {
            local_A[0] = A[idx];
            local_A[1] = A[idx + (1 * val_per_iter)];
            local_A[2] = A[idx + (2 * val_per_iter)];
            local_A[3] = A[idx + (3 * val_per_iter)];

#pragma unroll 32
            for (int col = 0; col < 32; col++) {
                local_B[col] = B[(col_offset + col) * ldb + idx];
                local_B[col + 32] = B[(col_offset + col) * ldb + idx + (1 * val_per_iter)];
                local_B[col + 64] = B[(col_offset + col) * ldb + idx + (2 * val_per_iter)];
                local_B[col + 96] = B[(col_offset + col) * ldb + idx + (3 * val_per_iter)];
            }
            loaded_values = 3;
        } else {

            if (loaded_values == 3) {
                local_A[0] = local_A[1];
#pragma unroll 32
                for (int col = 0; col < 32; col++)
                    local_B[col] = local_B[col + (32)];
            } else if (loaded_values == 2) {
                local_A[0] = local_A[2];
#pragma unroll 32
                for (int col = 0; col < 32; col++)
                    local_B[col] = local_B[col + (64)];
            } else {
                local_A[0] = local_A[3];
#pragma unroll 32
                for (int col = 0; col < 32; col++)
                    local_B[col] = local_B[col + (96)];
            }
            loaded_values--;
        }
Tim Dettmers's avatar
Tim Dettmers committed
2144

2145
        smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = local_A[0];
Tim Dettmers's avatar
Tim Dettmers committed
2146

2147
2148
2149
2150
2151
2152
2153
#pragma unroll 32
        for (int col = 0; col < 32; col++)
            smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                local_B[col];
    } else if (warp_id < (WARPS - 1)) {
        local_A[0] = T(0.0);
        smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2154

2155
2156
2157
#pragma unroll 32
        for (int col = 0; col < 32; col++)
            local_B[col] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2158

2159
2160
2161
2162
2163
2164
#pragma unroll 32
        for (int col = 0; col < 32; col++)
            smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                0.0f;
    }
    ticktock = ticktock == 0 ? 1 : 0;
Tim Dettmers's avatar
Tim Dettmers committed
2165

2166
2167
2168
    // for(int base_idx = blockDim.x-32; base_idx < K; base_idx+=blockDim.x-32)
    for (int base_idx = blockDim.x - 32; base_idx < K; base_idx += blockDim.x - 32) {
        idx = base_idx + threadIdx.x;
Tim Dettmers's avatar
Tim Dettmers committed
2169

2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
        __syncthreads();
        if (idx < K && warp_id < (WARPS - 1)) {
            // local_A[0] = A[idx];

            // #pragma unroll 32
            // for(int col = 0; col < 32; col++)
            //   local_B[col] = B[(col_offset+col)*ldb+idx];
            if (loaded_values == 0) {
                local_A[0] = A[idx];
                local_A[1] = A[idx + (1 * val_per_iter)];
                local_A[2] = A[idx + (2 * val_per_iter)];
                local_A[3] = A[idx + (3 * val_per_iter)];

#pragma unroll 32
                for (int col = 0; col < 32; col++) {
                    local_B[col] = B[(col_offset + col) * ldb + idx];
                    local_B[col + 32] = B[(col_offset + col) * ldb + idx + (1 * val_per_iter)];
                    local_B[col + 64] = B[(col_offset + col) * ldb + idx + (2 * val_per_iter)];
                    local_B[col + 96] = B[(col_offset + col) * ldb + idx + (3 * val_per_iter)];
                }
                loaded_values = 3;

            } else {

                if (loaded_values == 3) {
                    local_A[0] = local_A[1];
#pragma unroll 32
                    for (int col = 0; col < 32; col++)
                        local_B[col] = local_B[col + (32)];
                } else if (loaded_values == 2) {
                    local_A[0] = local_A[2];
#pragma unroll 32
                    for (int col = 0; col < 32; col++)
                        local_B[col] = local_B[col + (64)];
                } else {
                    local_A[0] = local_A[3];
#pragma unroll 32
                    for (int col = 0; col < 32; col++)
                        local_B[col] = local_B[col + (96)];
                }
                loaded_values--;
            }

            smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = local_A[0];

#pragma unroll 32
            for (int col = 0; col < 32; col++)
                smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                    local_B[col];
        } else if (warp_id < (WARPS - 1)) {
            local_A[0] = T(0.0);
            smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2222

2223
2224
2225
#pragma unroll 32
            for (int col = 0; col < 32; col++)
                local_B[col] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2226

2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
#pragma unroll 32
            for (int col = 0; col < 32; col++)
                smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                    0.0f;
        }
        ticktock = ticktock == 0 ? 1 : 0;

        if (warp_id == (WARPS - 1))
            for (int k = 0; k < batch_size_warps; k++) {
                wmma::load_matrix_sync(
                    a_frag, &(smem_A[(ticktock * batch_size_warps + k) * a_tile_offset]), 16
                ); //  111 mu
                wmma::load_matrix_sync(
                    b_frag, &(smem_B[(ticktock * batch_size_warps + k) * b_tile_offset]), 16
                ); // 35 mu
                wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
            }
Tim Dettmers's avatar
Tim Dettmers committed
2244
    }
2245
2246
2247
2248

    __syncthreads();
    if (warp_id != (WARPS - 1)) {
        return;
Tim Dettmers's avatar
Tim Dettmers committed
2249
    }
2250
2251
    // only warp_id == (WARPS-1) from here
    int warp_lane = threadIdx.x % 32;
Tim Dettmers's avatar
Tim Dettmers committed
2252

2253
2254
2255
2256
    ticktock = ticktock == 0 ? 1 : 0;
    for (int k = 0; k < batch_size_warps; k++) {
        wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock * batch_size_warps + k) * a_tile_offset]), 16); //  111 mu
        wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock * batch_size_warps + k) * b_tile_offset]), 16); // 35 mu
Tim Dettmers's avatar
Tim Dettmers committed
2257
        wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
2258
2259
2260
2261
2262
2263
2264
2265
    }

    // 129 mu
    if (warp_id == (WARPS - 1))
        wmma::store_matrix_sync(&(smem_A[0]), c_frag, 32, wmma::mem_row_major);

    if (col_offset + warp_lane < M)
        out[col_offset + warp_lane] = smem_A[warp_lane];
Tim Dettmers's avatar
Tim Dettmers committed
2266
#endif
Tim Dettmers's avatar
Tim Dettmers committed
2267
2268
}

2269
2270
2271
2272
template <typename T> __device__ void printnonzero(T* A, int num_values, const char* strval) {
    for (int i = 0; i < num_values; i++)
        if ((float)A[i] != 0.0)
            printf("%s %i %f\n", strval, i, (float)A[i]);
Tim Dettmers's avatar
Tim Dettmers committed
2273
2274
}

2275
2276
2277
2278
2279
template <typename T, int THREADS>
__global__ void kgemm_4bit_inference(
    int M, int N, int K, T* __restrict__ const A, unsigned char* B, float* absmax, T* out, int lda, int ldb, int ldc,
    int blocksize
) {
Tim Dettmers's avatar
Tim Dettmers committed
2280

2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
    //// element-wise kernel
    //// 1. Load batch x k into registers
    //// 2. Load k x k into registers
    //// 3. dequantize and store in second pair of k x k
    //// 4. matmul
    //// 5. sum with cub
    //// 6. store outputs
    //// TC kernel
    //// use k warps per thread block
    //// 1. threadblock use read-only cache to read in register tile for A into shared memory
    //// 2. each warp loops over shared memory tiles of A of size 8x16 and loads them into fragments
    //// 3. each warp reads a segment of values 16x32 from B
    //// 4. do dequantization from register of B into second pair of registers
    //// 5. store (4) into fragment
    //// 6. matmul aggregate into fragment C
    //// 7. aggregate files of C into shared memory block C
    //// 8. sum (7)
    //// 9. write outputs to matmul output matrix
2299
#if __CUDA_ARCH__ >= 750
2300
2301
2302
2303
2304
2305
2306
    using namespace nvcuda;
    int col_offset = blockIdx.x * 32;
    const int warp_id = threadIdx.x / 32;
    const int warp_idx = threadIdx.x % 32;
    const int half_warp_id = threadIdx.x / 16;
    const int half_warp_lane = threadIdx.x % 16;
    const int batch_size_warps = (WARPS - 1) * 2;
Tim Dettmers's avatar
Tim Dettmers committed
2307

2308
2309
2310
2311
    T quant_map[16];

#pragma unroll 16
    for (int i = 0; i < 16; i++)
2312
        quant_map[i] = nf4_dequantization_lut[i];
2313
    //__shared__ T quant_map[16*160];
2314

2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
    T local_A[2];
    T local_B[64];
    unsigned char local_B_4bit[32];

    const int a_tile_offset = 16;
    const int b_tile_offset = (16 * 32 + 16);

    __shared__ T smem_A[8 * 16 + (16 * (batch_size_warps - 1))];
    __shared__ T smem_B[2 * batch_size_warps * 16 * 32 + (2 * 16 * (batch_size_warps - 1))];
    __shared__ T smem_C[8 * 32];

    wmma::fragment<wmma::matrix_a, 8, 32, 16, half, wmma::row_major> a_frag;
    wmma::fragment<wmma::matrix_b, 8, 32, 16, half, wmma::col_major> b_frag;
    wmma::fragment<wmma::accumulator, 8, 32, 16, half> c_frag;
    wmma::fill_fragment(c_frag, 0.0f);

    for (int i = threadIdx.x; i < (8 * 32); i += blockDim.x)
        smem_C[i] = 0.0f;

    __syncthreads();

    int ticktock = 0;
    int idx = 0 + threadIdx.x;
    int loaded_values = 0;
    // prefetch
    if (idx < K && warp_id < (WARPS - 1)) {
        if (loaded_values == 0) {
            local_A[0] = A[idx];
            local_A[1] = A[idx + blockDim.x - 32];

#pragma unroll 32
            for (int col = 0; col < 32; col++)
                local_B_4bit[col] = B[(col_offset + col) * ldb + idx];

            loaded_values = 1;
        } else {
            local_A[0] = local_A[1];
            loaded_values--;

#pragma unroll 64
            for (int col = 0; col < 64; col += 2) {
                // local_B[col] = dhDequantizeNF4(local_B_4bit[col/2] >> 4)*T(1.0f);
                // local_B[col+1] = dhDequantizeNF4(local_B_4bit[col/2] & 0x0F)*T(1.0f);
                // local_B[col] = d2DequantizeFP4(local_B_4bit[col/2] >> 4)*(float)(17.0);
                // local_B[col+1] = d2DequantizeFP4(local_B_4bit[col/2] & 0x0F)*(float)(17.0);
                // local_B[col] = 127*(local_B_4bit[col/2] >> 4)*(float)(17.0);
                // local_B[col+1] = 127*(local_B_4bit[col/2] & 0x0F)*(float)(17.0);

                // local_B[col] = quant_map[(local_B_4bit[col/2] >> 4)]*T(17.0);
                // local_B[col+1] = quant_map[(local_B_4bit[col/2] & 0x0F)]*T(17.0);
                local_B[col] = quant_map[160 * (local_B_4bit[col / 2] >> 4) + warp_idx] * T(17.0);
                local_B[col + 1] = quant_map[160 * (local_B_4bit[col / 2] & 0x0F) + warp_idx] * T(17.0);
            }
2368
        }
Tim Dettmers's avatar
Tim Dettmers committed
2369

2370
        smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = local_A[0];
2371

2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
#pragma unroll 32
        for (int col = 0; col < 32; col++)
            smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                local_B[col];
    } else if (warp_id < (WARPS - 1)) {
        local_A[0] = T(0.0);
        smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = 0.0f;

#pragma unroll 32
        for (int col = 0; col < 32; col++)
            local_B[col] = 0.0f;

#pragma unroll 32
        for (int col = 0; col < 32; col++)
            smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                0.0f;
2388
2389
    }
    ticktock = ticktock == 0 ? 1 : 0;
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
    // if(threadIdx.x == 0)
    // printf("aa %i %i\n", idx, loaded_values);

    // for(int base_idx = blockDim.x-32; base_idx < K; base_idx+=blockDim.x-32)
    for (int base_idx = blockDim.x - 32; base_idx < K; base_idx += blockDim.x - 32) {
        idx = base_idx + threadIdx.x;
        // if(threadIdx.x == 0)
        // printf("%i %i\n", idx, loaded_values);

        //__syncthreads();
        if (idx < K && warp_id < (WARPS - 1)) {
            if (loaded_values == 0) {
                local_A[0] = A[idx];
                local_A[1] = A[idx + blockDim.x - 32];

#pragma unroll 32
                for (int col = 0; col < 32; col++) {
                    local_B_4bit[col] = B[(col_offset + col) * ldb + idx];
                    local_B_4bit[col + 16] = B[(col_offset + col) * ldb + idx];
                }

                loaded_values = 1;
            } else {
                local_A[0] = local_A[1];
                loaded_values--;

                int absidx = (idx + col_offset) / blocksize;
                half local_absmax = __ldg(&(absmax[absidx]));

#pragma unroll 64
                for (int col = 0; col < 64; col += 2) {
                    // local_B[col] = dhDequantizeNF4(local_B_4bit[col/2] >> 4)*T(absidx);
                    // local_B[col+1] = dhDequantizeNF4(local_B_4bit[col/2] & 0x0F)*T(absidx);
                    // local_B[col] = T(127)*T(local_B_4bit[col/2] >> 4)*T(absidx);
                    // local_B[col+1] = T(127)*T(local_B_4bit[col/2] & 0x0F)*T(absidx);

                    // local_B[col] = quant_map[160*(local_B_4bit[col/2] >> 4)+warp_idx]*T(local_absmax);
                    // local_B[col+1] = quant_map[160*(local_B_4bit[col/2] & 0x0F)+warp_idx]*T(local_absmax);
                    local_B[col] = quant_map[(local_B_4bit[col / 2] >> 4)] * T(absidx);
                    local_B[col + 1] = quant_map[(local_B_4bit[col / 2] & 0x0F)] * T(absidx);
                }
                // printnonzero<T>(local_B, 128, "");
            }

            smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = local_A[0];
2435

2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
#pragma unroll 32
            for (int col = 0; col < 32; col++)
                smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                    local_B[col];
        } else if (warp_id < (WARPS - 1)) {
            local_A[0] = T(0.0);
            smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = 0.0f;

#pragma unroll 32
            for (int col = 0; col < 32; col++)
                local_B[col] = 0.0f;

#pragma unroll 32
            for (int col = 0; col < 32; col++)
                smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                    0.0f;
        }
        ticktock = ticktock == 0 ? 1 : 0;

        if (warp_id == (WARPS - 1))
            for (int k = 0; k < batch_size_warps; k++) {
                wmma::load_matrix_sync(
                    a_frag, &(smem_A[(ticktock * batch_size_warps + k) * a_tile_offset]), 16
                ); //  111 mu
                wmma::load_matrix_sync(
                    b_frag, &(smem_B[(ticktock * batch_size_warps + k) * b_tile_offset]), 16
                ); // 35 mu
                wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
            }
    }

    __syncthreads();
    // if(threadIdx.x == 0)
    //{
    //   printnonzero<T>(smem_A, 8*16 + (2*16*(batch_size_warps-1)), "A: ");
    //   printnonzero<T>(smem_B, 2*batch_size_warps*16*32 + (2*16*(batch_size_warps-1)), "B: ");
    // }
    if (warp_id != (WARPS - 1)) {
        return;
    }
    // only warp_id == (WARPS-1) from here
    int warp_lane = threadIdx.x % 32;

    ticktock = ticktock == 0 ? 1 : 0;
    for (int k = 0; k < batch_size_warps; k++) {
        // if(warp_lane == 0)
        // printf("%i %i %i %i\n", (ticktock*batch_size_warps + k)*a_tile_offset, k, ticktock, threadIdx.x);
        wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock * batch_size_warps + k) * a_tile_offset]), 16); //  111 mu
        wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock * batch_size_warps + k) * b_tile_offset]), 16); // 35 mu
2485
        wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
    }

    // 129 mu
    if (warp_id == (WARPS - 1))
        wmma::store_matrix_sync(&(smem_C[0]), c_frag, 32, wmma::mem_row_major);

    // printnonzero<T>(smem_C, 32, "");

    if (col_offset + warp_lane < M)
        out[col_offset + warp_lane] = smem_C[warp_lane];
2496
#endif
Tim Dettmers's avatar
Tim Dettmers committed
2497
2498
}

2499
#define num_values_4bit 32
2500

2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
template <typename T, int THREADS, int BITS>
__global__ void kgemm_4bit_inference_naive(
    int M, int N, int K, T* __restrict__ const A, unsigned char* B, float* absmax, const float* datatype, T* out,
    int lda, int ldb, int ldc, int blocksize
) {

    // per threadblock:
    // load step-by-step in chunks of [32,warps]: 1x32 * [32,warps] -> [1,warps]
    // 4 warps -> 4 loads per iter
    // 1x32 * 32x4 -> 1x4 outputs per thread block
    typedef cub::WarpReduce<float> WarpReduce;
    __shared__ typename WarpReduce::TempStorage temp_storage[THREADS / 32];

    const int warp_idx = threadIdx.x / 32;
    const int warp_lane = threadIdx.x % 32;
    const int row_B = (THREADS / 32) * blockIdx.x + warp_idx;
    const int offset_B = ldb * row_B;
    const int num_values_8bit = num_values_4bit / 2;
    float local_C = 0.0f;

    unsigned char local_B_4bit[num_values_8bit];
    T local_B[num_values_4bit / 4];
    T local_A[num_values_4bit / 4];
    __shared__ T quant_map[16];
    T local_absmax = T(0.0f);

    if (threadIdx.x < 16)
        quant_map[threadIdx.x] = T(__ldg(&datatype[threadIdx.x]));
    // for(int i = threadIdx.x; i < 16; i++)
    // quant_map[i] = T(__ldg(&datatype[i]));
    __syncthreads();

    // A: [1, K]
    // B: [N, K]
    for (int inner_idx = warp_lane * num_values_4bit; inner_idx < K; inner_idx += 32 * num_values_4bit) {
        const int inner_idx_halved = inner_idx / 2;

        // Since blocksize will always be a power-of-2, we avoid more expensive
        // division by the blocksize and instead use a shift operation.
        // This is equivalent to (i+threadId.x*NUM_PER_TH)/blocksize.
        const int absidx = ((2 * offset_B) + inner_idx) >> (31 - __clz(blocksize));

        local_absmax = __ldg(&(absmax[absidx]));

        if (row_B < M) {
            if ((inner_idx_halved + num_values_8bit) < (K / 2)) {
                // this is the most important for performance considerations
                reinterpret_cast<int4(&)[num_values_8bit]>(local_B_4bit)[0] =
                    reinterpret_cast<int4*>(B)[(offset_B + (inner_idx_halved)) / (num_values_8bit)];
            } else {
#pragma unroll
                for (int j = 0; j < (num_values_8bit); j++)
                    if ((inner_idx_halved) + j < (K / 2))
                        local_B_4bit[j] = B[offset_B + inner_idx_halved + j];
                    else
                        local_B_4bit[j] = 0b01110111;
            }
        } else {
#pragma unroll
            for (int j = 0; j < (num_values_8bit); j++)
                local_B_4bit[j] = 0b01110111;
Tim Dettmers's avatar
Tim Dettmers committed
2562
        }
2563

2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
        for (int i = 0; i < 4; i++) {
#pragma unroll
            for (int k = 0; k < num_values_8bit / 4; k++) {
#if BNB_BF16_AVAILABLE
                local_B[k * 2] = quant_map[local_B_4bit[(i * num_values_8bit / 4) + k] >> 4] * local_absmax;
                local_B[k * 2 + 1] = quant_map[local_B_4bit[(i * num_values_8bit / 4) + k] & 0x0F] * local_absmax;
#else
                // bf16 multipliation not supported
                local_B[k * 2] =
                    T((float)quant_map[local_B_4bit[(i * num_values_8bit / 4) + k] >> 4] * (float)local_absmax);
                local_B[k * 2 + 1] =
                    T((float)quant_map[local_B_4bit[(i * num_values_8bit / 4) + k] & 0x0F] * (float)local_absmax);
#endif
            }
2578

2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
            if (inner_idx + (num_values_4bit / 4) + (i * num_values_4bit / 4) < K) {
                // this is also relatively important for performance
                if (BITS == 16) {
                    reinterpret_cast<int4(&)[num_values_4bit]>(local_A)[0] =
                        reinterpret_cast<int4*>(A)[inner_idx / (num_values_4bit / 4) + i];
                } else {
                    reinterpret_cast<int4(&)[num_values_4bit]>(local_A)[0] =
                        reinterpret_cast<int4*>(A)[inner_idx / (num_values_4bit / 8) + (2 * i) + 0];
                    reinterpret_cast<int4(&)[num_values_4bit]>(local_A)[1] =
                        reinterpret_cast<int4*>(A)[inner_idx / (num_values_4bit / 8) + (2 * i) + 1];
                }
2590

2591
2592
2593
2594
2595
2596
2597
            } else
#pragma unroll
                for (int k = 0; k < num_values_4bit / 4; k++)
                    if (inner_idx + (i * num_values_4bit / 4) + k < K)
                        local_A[k] = A[inner_idx + k + (i * num_values_4bit / 4)];
                    else
                        local_A[k] = T(0.0f);
2598

2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
// accumulate in float; small performance hit for Ampere, but lower error for outputs
#pragma unroll
            for (int k = 0; k < num_values_4bit / 4; k++) {
#if BNB_BF16_AVAILABLE
                local_C += (float)(local_A[k] * local_B[k]);
#else
                // bf16 multipliation not supported
                local_C += ((float)local_A[k] * (float)local_B[k]);
#endif
            }
        }
    }

    local_C = WarpReduce(temp_storage[warp_idx]).Sum(local_C);

    if (row_B < M && warp_lane == 0)
        out[row_B] = T(local_C);
2616
2617
}

2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
template <typename T, int FUNC> __global__ void kfunc(T* A, T* B, T value, long n) {
    for (long i = (blockDim.x * blockIdx.x) + threadIdx.x; i < n; i += (blockDim.x * gridDim.x)) {
        switch (FUNC) {
        case FILL:
            A[i] = (T)value;
            break;
        case ARANGE:
            A[i] = (T)i;
            break;
        case _MUL:
            A[i] = A[i] * B[i];
            break;
        }
Tim Dettmers's avatar
Tim Dettmers committed
2631
2632
2633
    }
}

Tim Dettmers's avatar
Tim Dettmers committed
2634
2635
2636
2637
//==============================================================
//                   TEMPLATE DEFINITIONS
//==============================================================

2638
2639
2640
2641
template __global__ void kfunc<float, FILL>(float* A, float* B, float value, long n);
template __global__ void kfunc<unsigned char, FILL>(unsigned char* A, unsigned char* B, unsigned char value, long n);
template __global__ void kfunc<float, ARANGE>(float* A, float* B, float value, long n);
template __global__ void kfunc<float, _MUL>(float* A, float* B, float value, long n);
Tim Dettmers's avatar
Tim Dettmers committed
2642
2643

// these are not used and make no sense, but the compiler needs them
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
// template __global__ void gemm_device<float, 16, 128>(int M, int N, int K, float * __restrict__ const A,  float* B,
// float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 32, 256>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 192>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 160>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 128>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
// template __global__ void gemm_device<float, 16, 32>(int M, int N, int K, float * __restrict__ const A,  float* B,
// float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 32, 32>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 64>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 96>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
Tim Dettmers's avatar
Tim Dettmers committed
2669
2670
// these are not used and make no sense, but the compiler needs them

2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
// template __global__ void gemm_device<float, 32, 128>(int M, int N, int K, float * __restrict__ const A,  float* B,
// float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 16, 256>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 192>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 160>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 128>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
// template __global__ void gemm_device<float, 32, 32>(int M, int N, int K, float * __restrict__ const A,  float* B,
// float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 16, 32>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 64>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 96>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);

template __global__ void kgemm_4bit_inference<half, 96>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, half* out, int lda, int ldb,
    int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference<half, 128>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, half* out, int lda, int ldb,
    int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference<half, 160>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, half* out, int lda, int ldb,
    int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference<half, 256>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, half* out, int lda, int ldb,
    int ldc, int blocksize
);

template __global__ void kgemm_4bit_inference_naive<half, 128, 16>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, const float* datatype, half* out,
    int lda, int ldb, int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference_naive<__nv_bfloat16, 128, 16>(
    int M, int N, int K, __nv_bfloat16* __restrict__ const A, unsigned char* B, float* absmax, const float* datatype,
    __nv_bfloat16* out, int lda, int ldb, int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference_naive<float, 128, 32>(
    int M, int N, int K, float* __restrict__ const A, unsigned char* B, float* absmax, const float* datatype,
    float* out, int lda, int ldb, int ldc, int blocksize
);

template __global__ void kspmm_coo_very_sparse_naive<half, 8, 16>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, half* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<half, 16, 16>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, half* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<half, 32, 16>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, half* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<signed char, 8, 8>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, signed char* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<signed char, 16, 8>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, signed char* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<signed char, 32, 8>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, signed char* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);

template __global__ void kdequant_mm_int32_fp16<4, 512>(
    int* __restrict__ const A, float* __restrict__ const rowStats, float* __restrict__ const colStats, half* out,
    half* __restrict__ const bias, const int numRows, const int numCols, const int n
);
Tim Dettmers's avatar
Tim Dettmers committed
2756

Tim Dettmers's avatar
Tim Dettmers committed
2757
2758
2759
template __device__ unsigned char dQuantize<0>(float* smem_code, const float rand, float x);
template __device__ unsigned char dQuantize<1>(float* smem_code, const float rand, float x);

2760
2761
2762
2763
2764
#define MAKE_PreconditionOptimizer32bit1State(oname, gtype)                                                            \
    template __global__ void kPreconditionOptimizer32bit1State<gtype, oname, 4096, 8>(                                 \
        gtype * g, gtype * p, float* state1, float* unorm, const float beta1, const float beta2, const float eps,      \
        const float weight_decay, const int step, const float lr, const float gnorm_scale, const int n                 \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2765
2766
2767

MAKE_PreconditionOptimizer32bit1State(MOMENTUM, half)
MAKE_PreconditionOptimizer32bit1State(MOMENTUM, float)
2768
MAKE_PreconditionOptimizer32bit1State(MOMENTUM, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2769
2770
MAKE_PreconditionOptimizer32bit1State(RMSPROP, half)
MAKE_PreconditionOptimizer32bit1State(RMSPROP, float)
2771
MAKE_PreconditionOptimizer32bit1State(RMSPROP, __nv_bfloat16)
2772
2773
MAKE_PreconditionOptimizer32bit1State(LION, half)
MAKE_PreconditionOptimizer32bit1State(LION, float)
Tim Dettmers's avatar
Tim Dettmers committed
2774
MAKE_PreconditionOptimizer32bit1State(LION, __nv_bfloat16)
2775
2776
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, half)
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, float)
2777
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2778

2779
2780
2781
2782
2783
2784
#define MAKE_Optimizer32bit1State(oname, gtype)                                                                        \
    template __global__ void kOptimizer32bit1State<gtype, oname>(                                                      \
        gtype * g, gtype * p, float* state1, float* unorm, const float max_unorm, const float param_norm,              \
        const float beta1, const float beta2, const float eps, const float weight_decay, const int step,               \
        const float lr, const float gnorm_scale, const bool skip_zeros, const int n                                    \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2785
2786
2787

MAKE_Optimizer32bit1State(MOMENTUM, half)
MAKE_Optimizer32bit1State(MOMENTUM, float)
2788
MAKE_Optimizer32bit1State(MOMENTUM, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2789
2790
MAKE_Optimizer32bit1State(RMSPROP, half)
MAKE_Optimizer32bit1State(RMSPROP, float)
2791
MAKE_Optimizer32bit1State(RMSPROP, __nv_bfloat16)
2792
2793
MAKE_Optimizer32bit1State(LION, half)
MAKE_Optimizer32bit1State(LION, float)
Tim Dettmers's avatar
Tim Dettmers committed
2794
MAKE_Optimizer32bit1State(LION, __nv_bfloat16)
2795
2796
MAKE_Optimizer32bit1State(ADAGRAD, half)
MAKE_Optimizer32bit1State(ADAGRAD, float)
2797
MAKE_Optimizer32bit1State(ADAGRAD, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2798

2799
2800
2801
2802
2803
2804
#define MAKE_PreconditionOptimizer32bit2State(oname, gtype)                                                            \
    template __global__ void kPreconditionOptimizer32bit2State<gtype, oname, 4096, 8>(                                 \
        gtype * g, gtype * p, float* state1, float* state2, float* unorm, const float beta1, const float beta2,        \
        const float eps, const float weight_decay, const int step, const float lr, const float gnorm_scale,            \
        const int n                                                                                                    \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2805
2806

MAKE_PreconditionOptimizer32bit2State(ADAM, float)
2807
2808
MAKE_PreconditionOptimizer32bit2State(ADAM, half)
MAKE_PreconditionOptimizer32bit2State(ADAM, __nv_bfloat16)
2809
2810
2811
MAKE_PreconditionOptimizer32bit2State(ADEMAMIX, float)
MAKE_PreconditionOptimizer32bit2State(ADEMAMIX, half)
MAKE_PreconditionOptimizer32bit2State(ADEMAMIX, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2812

2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
template __global__ void kOptimizer32bit2State<float, ADAM>(
    float* g, float* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<half, ADAM>(
    half* g, half* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<__nv_bfloat16, ADAM>(
    __nv_bfloat16* g, __nv_bfloat16* p, float* state1, float* state2, float* unorm, const float max_unorm,
    const float param_norm, const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<float, ADEMAMIX>(
    float* g, float* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<half, ADEMAMIX>(
    half* g, half* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<__nv_bfloat16, ADEMAMIX>(
    __nv_bfloat16* g, __nv_bfloat16* p, float* state1, float* state2, float* unorm, const float max_unorm,
    const float param_norm, const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);

#define MAKE_PreconditionStatic8bit1State(oname, gtype)                                                                \
    template __global__ void kPreconditionOptimizerStatic8bit1State<gtype, oname>(                                     \
        gtype * p, gtype* __restrict__ const g, unsigned char* __restrict__ const state1, float* unorm,                \
        const float beta1, const float beta2, const float eps, const int step, float* __restrict__ const quantiles1,   \
        float* max1, float* new_max1, const float weight_decay, const float gnorm_scale, const int n                   \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2856
2857
2858
2859
2860

MAKE_PreconditionStatic8bit1State(MOMENTUM, half)
MAKE_PreconditionStatic8bit1State(MOMENTUM, float)
MAKE_PreconditionStatic8bit1State(RMSPROP, half)
MAKE_PreconditionStatic8bit1State(RMSPROP, float)
2861
2862
MAKE_PreconditionStatic8bit1State(LION, half)
MAKE_PreconditionStatic8bit1State(LION, float)
2863
2864
MAKE_PreconditionStatic8bit1State(ADAGRAD, half)
MAKE_PreconditionStatic8bit1State(ADAGRAD, float)
Tim Dettmers's avatar
Tim Dettmers committed
2865

2866
2867
2868
2869
2870
2871
2872
#define MAKE_optimizerStatic8bit1State(oname, gtype)                                                                   \
    template __global__ void kOptimizerStatic8bit1State<gtype, oname>(                                                 \
        gtype * p, gtype* const g, unsigned char* state1, const float* unorm, const float max_unorm,                   \
        const float param_norm, const float beta1, const float beta2, const float eps, const int step, const float lr, \
        float* __restrict__ const quantiles1, float* max1, float* new_max1, float weight_decay,                        \
        const float gnorm_scale, const int n                                                                           \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2873
2874
2875
2876
2877

MAKE_optimizerStatic8bit1State(MOMENTUM, half)
MAKE_optimizerStatic8bit1State(MOMENTUM, float)
MAKE_optimizerStatic8bit1State(RMSPROP, half)
MAKE_optimizerStatic8bit1State(RMSPROP, float)
2878
2879
MAKE_optimizerStatic8bit1State(LION, half)
MAKE_optimizerStatic8bit1State(LION, float)
2880
2881
2882
MAKE_optimizerStatic8bit1State(ADAGRAD, half)
MAKE_optimizerStatic8bit1State(ADAGRAD, float)

2883
2884
2885
2886
2887
2888
2889
#define MAKE_PreconditionStatic8bit2State(oname, gtype)                                                                \
    template __global__ void kPreconditionOptimizerStatic8bit2State<gtype, oname>(                                     \
        gtype * p, gtype* __restrict__ const g, unsigned char* __restrict__ const state1,                              \
        unsigned char* __restrict__ const state2, float* unorm, const float beta1, const float beta2, const float eps, \
        const int step, float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* max1,       \
        float* max2, float* new_max1, float* new_max2, const float gnorm_scale, const int n                            \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2890
2891
2892
2893

MAKE_PreconditionStatic8bit2State(ADAM, half)
MAKE_PreconditionStatic8bit2State(ADAM, float)

2894
2895
2896
2897
2898
2899
2900
2901
#define MAKE_optimizerStatic8bit2State(oname, gtype)                                                                   \
    template __global__ void kOptimizerStatic8bit2State<gtype, oname>(                                                 \
        gtype * p, gtype* const g, unsigned char* state1, unsigned char* state2, const float* unorm,                   \
        const float max_unorm, const float param_norm, const float beta1, const float beta2, const float eps,          \
        const int step, const float lr, float* __restrict__ const quantiles1, float* __restrict__ const quantiles2,    \
        float* max1, float* max2, float* new_max1, float* new_max2, float weight_decay, const float gnorm_scale,       \
        const int n                                                                                                    \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2902
2903
2904
2905

MAKE_optimizerStatic8bit2State(ADAM, half)
MAKE_optimizerStatic8bit2State(ADAM, float)

2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
template __global__ void
    kPercentileClipping<float, 2048, 4>(float* __restrict__ g, float* gnorm_vec, int step, const int n);
template __global__ void
    kPercentileClipping<half, 2048, 4>(half* __restrict__ g, float* gnorm_vec, int step, const int n);

#define MAKE_kQuantizeBlockwise(dtype, blocksize, num_per_thread, stochastic, data_type_name)                          \
    template __global__ void kQuantizeBlockwise<dtype, blocksize, num_per_thread, stochastic, data_type_name>(         \
        float* code, dtype* __restrict__ const A, float* absmax, unsigned char* out, float* __restrict__ const rand,   \
        const int rand_offset, const int n                                                                             \
    );

MAKE_kQuantizeBlockwise(half, 4096, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 4096, 4, 1, General8bit)
MAKE_kQuantizeBlockwise(half, 2048, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 1024, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 512, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 256, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 128, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 64, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 4096, 4, 0, FP4)
MAKE_kQuantizeBlockwise(half, 2048, 4, 0, FP4)
MAKE_kQuantizeBlockwise(half, 1024, 4, 0, FP4)
MAKE_kQuantizeBlockwise(half, 512, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half, 256, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half, 128, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half, 64, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half, 4096, 4, 0, NF4)
MAKE_kQuantizeBlockwise(half, 2048, 4, 0, NF4)
MAKE_kQuantizeBlockwise(half, 1024, 4, 0, NF4)
MAKE_kQuantizeBlockwise(half, 512, 2, 0, NF4)
MAKE_kQuantizeBlockwise(half, 256, 2, 0, NF4)
MAKE_kQuantizeBlockwise(half, 128, 2, 0, NF4)
MAKE_kQuantizeBlockwise(half, 64, 2, 0, NF4)
Tim Dettmers's avatar
Tim Dettmers committed
2939
2940
2941
2942
MAKE_kQuantizeBlockwise(float, 4096, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 4096, 4, 1, General8bit)
MAKE_kQuantizeBlockwise(float, 2048, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 1024, 4, 0, General8bit)
2943
2944
2945
2946
MAKE_kQuantizeBlockwise(float, 512, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 256, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 128, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 64, 2, 0, General8bit)
Tim Dettmers's avatar
Tim Dettmers committed
2947
2948
2949
MAKE_kQuantizeBlockwise(float, 4096, 4, 0, FP4)
MAKE_kQuantizeBlockwise(float, 2048, 4, 0, FP4)
MAKE_kQuantizeBlockwise(float, 1024, 4, 0, FP4)
2950
2951
2952
2953
MAKE_kQuantizeBlockwise(float, 512, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float, 256, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float, 128, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float, 64, 2, 0, FP4)
Tim Dettmers's avatar
Tim Dettmers committed
2954
2955
2956
MAKE_kQuantizeBlockwise(float, 4096, 4, 0, NF4)
MAKE_kQuantizeBlockwise(float, 2048, 4, 0, NF4)
MAKE_kQuantizeBlockwise(float, 1024, 4, 0, NF4)
2957
2958
2959
2960
MAKE_kQuantizeBlockwise(float, 512, 2, 0, NF4)
MAKE_kQuantizeBlockwise(float, 256, 2, 0, NF4)
MAKE_kQuantizeBlockwise(float, 128, 2, 0, NF4)
MAKE_kQuantizeBlockwise(float, 64, 2, 0, NF4)
Tim Dettmers's avatar
Tim Dettmers committed
2961

2962
2963
2964
2965
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 1, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 2048, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 1024, 4, 0, General8bit)
2966
2967
2968
2969
MAKE_kQuantizeBlockwise(__nv_bfloat16, 512, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 256, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 128, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 64, 2, 0, General8bit)
2970
2971
2972
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 2048, 4, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 1024, 4, 0, FP4)
2973
2974
2975
2976
MAKE_kQuantizeBlockwise(__nv_bfloat16, 512, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 256, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 128, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 64, 2, 0, FP4)
2977
2978
2979
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 2048, 4, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 1024, 4, 0, NF4)
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
MAKE_kQuantizeBlockwise(__nv_bfloat16, 512, 2, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 256, 2, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 128, 2, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 64, 2, 0, NF4)

template __global__ void kDequantizeBlockwise<half, 512, 64, 8, FP4>(
    float* code, unsigned char* A, float* absmax, half* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<half, 512, 64, 8, General8bit>(
    float* code, unsigned char* A, float* absmax, half* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<half, 512, 64, 8, NF4>(
    float* code, unsigned char* A, float* absmax, half* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<float, 512, 64, 8, FP4>(
    float* code, unsigned char* A, float* absmax, float* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<float, 512, 64, 8, General8bit>(
    float* code, unsigned char* A, float* absmax, float* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<float, 512, 64, 8, NF4>(
    float* code, unsigned char* A, float* absmax, float* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, FP4>(
    float* code, unsigned char* A, float* absmax, __nv_bfloat16* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, General8bit>(
    float* code, unsigned char* A, float* absmax, __nv_bfloat16* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, NF4>(
    float* code, unsigned char* A, float* absmax, __nv_bfloat16* out, const int blocksize, const int n
);

#define MAKE_OptimizerStatic8bit2StateBlockwise(oname, gtype, block_size, num_per_thread)                              \
    template __global__ void kOptimizerStatic8bit2StateBlockwise<gtype, oname, block_size, num_per_thread>(            \
        gtype * p, gtype* __restrict__ const g, unsigned char* state1, unsigned char* state2, const float beta1,       \
        const float beta2, const float beta3, const float alpha, const float eps, const int step, const float lr,      \
        float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* absmax1, float* absmax2,    \
        float weight_decay, const float gnorm_scale, const bool skip_zeros, const int n                                \
    );
Tim Dettmers's avatar
Tim Dettmers committed
3020

3021
3022
3023
3024
3025
3026
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, float, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, half, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADEMAMIX, float, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADEMAMIX, half, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADEMAMIX, __nv_bfloat16, 256, 1)
Tim Dettmers's avatar
Tim Dettmers committed
3027

3028
3029
3030
3031
3032
3033
#define MAKE_OptimizerStatic8bit1StateBlockwise(oname, gtype, block_size, num_per_thread)                              \
    template __global__ void kOptimizerStatic8bit1StateBlockwise<gtype, oname, block_size, num_per_thread>(            \
        gtype * p, gtype* __restrict__ const g, unsigned char* state1, const float beta1, const float beta2,           \
        const float eps, const int step, const float lr, float* __restrict__ const quantiles1, float* absmax1,         \
        float weight_decay, const float gnorm_scale, const bool skip_zeros, const int n                                \
    );
Tim Dettmers's avatar
Tim Dettmers committed
3034

3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(LION, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(LION, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(LION, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, __nv_bfloat16, 256, 1)
3047

3048
3049
template __device__ void printnonzero<float>(float* A, int num_values, const char* strval);
template __device__ void printnonzero<half>(half* A, int num_values, const char* strval);