kernels.cu 127 KB
Newer Older
1
2
3
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
Tim Dettmers's avatar
Tim Dettmers committed
4
5
// LICENSE file in the root directory of this source tree.

6
#include "common.cuh"
7
#include "kernels.cuh"
Tim Dettmers's avatar
Tim Dettmers committed
8
#include <cub/block/block_discontinuity.cuh>
9
10
#include <cub/block/block_load.cuh>
#include <cub/block/block_radix_sort.cuh>
Tim Dettmers's avatar
Tim Dettmers committed
11
#include <cub/block/block_reduce.cuh>
12
#include <cub/block/block_store.cuh>
Tim Dettmers's avatar
Tim Dettmers committed
13
#include <cub/cub.cuh>
14
15
#include <cub/warp/warp_reduce.cuh>
#include <cuda_fp16.h>
Tim Dettmers's avatar
Tim Dettmers committed
16
#include <math_constants.h>
Tim Dettmers's avatar
Tim Dettmers committed
17
#include <mma.h>
Tim Dettmers's avatar
Tim Dettmers committed
18

Tim Dettmers's avatar
Tim Dettmers committed
19
20
21
22
23
#define HLF_MAX 65504
#define TH 1024
#define NUM 4
#define NUM_BLOCK 4096

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
__device__ static float nf4_data[16] = {
    -1.0,
    -0.6961928009986877,
    -0.5250730514526367,
    -0.39491748809814453,
    -0.28444138169288635,
    -0.18477343022823334,
    -0.09105003625154495,
    0.0,
    0.07958029955625534,
    0.16093020141124725,
    0.24611230194568634,
    0.33791524171829224,
    0.44070982933044434,
    0.5626170039176941,
    0.7229568362236023,
    1.0
};
Tim Dettmers's avatar
Tim Dettmers committed
42

Tim Dettmers's avatar
Tim Dettmers committed
43
44
// source: https://stackoverflow.com/questions/17399119/how-do-i-use-atomicmax-on-floating-point-values-in-cuda
__device__ float atomicMax(float* address, float val) {
45
46
47
48
49
50
51
    int* address_as_i = reinterpret_cast<int*>(address);
    int old = *address_as_i, assumed;
    do {
        assumed = old;
        old = atomicCAS(reinterpret_cast<int*>(address), assumed, __float_as_int(fmaxf(val, __int_as_float(assumed))));
    } while (assumed != old);
    return __int_as_float(old);
Tim Dettmers's avatar
Tim Dettmers committed
52
53
}

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
__device__ float dDequantizeFP4Tree(unsigned char val, float absmax) {
    float sign = (val & 0b1000) == 8 ? -1.0f : 1.0f;
    if ((val & 0b0100) == 4)                        // 0
        if ((val & 0b0010) == 2)                    // 01
            if ((val & 0b0001) == 1)                // 111
                return 0.25000000f * absmax * sign; // 1111
            else
                return 0.16666667f * absmax * sign; // 1110
        else if ((val & 0b0001) == 1)               // 110
            return 0.50000000f * absmax * sign;     // 1101
        else
            return 0.33333333f * absmax * sign; // 1100
    else if ((val & 0b0010) == 2)               // 10
        if ((val & 0b0001) == 1)                // 101
            return 1.00000000f * absmax * sign; // 1011
        else
            return 0.66666667f * absmax * sign;  // 1010
    else if ((val & 0b0001) == 1)                // 100
        return 5.208333333e-03f * absmax * sign; // 1001
73
    else
74
        return 0.00000000f * absmax * sign; // 1000
Tim Dettmers's avatar
Tim Dettmers committed
75
76
}

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
__device__ unsigned char dQuantizeFP4(float x) {
    // FP4 with bias of 3
    // first bit is a sign
    // subnormals
    // 0b000 = 0
    // 0b001 = 0.0625
    // 0b110 = 2
    // 0b111 = 3
    // 0b100 = 4
    // 0b101 = 6
    // 0b010 = 8
    // 0b011 = 12

    // we do a binary search
    // the pivots are divided by 12 (the FP4 absmax)
    // since we assume input data is in [-1.0, 1.0]

    // !be careful here, its easy to make a mistake
    // that is difficult to notice if you add an extra
    // zero somewhere!

    int sign = x < 0 ? 0b1000 : 0b0000;
    x = fabsf(x);
    if (x > 0.29166667f)
        if (x > 0.583333f)
            if (x > 0.8333333f)
                return 0b0011 + sign;
            else
                return 0b0010 + sign;
        else if (x > 0.4166667f)
            return 0b101 + sign;
        else
            return 0b100 + sign;
    else if (x > 0.0859375f)
        if (x > 0.20833333f)
            return 0b0111 + sign;
        else
            return 0b0110 + sign;
    else if (x > 0.00260417f)
        return 0b0001 + sign;
Tim Dettmers's avatar
Tim Dettmers committed
117
    else
118
        return 0b0000 + sign;
Tim Dettmers's avatar
Tim Dettmers committed
119
120
}

121
__device__ __forceinline__ float dDequantizeNF4(unsigned char val) {
122

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    // the values for this tree was generated by test_normal_map_tree
    // in the file tests/test_functional.py
    if ((val & 0b1000) == 8)
        if ((val & 0b0100) == 4)         // 1
            if ((val & 0b0010) == 2)     // 11
                if ((val & 0b0001) == 1) // 111
                    return 1.0f;
                else
                    return 0.7229568362236023f;
            else if ((val & 0b0001) == 1) // 110
                return 0.5626170039176941f;
            else
                return 0.44070982933044434f;
        else if ((val & 0b0010) == 2) // 10
            if ((val & 0b0001) == 1)  // 101
                return 0.33791524171829224f;
            else
                return 0.24611230194568634f;
        else if ((val & 0b0001) == 1) // 100
            return 0.16093020141124725f;
Tim Dettmers's avatar
Tim Dettmers committed
143
        else
144
            return 0.07958029955625534f;
Tim Dettmers's avatar
Tim Dettmers committed
145

146
147
148
149
150
151
152
153
    else if ((val & 0b0100) == 4)    // 0
        if ((val & 0b0010) == 2)     // 01
            if ((val & 0b0001) == 1) // 011
                return 0.0f;
            else
                return -0.09105003625154495f;
        else if ((val & 0b0001) == 1) // 010
            return -0.18477343022823334f;
Tim Dettmers's avatar
Tim Dettmers committed
154
        else
155
156
157
158
            return -0.28444138169288635f;
    else if ((val & 0b0010) == 2) // 00
        if ((val & 0b0001) == 1)  // 001
            return -0.39491748809814453f;
Tim Dettmers's avatar
Tim Dettmers committed
159
        else
160
161
162
            return -0.5250730514526367f;
    else if ((val & 0b0001) == 1) // 000
        return -0.6961928009986877f;
Tim Dettmers's avatar
Tim Dettmers committed
163
    else
164
        return -1.0f;
Tim Dettmers's avatar
Tim Dettmers committed
165
166
}

167
__device__ unsigned char dQuantizeNF4(float x) {
Tim Dettmers's avatar
Tim Dettmers committed
168

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    // the values for this tree was generated by test_normal_map_tree
    // in the file tests/test_functional.py
    if (x > 0.03979014977812767f)
        if (x > 0.3893125355243683f)         // 1
            if (x > 0.6427869200706482f)     // 11
                if (x > 0.8614784181118011f) // 111
                    return 0b1111;
                else
                    return 0b1110;
            else if (x > 0.5016634166240692f) // 110
                return 0b1101;
            else
                return 0b1100;
        else if (x > 0.2035212516784668f) // 10
            if (x > 0.2920137718319893f)  // 101
                return 0b1011;
            else
                return 0b1010;
        else if (x > 0.1202552504837513f) // 100
            return 0b1001;
Tim Dettmers's avatar
Tim Dettmers committed
189
        else
190
191
192
193
194
195
196
197
198
            return 0b1000;
    else if (x > -0.33967943489551544f)     // 0
        if (x > -0.13791173323988914f)      // 01
            if (x > -0.045525018125772476f) // 011
                return 0b0111;
            else
                return 0b0110;
        else if (x > -0.23460740596055984f) // 010
            return 0b0101;
Tim Dettmers's avatar
Tim Dettmers committed
199
        else
200
201
202
203
            return 0b0100;
    else if (x > -0.6106329262256622f) // 00
        if (x > -0.4599952697753906f)  // 001
            return 0b0011;
Tim Dettmers's avatar
Tim Dettmers committed
204
        else
205
206
207
            return 0b0010;
    else if (x > -0.8480964004993439f) // 000
        return 0b0001;
208
    else
209
        return 0b0000;
210
}
211

212
213
214
// sign function for lion
// taken from https://stackoverflow.com/a/4609795, but not sure if there's a proper way to do this in CUDA

215
template <typename T> __device__ int sgn(T val) { return (T(0) < val) - (val < T(0)); }
216

217
template <int STOCHASTIC> __device__ unsigned char dQuantize(float* smem_code, const float rand, float x) {
Tim Dettmers's avatar
Tim Dettmers committed
218
219
220
221
222
223
224
225
226
    int pivot = 127;
    int upper_pivot = 255;
    int lower_pivot = 0;

    float lower = -1.0f;
    float upper = 1.0f;

    float val = smem_code[pivot];
    // i>>=1 = {32, 16, 8, 4, 2, 1}
227
228
    for (int i = 64; i > 0; i >>= 1) {
        if (x > val) {
Tim Dettmers's avatar
Tim Dettmers committed
229
230
            lower_pivot = pivot;
            lower = val;
231
232
            pivot += i;
        } else {
Tim Dettmers's avatar
Tim Dettmers committed
233
234
            upper_pivot = pivot;
            upper = val;
235
            pivot -= i;
Tim Dettmers's avatar
Tim Dettmers committed
236
237
238
239
        }
        val = smem_code[pivot];
    }

240
    if (upper_pivot == 255)
Tim Dettmers's avatar
Tim Dettmers committed
241
        upper = smem_code[upper_pivot];
242
    if (lower_pivot == 0)
Tim Dettmers's avatar
Tim Dettmers committed
243
244
        lower = smem_code[lower_pivot];

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    if (!STOCHASTIC) {
        if (x > val) {
            float midpoint = (upper + val) * 0.5f;
            if (x > midpoint) {
                return upper_pivot;
            } else
                return pivot;
        } else {
            float midpoint = (lower + val) * 0.5f;
            if (x < midpoint)
                return lower_pivot;
            else
                return pivot;
        }
    } else {
        if (x > val) {
            float dist_to_upper = fabsf(upper - x);
            float dist_full = upper - val;
            if (rand >= dist_to_upper / dist_full)
                return upper_pivot;
            else
                return pivot;
        } else {
            float dist_to_lower = fabsf(lower - x);
            float dist_full = val - lower;
            if (rand >= dist_to_lower / dist_full)
                return lower_pivot;
            else
                return pivot;
Tim Dettmers's avatar
Tim Dettmers committed
274
275
276
277
278
        }
    }
}

template <int SIGNED>
279
280
__device__ __forceinline__ unsigned char
    quantize_2D(float* __restrict__ quadrants, float* __restrict__ const smem_code, float x) {
Tim Dettmers's avatar
Tim Dettmers committed
281
282
283
284
285
286
287
288
289
290
291
292
    int pivot = 127;
    int upper_pivot = 255;
    int lower_pivot = 0;

    float lower = SIGNED ? -1.0f : 0.0f;
    float upper = 1.0f;
    float midpoint;
    float val = quadrants[1];
    int local_pivot = 1;
    int offset = 1;

    // i>>=1 = {32, 16, 8, 4, 2, 1}
293
294
    for (int i = 64; i > 0; i >>= 1) {
        if (x > val) {
Tim Dettmers's avatar
Tim Dettmers committed
295
296
            lower_pivot = pivot;
            lower = val;
297
298
            pivot += i;
            // val = i == 64 ? quadrants[2] : smem_code[pivot];
Tim Dettmers's avatar
Tim Dettmers committed
299
            local_pivot += offset;
300
        } else {
Tim Dettmers's avatar
Tim Dettmers committed
301
302
            upper_pivot = pivot;
            upper = val;
303
304
            pivot -= i;
            // val = i == 64 ? quadrants[0] : smem_code[pivot];
Tim Dettmers's avatar
Tim Dettmers committed
305
306
307
308
309
310
            local_pivot -= offset;
        }
        val = i >= 64 ? quadrants[local_pivot] : smem_code[pivot];
        offset -= 1;
    }

311
312
313
314
315
316
317
318
319
320
321
322
    if (x > val) {
        midpoint = (upper + val) * 0.5f;
        if (x > midpoint)
            return upper_pivot;
        else
            return pivot;
    } else {
        midpoint = (lower + val) * 0.5f;
        if (x < midpoint)
            return lower_pivot;
        else
            return pivot;
Tim Dettmers's avatar
Tim Dettmers committed
323
324
325
    }
}

326
327
328
329
330
__launch_bounds__(TH, 4) __global__
    void kQuantize(float* code, float* __restrict__ const A, unsigned char* out, const int n) {
    const int n_full = (NUM_BLOCK * (n / NUM_BLOCK)) + (n % NUM_BLOCK == 0 ? 0 : NUM_BLOCK);
    int valid_items = (blockIdx.x + 1 == gridDim.x) ? n - (blockIdx.x * NUM_BLOCK) : NUM_BLOCK;
    const int base_idx = (blockIdx.x * NUM_BLOCK);
Tim Dettmers's avatar
Tim Dettmers committed
331

332
333
334
    float vals[NUM];
    unsigned char qvals[NUM];
    // const int lane_id = threadIdx.x % 2;
Tim Dettmers's avatar
Tim Dettmers committed
335

336
337
    typedef cub::BlockLoad<float, TH, NUM, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockStore<unsigned char, TH, NUM, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
Tim Dettmers's avatar
Tim Dettmers committed
338

339
340
341
342
    __shared__ typename LoadFloat::TempStorage loadf;
    __shared__ typename StoreChar::TempStorage storec;
    __shared__ float smem_code[256];
    //__shared__ float smem_code[2][257];
Tim Dettmers's avatar
Tim Dettmers committed
343

344
345
346
347
348
    if (threadIdx.x < 256) {
        smem_code[threadIdx.x] = code[threadIdx.x];
        // smem_code[0][threadIdx.x] = code[threadIdx.x];
        // smem_code[1][threadIdx.x] = smem_code[0][threadIdx.x];
    }
Tim Dettmers's avatar
Tim Dettmers committed
349

350
351
352
353
354
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * NUM_BLOCK) {
        // number of values already processed in blocks +
        // number of values already processed in this block +
        // rand_offset % mod value
        valid_items = n - i > NUM_BLOCK ? NUM_BLOCK : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
355

356
357
        __syncthreads();
        LoadFloat(loadf).Load(&(A[i]), vals, valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
358

359
360
361
#pragma unroll 4
        for (int j = 0; j < NUM; j++)
            qvals[j] = dQuantize<0>(smem_code, 0.0f, vals[j]);
Tim Dettmers's avatar
Tim Dettmers committed
362

363
364
365
        __syncthreads();
        StoreChar(storec).Store(&(out[i]), qvals, valid_items);
    }
Tim Dettmers's avatar
Tim Dettmers committed
366
367
}

368
template <typename T, int BLOCK_SIZE, int NUM_PER_TH, int STOCHASTIC, int DATA_TYPE>
369
//__launch_bounds__(TH, 4)
370
371
372
373
374
375
376
__global__ void kQuantizeBlockwise(
    float* code, T* __restrict__ const A, float* absmax, unsigned char* out, float* __restrict__ const rand,
    const int rand_offset, const int n
) {
    const int n_full = gridDim.x * BLOCK_SIZE;
    int valid_items = 0;
    const int base_idx = (blockIdx.x * BLOCK_SIZE);
Tim Dettmers's avatar
Tim Dettmers committed
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
    T vals[NUM_PER_TH];
    float rand_vals[NUM_PER_TH];
    unsigned char qvals[(DATA_TYPE > 0) ? NUM_PER_TH / 2 : NUM_PER_TH];
    // float local_abs_max = -FLT_MAX;
    float local_abs_max = 0.0f;
    int local_rand_idx = 0;

    typedef cub::BlockLoad<T, BLOCK_SIZE / NUM_PER_TH, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockStore<
        unsigned char, BLOCK_SIZE / NUM_PER_TH, (DATA_TYPE > 0) ? NUM_PER_TH / 2 : NUM_PER_TH,
        cub::BLOCK_STORE_WARP_TRANSPOSE>
        StoreChar;
    typedef cub::BlockReduce<float, BLOCK_SIZE / NUM_PER_TH> BlockReduce;
    typedef cub::BlockLoad<float, BLOCK_SIZE / NUM_PER_TH, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;

    __shared__ typename LoadT::TempStorage loadt;
    __shared__ typename LoadFloat::TempStorage loadf;
    __shared__ typename StoreChar::TempStorage storec;
    __shared__ typename BlockReduce::TempStorage reduce;
    __shared__ float smem_code[256];
    __shared__ float smem_absmax_value[1];

    if (DATA_TYPE == General8bit)
        for (int i = threadIdx.x; i < 256; i += blockDim.x)
            smem_code[i] = code[i];

    for (int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
        valid_items = n - i > BLOCK_SIZE ? BLOCK_SIZE : n - i;
        local_abs_max = -FLT_MAX;
Tim Dettmers's avatar
Tim Dettmers committed
407

408
409
        __syncthreads();
        LoadT(loadt).Load(&(A[i]), vals, valid_items, (T)0.0f);
Tim Dettmers's avatar
Tim Dettmers committed
410

411
412
413
        // 1. compute local max
        // 2. broadcast local max
        // 3. normalize inputs and quantize
Tim Dettmers's avatar
Tim Dettmers committed
414

415
416
417
#pragma unroll NUM_PER_TH
        for (int j = 0; j < NUM_PER_TH; j++)
            local_abs_max = fmaxf(local_abs_max, fabsf((float)vals[j]));
Tim Dettmers's avatar
Tim Dettmers committed
418

419
        local_abs_max = BlockReduce(reduce).Reduce(local_abs_max, cub::Max(), valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
420

421
422
423
424
425
        if (threadIdx.x == 0) {
            smem_absmax_value[0] = 1.0f / local_abs_max;
            absmax[i / BLOCK_SIZE] = local_abs_max;
        }
        __syncthreads();
Tim Dettmers's avatar
Tim Dettmers committed
426

427
        local_abs_max = smem_absmax_value[0];
Tim Dettmers's avatar
Tim Dettmers committed
428

429
430
431
432
433
434
        if (STOCHASTIC) {
            local_rand_idx = ((blockIdx.x * NUM_BLOCK) + (threadIdx.x * NUM) + rand_offset) % (1024 - 4);
            LoadFloat(loadf).Load(&rand[local_rand_idx], rand_vals, BLOCK_SIZE, 0);
        }

        switch (DATA_TYPE) {
Tim Dettmers's avatar
Tim Dettmers committed
435
        case General8bit:
436
437
438
439
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH; j++) {
                if (!STOCHASTIC)
                    qvals[j] = dQuantize<0>(smem_code, 0.0f, ((float)vals[j]) * local_abs_max);
Tim Dettmers's avatar
Tim Dettmers committed
440
                else
441
                    qvals[j] = dQuantize<1>(smem_code, rand_vals[j], ((float)vals[j]) * local_abs_max);
Tim Dettmers's avatar
Tim Dettmers committed
442
443
444
            }
            break;
        case FP4:
445
446
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH / 2; j++) {
447
448
                qvals[j] = dQuantizeFP4(((float)vals[2 * j]) * local_abs_max) << 4;
                qvals[j] |= dQuantizeFP4(((float)vals[2 * j + 1]) * local_abs_max);
Tim Dettmers's avatar
Tim Dettmers committed
449
450
451
            }
            break;
        case NF4:
452
453
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH / 2; j++) {
454
455
                qvals[j] = dQuantizeNF4(((float)vals[2 * j]) * local_abs_max) << 4;
                qvals[j] |= dQuantizeNF4(((float)vals[2 * j + 1]) * local_abs_max);
Tim Dettmers's avatar
Tim Dettmers committed
456
457
            }
            break;
458
        }
Tim Dettmers's avatar
Tim Dettmers committed
459

460
461
462
463
464
        __syncthreads();
        StoreChar(storec).Store(
            &(out[(DATA_TYPE > 0) ? i / 2 : i]), qvals, (DATA_TYPE > 0) ? (valid_items + 1) / 2 : valid_items
        );
    }
Tim Dettmers's avatar
Tim Dettmers committed
465
466
}

467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
template <typename T, int TILE_SIZE, int THREADS, int NUM_PER_TH, int DATA_TYPE>
__global__ void
    kDequantizeBlockwise(float* code, unsigned char* A, float* absmax, T* out, const int blocksize, const int n) {

    const int n_load = (gridDim.x * TILE_SIZE);
    int valid_items_load = 0;
    int valid_items_store = 0;
    const int base_idx = (blockIdx.x * TILE_SIZE);

    T vals[NUM_PER_TH * ((DATA_TYPE > 0) ? 2 : 1)];
    unsigned char qvals[NUM_PER_TH];
    float local_abs_max = -FLT_MAX;

    typedef cub::BlockLoad<unsigned char, THREADS, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;
    typedef cub::BlockStore<T, THREADS, NUM_PER_TH*((DATA_TYPE > 0) ? 2 : 1), cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ typename LoadChar::TempStorage loadchar;
    __shared__ typename StoreT::TempStorage storet;

    for (int i = base_idx; i < n_load; i += gridDim.x * TILE_SIZE) {
        if (DATA_TYPE > 0) {
            valid_items_load = min(TILE_SIZE, (n + 1) / 2 - i);
            valid_items_store = min(TILE_SIZE * 2, n - i * 2);
        } else {
            valid_items_load = min(TILE_SIZE, n - i);
            valid_items_store = valid_items_load;
        }
Tim Dettmers's avatar
Tim Dettmers committed
494

495
496
497
498
        // Since blocksize will always be a power-of-2, we avoid more expensive
        // division by the blocksize and instead use a shift operation.
        // This is equivalent to (i+threadId.x*NUM_PER_TH)/blocksize.
        local_abs_max = __ldg(&absmax[(i + threadIdx.x * NUM_PER_TH) >> (31 - __clz(blocksize))]);
Tim Dettmers's avatar
Tim Dettmers committed
499

500
501
        __syncthreads();
        LoadChar(loadchar).Load(&(A[i]), qvals, valid_items_load, 128);
Tim Dettmers's avatar
Tim Dettmers committed
502

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
        switch (DATA_TYPE) {
        case General8bit:
// load code through read-only cache via __ldg
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH; j++)
                vals[j] = __ldg(&code[qvals[j]]) * local_abs_max;
            break;
        case FP4:
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH; j++) {
                vals[j * 2] = dDequantizeFP4Tree(qvals[j] >> 4, local_abs_max);
                vals[j * 2 + 1] = dDequantizeFP4Tree(qvals[j] & 0x0F, local_abs_max);
            }
            break;
        case NF4:
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH; j++) {
                vals[j * 2] = dDequantizeNF4(qvals[j] >> 4) * local_abs_max;
                vals[j * 2 + 1] = dDequantizeNF4(qvals[j] & 0x0F) * local_abs_max;
            }
            break;
        }
Tim Dettmers's avatar
Tim Dettmers committed
525

526
527
        __syncthreads();
        StoreT(storet).Store(&(out[(DATA_TYPE > 0) ? i * 2 : i]), vals, valid_items_store);
528
    }
529
}
530

531
532
533
__global__ void kDequantize(float* code, unsigned char* A, float* out, const int n) {
    const unsigned int numThreads = blockDim.x * gridDim.x;
    const int idx = (blockIdx.x * blockDim.x) + threadIdx.x;
Tim Dettmers's avatar
Tim Dettmers committed
534

535
536
537
    __shared__ float smem_code[256];
    if (threadIdx.x < 256) {
        smem_code[threadIdx.x] = code[threadIdx.x];
538
    }
Tim Dettmers's avatar
Tim Dettmers committed
539

540
    __syncthreads();
541
542
543
544

    for (int i = idx; i < n; i += numThreads) {
        out[i] = smem_code[A[i]];
    }
Tim Dettmers's avatar
Tim Dettmers committed
545
546
}

547
548
549
550
551
552
553
554
555
556
557
template <typename T, int OPTIMIZER, int BLOCK_SIZE, int NUM_VALS>
__launch_bounds__(BLOCK_SIZE / NUM_VALS, 1) __global__ void kPreconditionOptimizer32bit2State(
    T* g, T* p, float* state1, float* state2, float* unorm, const float beta1, const float beta2, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const int n
) {

    const int n_full = (BLOCK_SIZE * (n / BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
    const int base_idx = (blockIdx.x * blockDim.x * NUM_VALS);
    int valid_items = 0;

    T g_vals[NUM_VALS];
Tim Dettmers's avatar
Tim Dettmers committed
558

559
560
    float s1_vals[NUM_VALS];
    float s2_vals[NUM_VALS];
Tim Dettmers's avatar
Tim Dettmers committed
561

562
563
    const float correction1 = 1.0f / (1.0f - powf(beta1, step));
    const float correction2 = 1.0f / (1.0f - powf(beta2, step));
Tim Dettmers's avatar
Tim Dettmers committed
564

565
566
567
    typedef cub::BlockLoad<T, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
    typedef cub::BlockLoad<float, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockReduce<float, BLOCK_SIZE / NUM_VALS> BlockReduce;
Tim Dettmers's avatar
Tim Dettmers committed
568

569
570
571
572
573
    __shared__ union {
        typename Load::TempStorage load;
        typename LoadFloat::TempStorage loadf;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;
Tim Dettmers's avatar
Tim Dettmers committed
574

575
576
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
        valid_items = n - i >= (BLOCK_SIZE) ? (BLOCK_SIZE) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
577

578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
        __syncthreads();
        Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items, 0.0f);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items, 0.0f);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state2[i]), s2_vals, valid_items, 0.0f);

#pragma unroll NUM_VALS
        for (unsigned int j = 0; j < NUM_VALS; j++)
            g_vals[j] = gnorm_scale * ((float)g_vals[j]);

#pragma unroll NUM_VALS
        for (unsigned int j = 0; j < NUM_VALS; j++) {
            switch (OPTIMIZER) {
            case ADAM:
                s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * ((float)g_vals[j]));
                s2_vals[j] = s2_vals[j] * beta2 + ((1.0f - beta2) * (((float)g_vals[j]) * ((float)g_vals[j])));
                s1_vals[j] *= correction1;
                s2_vals[j] *= correction2;
                s1_vals[j] = s1_vals[j] / (sqrtf(s2_vals[j]) + eps); // update
                s1_vals[j] *= s1_vals[j];                            // update l2 norm (update*update)
                break;
            }
        }

#pragma unroll NUM_VALS - 1
        for (unsigned int j = 1; j < NUM_VALS; j++)
            s1_vals[0] += s1_vals[j];
Tim Dettmers's avatar
Tim Dettmers committed
606

607
608
        __syncthreads();
        s1_vals[0] = BlockReduce(temp_storage.reduce).Sum(s1_vals[0]);
Tim Dettmers's avatar
Tim Dettmers committed
609

610
611
612
613
614
615
        if (threadIdx.x == 0)
            atomicAdd(&unorm[0], s1_vals[0]);

        __syncwarp();
    }
}
Tim Dettmers's avatar
Tim Dettmers committed
616
617
618

#define NUM_PER_THREAD 4

619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
template <typename T, int OPTIMIZER>
__launch_bounds__(TH, 1) __global__ void kOptimizer32bit2State(
    T* g, T* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
) {

    const int n_full = ((TH * NUM_PER_THREAD) * (n / (TH * NUM_PER_THREAD))) +
                       (n % (TH * NUM_PER_THREAD) == 0 ? 0 : (TH * NUM_PER_THREAD));
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
    int valid_items = 0;
    float update_scale = 0.0f;
    T g_vals[NUM_PER_THREAD];
    T p_vals[NUM_PER_THREAD];

    float s1_vals[NUM_PER_THREAD];
    float s2_vals[NUM_PER_THREAD];

    // AdEMAMix has an additional state buffer, which we packed
    // into state1. We need thread-local storage here for these.
    // TODO: Mark with [[maybe_unused]] after upgrade to min compiler.
    float s3_vals[NUM_PER_THREAD];

    const float correction1 = 1.0f - powf(beta1, step);
    const float correction2 = sqrtf(1.0f - powf(beta2, step));
    const float step_size = -lr * correction2 / correction1;

    if (max_unorm > 0.0f) {
        update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
        if (update_scale > max_unorm * param_norm) {
            update_scale = (max_unorm * param_norm) / update_scale;
        } else {
            update_scale = 1.0f;
        }
    } else {
        update_scale = 1.0f;
    }

    typedef cub::BlockLoad<T, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
    typedef cub::BlockStore<T, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> Store;

    typedef cub::BlockLoad<float, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockStore<float, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreFloat;

    __shared__ union {
        typename Load::TempStorage load;
        typename Store::TempStorage store;
        typename LoadFloat::TempStorage loadf;
        typename StoreFloat::TempStorage storef;
    } temp_storage;

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * TH * NUM_PER_THREAD) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;

        __syncthreads();
        Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items);
678
        __syncthreads();
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
        LoadFloat(temp_storage.loadf).Load(&(state2[i]), s2_vals, valid_items);
        __syncthreads();
        Load(temp_storage.load).Load(&(p[i]), p_vals, valid_items);

        // Load additional state1 data for AdEMAMix
        // TODO: Make constexpr after updating min compiler
        if (OPTIMIZER == ADEMAMIX) {
            __syncthreads();
            LoadFloat(temp_storage.loadf).Load(&(state1[n + i]), s3_vals, valid_items);
        }

#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD; j++)
            g_vals[j] = gnorm_scale * ((float)g_vals[j]);

#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD; j++) {
            switch (OPTIMIZER) {
            case ADEMAMIX:
698
699
700
701
702
703
704
705
706
                // m1 update: m1 = beta1 * m1 + (1-beta1) * g
                s1_vals[j] = (s1_vals[j] * beta1) + ((1.0f - beta1) * (float)g_vals[j]);

                // m2 update: m2 = m2 * beta3 + (1-beta3) * g
                s3_vals[j] = (s3_vals[j] * beta3) + ((1.0f - beta3) * (float)g_vals[j]);

                // nu update: nu = beta2 * nu + (1-beta2) * g^2
                s2_vals[j] = (s2_vals[j] * beta2) + ((1.0f - beta2) * (float)g_vals[j] * (float)g_vals[j]);

707
708
                p_vals[j] = (float)p_vals[j] - lr * (((s1_vals[j] / correction1) + (alpha * s3_vals[j])) /
                                                     ((sqrtf(s2_vals[j]) / correction2) + eps));
709
710
711
712

                if (weight_decay > 0.0f)
                    p_vals[j] = ((float)p_vals[j]) * (1.0f - (lr * weight_decay));

713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
                break;
            case ADAM:

                if (!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f))) {
                    s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * ((float)g_vals[j]));
                    s2_vals[j] = s2_vals[j] * beta2 + ((1.0f - beta2) * (((float)g_vals[j]) * ((float)g_vals[j])));
                    p_vals[j] = ((float)p_vals[j]) +
                                (update_scale * step_size * (s1_vals[j] / (sqrtf(s2_vals[j]) + (eps * correction2))));

                    if (weight_decay > 0.0f)
                        p_vals[j] = ((float)p_vals[j]) * (1.0f - (lr * weight_decay));
                }
                break;
            }
        }

729
        __syncthreads();
730
731
732
733
734
735
736
737
738
739
740
        Store(temp_storage.store).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreFloat(temp_storage.storef).Store(&(state1[i]), s1_vals, valid_items);
        __syncthreads();
        StoreFloat(temp_storage.storef).Store(&(state2[i]), s2_vals, valid_items);

        if (OPTIMIZER == ADEMAMIX) {
            __syncthreads();
            StoreFloat(temp_storage.storef).Store(&(state1[n + i]), s3_vals, valid_items);
        }
    }
Tim Dettmers's avatar
Tim Dettmers committed
741
742
}

743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
template <typename T, int OPTIMIZER, int BLOCK_SIZE, int NUM_VALS>
__launch_bounds__(BLOCK_SIZE / NUM_VALS, 1) __global__ void kPreconditionOptimizer32bit1State(
    T* g, T* p, float* state1, float* unorm, const float beta1, const float beta2, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const int n
) {

    const int n_full = (BLOCK_SIZE * (n / BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
    const int base_idx = (blockIdx.x * blockDim.x * NUM_VALS);
    int valid_items = 0;

    T g_vals[NUM_VALS];

    float s1_vals[NUM_VALS];

    typedef cub::BlockLoad<T, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
    typedef cub::BlockLoad<float, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockReduce<float, BLOCK_SIZE / NUM_VALS> BlockReduce;

    __shared__ union {
        typename Load::TempStorage load;
        typename LoadFloat::TempStorage loadf;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
        valid_items = n - i >= (BLOCK_SIZE) ? (BLOCK_SIZE) : n - i;

        __syncthreads();
        Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items, 0.0f);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items, 0.0f);

#pragma unroll NUM_VALS
        for (unsigned int j = 0; j < NUM_VALS; j++)
            g_vals[j] = gnorm_scale * ((float)g_vals[j]);

#pragma unroll NUM_VALS
        for (unsigned int j = 0; j < NUM_VALS; j++) {
            switch (OPTIMIZER) {
            case MOMENTUM:
                if (step == 1)
Tim Dettmers's avatar
Tim Dettmers committed
784
                    s1_vals[j] = (float)g_vals[j]; // state update
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
                else
                    s1_vals[j] = s1_vals[j] * beta1 + ((float)g_vals[j]); // state update
                s1_vals[j] = s1_vals[j] * s1_vals[j];                     // update norm
                break;
            case LION:
                s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * (float)g_vals[j]); // state update
                break;
            case RMSPROP:
                s1_vals[j] =
                    s1_vals[j] * beta1 + ((1.0f - beta1) * ((float)g_vals[j]) * ((float)g_vals[j])); // state update
                s1_vals[j] = __fdividef((float)g_vals[j], sqrtf(s1_vals[j]) + eps);                  // update value
                s1_vals[j] = s1_vals[j] * s1_vals[j];                                                // update norm
                break;
            case ADAGRAD:
                s1_vals[j] = s1_vals[j] + ((float)g_vals[j]) * ((float)g_vals[j]);  // state update
                s1_vals[j] = __fdividef((float)g_vals[j], sqrtf(s1_vals[j]) + eps); // update value
                s1_vals[j] = s1_vals[j] * s1_vals[j];                               // update norm
                break;
            }
        }
Tim Dettmers's avatar
Tim Dettmers committed
805

806
807
808
809
810
811
812
813
814
815
816
817
#pragma unroll
        for (unsigned int j = 1; j < NUM_VALS; j++)
            s1_vals[0] += s1_vals[j];

        __syncthreads();
        s1_vals[0] = BlockReduce(temp_storage.reduce).Sum(s1_vals[0], valid_items);

        if (threadIdx.x == 0)
            atomicAdd(&unorm[0], s1_vals[0]);

        __syncwarp();
    }
Tim Dettmers's avatar
Tim Dettmers committed
818
819
}

820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
template <typename T, int OPTIMIZER>
__launch_bounds__(TH, 1) __global__ void kOptimizer32bit1State(
    T* g, T* p, float* state1, float* unorm, const float max_unorm, const float param_norm, const float beta1,
    const float beta2, const float eps, const float weight_decay, const int step, const float lr,
    const float gnorm_scale, const bool skip_zeros, const int n
) {

    const int n_full = ((TH * NUM_PER_THREAD) * (n / (TH * NUM_PER_THREAD))) +
                       (n % (TH * NUM_PER_THREAD) == 0 ? 0 : (TH * NUM_PER_THREAD));
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
    int valid_items = 0;
    float update_scale = 0.0f;

    if (max_unorm > 0.0f) {
        update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
        if (update_scale > max_unorm * param_norm + eps) {
            update_scale = (max_unorm * param_norm + eps) / update_scale;
        } else {
            update_scale = 1.0f;
        }
    } else {
        update_scale = 1.0f;
    }

    T g_vals[NUM_PER_THREAD];
    T p_vals[NUM_PER_THREAD];

    float s1_vals[NUM_PER_THREAD];

    typedef cub::BlockLoad<T, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
    typedef cub::BlockStore<T, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> Store;

    typedef cub::BlockLoad<float, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockStore<float, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreFloat;

    __shared__ union {
        typename Load::TempStorage load;
        typename Store::TempStorage store;
        typename LoadFloat::TempStorage loadf;
        typename StoreFloat::TempStorage storef;
    } temp_storage;

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * TH * NUM_PER_THREAD) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;

        __syncthreads();
        Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items);
        __syncthreads();
        Load(temp_storage.load).Load(&(p[i]), p_vals, valid_items);

#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD; j++) {
            g_vals[j] = gnorm_scale * ((float)g_vals[j]);
            if (weight_decay > 0.0f)
                g_vals[j] = (float)g_vals[j] + (((float)p_vals[j]) * weight_decay);
        }

#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD; j++) {
            if (!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f))) {
                switch (OPTIMIZER) {
                case MOMENTUM:
                    if (step == 1)
                        s1_vals[j] = (float)g_vals[j];
                    else
                        s1_vals[j] = s1_vals[j] * beta1 + ((float)g_vals[j]);

                    p_vals[j] = ((float)p_vals[j]) + update_scale * (-lr * (s1_vals[j]));
                    break;
                case LION:
                    p_vals[j] =
                        ((float)p_vals[j]) -
                        update_scale * (lr * sgn(((float)s1_vals[j]) * beta1 + ((1.0f - beta1) * ((float)g_vals[j]))));
                    s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * ((float)g_vals[j]));
                    break;
                case RMSPROP:
                    s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * ((float)g_vals[j]) * ((float)g_vals[j]));
                    p_vals[j] = ((float)p_vals[j]) -
                                update_scale * (lr * __fdividef((float)g_vals[j], sqrtf((float)s1_vals[j]) + eps));
                    break;
                case ADAGRAD:
                    s1_vals[j] = s1_vals[j] + ((float)g_vals[j]) * ((float)g_vals[j]);
                    p_vals[j] = ((float)p_vals[j]) - lr * __fdividef((float)g_vals[j], sqrtf((float)s1_vals[j]) + eps);
                    break;
                }
            }
        }

        __syncthreads();
        Store(temp_storage.store).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreFloat(temp_storage.storef).Store(&(state1[i]), s1_vals, valid_items);
    }
}
Tim Dettmers's avatar
Tim Dettmers committed
916
917
918
919
920

#define NUM8BIT 16
#define NUM_THREADS 256
#define NUM_PER_BLOCK 4096

921
922
923
924
925
926
927
template <typename T, int OPTIMIZER>
__global__ void __launch_bounds__(NUM_THREADS, 2) kPreconditionOptimizerStatic8bit2State(
    T* p, T* __restrict__ const g, unsigned char* __restrict__ const state1, unsigned char* __restrict__ const state2,
    float* unorm, const float beta1, const float beta2, const float eps, const int step,
    float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* max1, float* max2,
    float* new_max1, float* new_max2, const float gnorm_scale, const int n
) {
Tim Dettmers's avatar
Tim Dettmers committed
928
929
    const int n_full = gridDim.x * NUM_PER_BLOCK;
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
930
931
    int valid_items =
        n - (blockIdx.x * NUM_PER_BLOCK) > NUM_PER_BLOCK ? NUM_PER_BLOCK : n - (blockIdx.x * NUM_PER_BLOCK);
Tim Dettmers's avatar
Tim Dettmers committed
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
    float g_val = 0.0f;
    float local_max_s1 = -FLT_MAX;
    float local_max_s2 = -FLT_MAX;
    float local_unorm = 0.0f;

    float s2_vals[NUM8BIT];
    float s1_vals[NUM8BIT];
    T g_vals[NUM8BIT];
    unsigned char m_c1[NUM8BIT];
    unsigned char r_c2[NUM8BIT];

    typedef cub::BlockLoad<T, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadUInt8;
    typedef cub::BlockReduce<float, NUM_THREADS> BlockReduce;

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadUInt8::TempStorage loadc;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;

    __shared__ float smem_quantiles1[256];
    __shared__ float smem_quantiles2[256];

956
    if (threadIdx.x < 256) {
Tim Dettmers's avatar
Tim Dettmers committed
957
958
959
960
961
962
        smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
        smem_quantiles2[threadIdx.x] = quantiles2[threadIdx.x];
    }

    __syncthreads();

963
964
    for (unsigned int i = base_idx; i < n_full; i += NUM_THREADS * gridDim.x * NUM8BIT) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
965
966
967
968
969
970
971
972

        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadUInt8(temp_storage.loadc).Load(&(state1[i]), m_c1, valid_items, 128);
        __syncthreads();
        LoadUInt8(temp_storage.loadc).Load(&(state2[i]), r_c2, valid_items, 128);
        __syncthreads();

973
974
#pragma unroll 16
        for (int j = 0; j < NUM8BIT; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
975
976
            g_val = g_vals[j];
            g_val *= gnorm_scale;
977
978
            s1_vals[j] = smem_quantiles1[m_c1[j]] * max1[0] * beta1;
            s1_vals[j] += (1.0f - beta1) * g_val;
Tim Dettmers's avatar
Tim Dettmers committed
979
980
981
            local_max_s1 = fmaxf(local_max_s1, fabsf(s1_vals[j]));
        }

982
983
#pragma unroll 16
        for (int j = 0; j < NUM8BIT; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
984
985
            g_val = g_vals[j];
            g_val *= gnorm_scale;
986
987
            s2_vals[j] = smem_quantiles2[r_c2[j]] * max2[0] * beta2;
            s2_vals[j] += (1.0f - beta2) * g_val * g_val;
Tim Dettmers's avatar
Tim Dettmers committed
988
989
990
            local_max_s2 = fmaxf(local_max_s2, fabsf(s2_vals[j]));
        }

991
992
993
994
995
996
997
998
999
1000
        if (unorm != NULL) {
#pragma unroll 16
            for (int j = 0; j < NUM8BIT; j++) {
                float correction1 = __fdividef(1.0f, 1.0f - powf(beta1, step));
                float correction2 = __fdividef(1.0f, 1.0f - powf(beta2, step));
                s1_vals[j] *= correction1;
                s2_vals[j] *= correction2;
                float update_val = s1_vals[j] / (sqrtf(s2_vals[j]) + eps); // update
                local_unorm += update_val * update_val;
            }
Tim Dettmers's avatar
Tim Dettmers committed
1001
1002
1003
1004
1005
1006
1007
        }
    }

    __syncthreads();
    local_max_s1 = BlockReduce(temp_storage.reduce).Reduce(local_max_s1, cub::Max(), valid_items);
    __syncthreads();
    local_max_s2 = BlockReduce(temp_storage.reduce).Reduce(local_max_s2, cub::Max(), valid_items);
1008
1009
1010
    if (unorm != NULL) {
        __syncthreads();
        local_unorm = BlockReduce(temp_storage.reduce).Reduce(local_unorm, cub::Sum(), valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
1011
1012
    }

1013
    if (threadIdx.x == 0) {
Tim Dettmers's avatar
Tim Dettmers committed
1014
1015
        atomicMax(&new_max1[0], local_max_s1);
        atomicMax(&new_max2[0], local_max_s2);
1016
1017
1018
        if (unorm != NULL) {
            atomicAdd(&unorm[0], local_unorm);
        }
Tim Dettmers's avatar
Tim Dettmers committed
1019
1020
1021
1022
1023
1024
1025
    }
}

#define NUM_PER_THREAD2 4
#define NUM_THREADS2 1024
#define NUM_PER_BLOCK2 4096

1026
1027
1028
1029
1030
1031
1032
1033
1034
template <typename T, int OPTIMIZER>
__global__ void __launch_bounds__(NUM_THREADS2, 1) kOptimizerStatic8bit2State(
    T* p, T* const g, unsigned char* state1, unsigned char* state2, const float* unorm, const float max_unorm,
    const float param_norm, const float beta1, const float beta2, const float eps, const int step, const float lr,
    float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* max1, float* max2,
    float* new_max1, float* new_max2, float weight_decay, const float gnorm_scale, const int n
) {

    const int n_full = (blockDim.x * gridDim.x) * NUM_PER_THREAD2;
Tim Dettmers's avatar
Tim Dettmers committed
1035
1036
1037
1038
1039
1040
1041
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD2);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[NUM_PER_THREAD2];
    float s2_vals[NUM_PER_THREAD2];
    const float correction1 = 1.0f - powf(beta1, step);
    const float correction2 = sqrtf(1.0f - powf(beta2, step));
1042
1043
1044
1045
    const float step_size = -lr * correction2 / correction1;
    // const float step_size = -lr*correction2/correction1;
    float new_max_val1 = 1.0f / new_max1[0];
    float new_max_val2 = 1.0f / new_max2[0];
Tim Dettmers's avatar
Tim Dettmers committed
1046
1047
    float update_scale = 1.0f;

1048
1049
1050
1051
1052
1053
1054
1055
1056
    if (max_unorm > 0.0f) {
        update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
        if (update_scale > max_unorm * param_norm) {
            update_scale = (max_unorm * param_norm) / update_scale;
        } else {
            update_scale = 1.0f;
        }
    } else {
        update_scale = 1.0f;
Tim Dettmers's avatar
Tim Dettmers committed
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
    }

    unsigned char c1s[NUM_PER_THREAD2];
    unsigned char c2s[NUM_PER_THREAD2];
    T p_vals[NUM_PER_THREAD2];
    T g_vals[NUM_PER_THREAD2];
    typedef cub::BlockLoad<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;

    typedef cub::BlockStore<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ float smem_quantiles1[256];
    __shared__ float smem_quantiles2[256];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;

1079
1080
    if (threadIdx.x < 512) {
        if (threadIdx.x < 256)
Tim Dettmers's avatar
Tim Dettmers committed
1081
1082
            smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
        else
1083
            smem_quantiles2[threadIdx.x - 256] = quantiles2[threadIdx.x - 256];
Tim Dettmers's avatar
Tim Dettmers committed
1084
1085
1086
1087
    }

    __syncthreads();

1088
1089
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * NUM_THREADS2 * NUM_PER_THREAD2) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
1090
1091
1092
1093
1094
1095
1096
1097
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state2[i]), c2s, valid_items, 0);
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items);

1098
1099
1100
        if ((i + (threadIdx.x * NUM_PER_THREAD2) + NUM_PER_THREAD2) > n) {
            continue;
        }
Tim Dettmers's avatar
Tim Dettmers committed
1101

1102
1103
#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD2; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1104
1105
1106
            g_val = float(g_vals[j]);
            g_val *= gnorm_scale;
            s1_vals[j] = smem_quantiles1[c1s[j]];
1107
            s1_vals[j] = s1_vals[j] * max1[0];
Tim Dettmers's avatar
Tim Dettmers committed
1108

1109
            s1_vals[j] = (s1_vals[j] * beta1) + (((1.0f - beta1) * g_val));
Tim Dettmers's avatar
Tim Dettmers committed
1110

1111
            c1s[j] = dQuantize<0>(smem_quantiles1, 0.0f, s1_vals[j] * new_max_val1);
Tim Dettmers's avatar
Tim Dettmers committed
1112
1113
1114

            // make sure state1 term has still the same sign after quantization
            // (not needed for state2 term which has only positive values)
1115
1116
1117
1118
1119
            if (signbit(smem_quantiles1[c1s[j]]) != signbit(s1_vals[j])) {
                if (s1_vals[j] > 0.0f)
                    c1s[j] += 1;
                else
                    c1s[j] -= 1;
Tim Dettmers's avatar
Tim Dettmers committed
1120
1121
1122
            }

            s2_vals[j] = smem_quantiles2[c2s[j]];
1123
1124
1125
            s2_vals[j] = s2_vals[j] * max2[0];
            s2_vals[j] = (s2_vals[j] * beta2) + (((1.0f - beta2) * g_val * g_val));
            c2s[j] = dQuantize<0>(smem_quantiles2, 0.0f, s2_vals[j] * new_max_val2);
Tim Dettmers's avatar
Tim Dettmers committed
1126
1127
        }

1128
1129
1130
1131
1132
1133
#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD2; j++) {
            p_vals[j] = (T)(((float)p_vals[j]) +
                            ((update_scale * step_size * (s1_vals[j] / (sqrtf(s2_vals[j]) + (correction2 * eps))))));
            if (weight_decay > 0.0f)
                p_vals[j] = update_scale * ((float)p_vals[j]) * (1.0f - (lr * weight_decay));
Tim Dettmers's avatar
Tim Dettmers committed
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
        }

        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state2[i]), c2s, valid_items);
        __syncthreads();
    }
}

1145
1146
1147
1148
1149
1150
template <typename T, int OPTIMIZER>
__global__ void __launch_bounds__(NUM_THREADS, 2) kPreconditionOptimizerStatic8bit1State(
    T* p, T* __restrict__ const g, unsigned char* __restrict__ const state1, float* unorm, const float beta1,
    const float beta2, const float eps, const int step, float* __restrict__ const quantiles1, float* max1,
    float* new_max1, const float weight_decay, const float gnorm_scale, const int n
) {
Tim Dettmers's avatar
Tim Dettmers committed
1151
1152
    const int n_full = gridDim.x * NUM_PER_BLOCK;
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
1153
1154
    int valid_items =
        n - (blockIdx.x * NUM_PER_BLOCK) > NUM_PER_BLOCK ? NUM_PER_BLOCK : n - (blockIdx.x * NUM_PER_BLOCK);
Tim Dettmers's avatar
Tim Dettmers committed
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
    float g_val = 0.0f;
    float local_max_s1 = -FLT_MAX;
    float local_unorm = 0.0f;

    float s1_vals[NUM8BIT];
    T g_vals[NUM8BIT];
    unsigned char m_c1[NUM8BIT];

    typedef cub::BlockLoad<T, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadUInt8;
    typedef cub::BlockReduce<float, NUM_THREADS> BlockReduce;

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadUInt8::TempStorage loadc;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;

    __shared__ float smem_quantiles1[256];

1175
1176
    if (threadIdx.x < 256)
        smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
Tim Dettmers's avatar
Tim Dettmers committed
1177
1178
1179

    __syncthreads();

1180
1181
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * NUM_THREADS * NUM8BIT) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
1182
1183
1184
1185
1186
1187

        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadUInt8(temp_storage.loadc).Load(&(state1[i]), m_c1, valid_items, 128);

1188
1189
#pragma unroll 16
        for (int j = 0; j < NUM8BIT; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1190
1191
            g_val = g_vals[j];
            g_val *= gnorm_scale;
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
            s1_vals[j] = smem_quantiles1[m_c1[j]] * max1[0];
            switch (OPTIMIZER) {
            case ADAGRAD:
            case MOMENTUM:
                if (step == 1)
                    s1_vals[j] = (float)g_vals[j];
                else
                    s1_vals[j] = s1_vals[j] * beta1 + ((float)g_vals[j]);
                if (unorm != NULL)
                    local_unorm += s1_vals[j] * s1_vals[j];
                break;
            case LION:
                s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * g_val);
                break;
            case RMSPROP:
                s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * (g_val * g_val));
                break;
Tim Dettmers's avatar
Tim Dettmers committed
1209
1210
1211
1212
1213
1214
1215
1216
            }

            local_max_s1 = fmaxf(local_max_s1, fabsf(s1_vals[j]));
        }
    }

    __syncthreads();
    local_max_s1 = BlockReduce(temp_storage.reduce).Reduce(local_max_s1, cub::Max(), valid_items);
1217
1218
1219
1220
1221
1222
1223
1224
1225
    if (threadIdx.x == 0) {
        atomicMax(&new_max1[0], local_max_s1);
    }
    if (unorm != NULL) {
        __syncthreads();
        local_unorm = BlockReduce(temp_storage.reduce).Reduce(local_unorm, cub::Sum(), valid_items);
        if (threadIdx.x == 0) {
            atomicAdd(&unorm[0], local_unorm);
        }
Tim Dettmers's avatar
Tim Dettmers committed
1226
1227
1228
    }
}

1229
1230
1231
1232
1233
1234
1235
1236
1237
template <typename T, int OPTIMIZER>
__global__ void __launch_bounds__(1024, 1) kOptimizerStatic8bit1State(
    T* p, T* const g, unsigned char* state1, const float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float eps, const int step, const float lr,
    float* __restrict__ const quantiles1, float* max1, float* new_max1, float weight_decay, const float gnorm_scale,
    const int n
) {

    const int n_full = (blockDim.x * gridDim.x) * NUM_PER_THREAD2;
Tim Dettmers's avatar
Tim Dettmers committed
1238
1239
1240
1241
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD2);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[NUM_PER_THREAD2];
1242
    float new_max_val1 = 1.0f / new_max1[0];
Tim Dettmers's avatar
Tim Dettmers committed
1243
1244
    float update_scale = 1.0f;

1245
1246
1247
1248
1249
1250
1251
1252
1253
    if (max_unorm > 0.0f) {
        update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
        if (update_scale > max_unorm * param_norm) {
            update_scale = (max_unorm * param_norm) / update_scale;
        } else {
            update_scale = 1.0f;
        }
    } else {
        update_scale = 1.0f;
Tim Dettmers's avatar
Tim Dettmers committed
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
    }

    unsigned char c1s[NUM_PER_THREAD2];
    T p_vals[NUM_PER_THREAD2];
    T g_vals[NUM_PER_THREAD2];
    typedef cub::BlockLoad<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;

    typedef cub::BlockStore<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ float smem_quantiles1[256];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;

1274
    if (threadIdx.x < 256)
Tim Dettmers's avatar
Tim Dettmers committed
1275
1276
1277
1278
        smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];

    __syncthreads();

1279
1280
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * NUM_THREADS2 * NUM_PER_THREAD2) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
1281
1282
1283
1284
1285
1286
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items);

1287
1288
1289
        if ((i + (threadIdx.x * NUM_PER_THREAD2) + NUM_PER_THREAD2) > n) {
            continue;
        }
Tim Dettmers's avatar
Tim Dettmers committed
1290

1291
1292
#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD2; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1293
1294
            g_val = float(g_vals[j]);
            g_val *= gnorm_scale;
1295

1296
1297
1298
            if (weight_decay > 0.0f) {
                switch (OPTIMIZER) {
                case ADAGRAD:
1299
1300
                case MOMENTUM:
                case RMSPROP:
1301
1302
                    g_val += ((float)p_vals[j]) * weight_decay;
                    break;
1303
                case LION:
1304
1305
1306
                    p_vals[j] = ((float)p_vals[j]) * (1.0f - lr * weight_decay);
                    break;
                }
1307
1308
            }

1309
            s1_vals[j] = smem_quantiles1[c1s[j]] * max1[0];
Tim Dettmers's avatar
Tim Dettmers committed
1310

1311
1312
1313
1314
            switch (OPTIMIZER) {
            case ADAGRAD:
            case MOMENTUM:
                if (step == 1)
Tim Dettmers's avatar
Tim Dettmers committed
1315
                    s1_vals[j] = g_vals[j];
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
                else
                    s1_vals[j] = s1_vals[j] * beta1 + ((float)g_vals[j]);

                p_vals[j] = ((float)p_vals[j]) + (-lr * update_scale * (s1_vals[j]));
                break;
            case LION:
                p_vals[j] =
                    ((float)p_vals[j]) - (lr * sgn(((float)s1_vals[j]) * beta1 + ((1.0f - beta1) * ((float)g_val))));
                s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * g_val);
                break;
            case RMSPROP:
                s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * (g_val * g_val));
                p_vals[j] = ((float)p_vals[j]) - (lr * __fdividef(g_val, sqrtf(s1_vals[j]) + eps));
                break;
Tim Dettmers's avatar
Tim Dettmers committed
1330
1331
            }

1332
            c1s[j] = dQuantize<0>(smem_quantiles1, 0.0f, s1_vals[j] * new_max_val1);
Tim Dettmers's avatar
Tim Dettmers committed
1333
1334

            // make sure state1 term has still the same sign after quantization
1335
1336
1337
1338
1339
            if (signbit(smem_quantiles1[c1s[j]]) != signbit(s1_vals[j])) {
                if (s1_vals[j] > 0.0f)
                    c1s[j] += 1;
                else
                    c1s[j] -= 1;
Tim Dettmers's avatar
Tim Dettmers committed
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
            }
        }

        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
        __syncthreads();
    }
}

1350
1351
1352
1353
1354
1355
1356
template <typename T, int BLOCK_SIZE, int NUM_VALS>
__global__ void kPercentileClipping(T* __restrict__ g, float* gnorm_vec, int step, const int n) {
    const int n_full = (BLOCK_SIZE * (n / BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
    int valid_items = 0;

    typedef cub::BlockReduce<float, BLOCK_SIZE / NUM_VALS> BlockReduce;
    typedef cub::BlockLoad<T, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
Tim Dettmers's avatar
Tim Dettmers committed
1357

1358
    __shared__ typename BlockReduce::TempStorage reduce;
Tim Dettmers's avatar
Tim Dettmers committed
1359

1360
1361
1362
1363
1364
1365
1366
    __shared__ typename LoadT::TempStorage loadT;
    T vals[NUM_VALS];
    float local_sum = 0.0f;

    for (unsigned int i = (blockIdx.x * BLOCK_SIZE); i < n_full; i += gridDim.x * BLOCK_SIZE) {
        valid_items = n - i > BLOCK_SIZE ? BLOCK_SIZE : n - i;
        local_sum = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
1367

1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
        __syncthreads();
        LoadT(loadT).Load(&(g[i]), vals, valid_items, (T)0.0f);

#pragma unroll NUM_VALS
        for (int j = 0; j < NUM_VALS; j++)
            local_sum += ((float)vals[j]) * ((float)vals[j]);

        local_sum = BlockReduce(reduce).Sum(local_sum, valid_items);
        if (threadIdx.x == 0) {
            if (step == 1) {
                // initialize with the same norm for all positions
                // #pragma unroll 10
                for (int j = 0; j < 100; j++)
                    atomicAdd(&gnorm_vec[j], local_sum);
            } else
                atomicAdd(&gnorm_vec[step % 100], local_sum);
        }
    }
}
Tim Dettmers's avatar
Tim Dettmers committed
1387
1388
1389

#define LANES 2
#define QUAD 3
1390
1391
1392
1393
1394
1395
1396

template <typename T, int OPTIMIZER, int BLOCK_SIZE, int N_PER_TH>
__launch_bounds__(256, 3) __global__ void kOptimizerStatic8bit2StateBlockwise(
    T* p, T* __restrict__ const g, unsigned char* state1, unsigned char* state2, const float beta1, const float beta2,
    const float beta3, const float alpha, const float eps, const int step, const float lr,
    float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* absmax1, float* absmax2,
    float weight_decay, const float gnorm_scale, const bool skip_zeros, const int n
1397
) {
Tim Dettmers's avatar
Tim Dettmers committed
1398

1399
    // const int n_full = n + (n%BLOCK_SIZE);
Tim Dettmers's avatar
Tim Dettmers committed
1400
1401
1402
1403
1404
1405
    const int n_full = gridDim.x * BLOCK_SIZE;
    const int base_idx = (blockIdx.x * BLOCK_SIZE);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[N_PER_TH];
    float s2_vals[N_PER_TH];
1406
1407
    float s3_vals[N_PER_TH];

Tim Dettmers's avatar
Tim Dettmers committed
1408
1409
    // 2-5%
    const float correction1 = 1.0f - __powf(beta1, step);
1410
1411
    const float correction2 = sqrtf(1.0f - __powf(beta2, step));
    const float step_size = __fdividef(-lr * correction2, correction1);
Tim Dettmers's avatar
Tim Dettmers committed
1412
1413
1414
    const int lane_id = threadIdx.x % LANES;
    float new_local_abs_max1 = -FLT_MAX;
    float new_local_abs_max2 = -FLT_MAX;
1415
    float new_local_abs_max3 = -FLT_MAX;
Tim Dettmers's avatar
Tim Dettmers committed
1416
1417
1418
1419
1420
    float quadrants1[QUAD];
    float quadrants2[QUAD];

    unsigned char c1s[N_PER_TH];
    unsigned char c2s[N_PER_TH];
1421
1422
    unsigned char c3s[N_PER_TH];

Tim Dettmers's avatar
Tim Dettmers committed
1423
    T g_vals[N_PER_TH];
1424
    T p_vals[N_PER_TH];
1425
1426
    typedef cub::BlockLoad<T, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;
Tim Dettmers's avatar
Tim Dettmers committed
1427

1428
1429
    typedef cub::BlockStore<unsigned char, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;
Tim Dettmers's avatar
Tim Dettmers committed
1430
1431
1432

    __shared__ float smem_quantiles1[LANES][257];
    __shared__ float smem_quantiles2[LANES][257];
1433
1434
1435
    typedef cub::BlockReduce<float, BLOCK_SIZE / N_PER_TH> BlockReduce1;
    typedef cub::BlockReduce<float, BLOCK_SIZE / N_PER_TH> BlockReduce2;
    typedef cub::BlockReduce<float, BLOCK_SIZE / N_PER_TH> BlockReduce3;
Tim Dettmers's avatar
Tim Dettmers committed
1436
1437
    __shared__ typename BlockReduce1::TempStorage reduce1;
    __shared__ typename BlockReduce2::TempStorage reduce2;
1438
    __shared__ typename BlockReduce2::TempStorage reduce3;
Tim Dettmers's avatar
Tim Dettmers committed
1439
1440
    __shared__ float smem_exchange1[1];
    __shared__ float smem_exchange2[1];
1441
    __shared__ float smem_exchange3[1]; // [[maybe_unused]]
Tim Dettmers's avatar
Tim Dettmers committed
1442
1443
1444
1445
1446
1447
1448

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;
1449

Tim Dettmers's avatar
Tim Dettmers committed
1450
1451
1452
    // init: 0.2 -> 0.23

    // 0.23 -> 0.23
1453
1454
1455
1456
    smem_quantiles1[0][threadIdx.x] = quantiles1[threadIdx.x];
    smem_quantiles2[0][threadIdx.x] = quantiles2[threadIdx.x];
#pragma unroll
    for (unsigned int j = 1; j < LANES; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1457
1458
        smem_quantiles1[j][threadIdx.x] = smem_quantiles1[0][threadIdx.x];
        smem_quantiles2[j][threadIdx.x] = smem_quantiles2[0][threadIdx.x];
1459
    }
Tim Dettmers's avatar
Tim Dettmers committed
1460
1461
1462

    __syncthreads();

1463
1464
1465
1466
#pragma unroll
    for (int k = 0; k < QUAD; k++) {
        quadrants1[k] = smem_quantiles1[lane_id][(k * 256 / (QUAD + 1)) + (256 / (QUAD + 1) - 1)];
        quadrants2[k] = smem_quantiles2[lane_id][(k * 256 / (QUAD + 1)) + (256 / (QUAD + 1) - 1)];
Tim Dettmers's avatar
Tim Dettmers committed
1467
1468
    }

1469
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
Tim Dettmers's avatar
Tim Dettmers committed
1470
1471
1472
1473
1474
1475
1476
1477
1478
        // loads: 0.23 -> 0.85/1.44
        valid_items = n - i >= BLOCK_SIZE ? BLOCK_SIZE : n - i;
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state2[i]), c2s, valid_items, 0);

1479
1480
        // AdEMAMix has an additional state packed into state1.
        if (OPTIMIZER == ADEMAMIX) {
1481
1482
            __syncthreads();
            LoadChar(temp_storage.loadc).Load(&(state1[n + i]), c3s, valid_items, 128);
1483
1484
        }

Tim Dettmers's avatar
Tim Dettmers committed
1485
1486
        new_local_abs_max1 = -FLT_MAX;
        new_local_abs_max2 = -FLT_MAX;
1487
        new_local_abs_max3 = -FLT_MAX;
Tim Dettmers's avatar
Tim Dettmers committed
1488

1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
//  update: 2.48/1.57 -> 2.51/1.60
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            if (!isnan((float)g_vals[j]) && !isinf((float)g_vals[j])) {
                s2_vals[j] = smem_quantiles2[lane_id][c2s[j]] * absmax2[i / BLOCK_SIZE];
                g_val = g_vals[j];
                // float ratio = (g_val*g_val)/fmaxf(s2_vals[j], eps*eps);
                // g_val = ratio > 2.0f ? 2.0f*g_val/ratio : g_val;
                g_val *= gnorm_scale;

                s2_vals[j] = (s2_vals[j] * beta2) + (((1.0f - beta2) * g_val * g_val));

                s1_vals[j] = smem_quantiles1[lane_id][c1s[j]] * absmax1[i / BLOCK_SIZE];
                s1_vals[j] = (s1_vals[j] * beta1) + (((1.0f - beta1) * g_val));

                if (OPTIMIZER == ADEMAMIX) {
                    // The absmax for the third state is appended to absmax1
                    s3_vals[j] = smem_quantiles1[lane_id][c3s[j]] * absmax1[(n + i) / BLOCK_SIZE];
                    s3_vals[j] = (s3_vals[j] * beta3) + (((1.0f - beta3) * g_val));
                }
            } else {
                s1_vals[j] = 0.0f;
                s2_vals[j] = 0.0f;
1512

1513
1514
1515
                if (OPTIMIZER == ADEMAMIX) {
                    s3_vals[j] = 0.0f;
                }
1516
            }
Tim Dettmers's avatar
Tim Dettmers committed
1517
1518
1519

            new_local_abs_max1 = fmaxf(new_local_abs_max1, fabsf(s1_vals[j]));
            new_local_abs_max2 = fmaxf(new_local_abs_max2, fabsf(s2_vals[j]));
1520
1521

            if (OPTIMIZER == ADEMAMIX) {
1522
                new_local_abs_max3 = fmaxf(new_local_abs_max3, fabsf(s3_vals[j]));
1523
            }
Tim Dettmers's avatar
Tim Dettmers committed
1524
1525
1526
1527
1528
1529
        }

        //  reduce: 2.51/1.60 -> 2.67/1.69
        new_local_abs_max1 = BlockReduce1(reduce1).Reduce(new_local_abs_max1, cub::Max());
        new_local_abs_max2 = BlockReduce2(reduce2).Reduce(new_local_abs_max2, cub::Max());

1530
        if (OPTIMIZER == ADEMAMIX) {
1531
            new_local_abs_max3 = BlockReduce3(reduce3).Reduce(new_local_abs_max3, cub::Max());
1532
1533
        }

1534
1535
1536
        if (threadIdx.x == 0) {
            smem_exchange1[0] = new_local_abs_max1;
            smem_exchange2[0] = new_local_abs_max2;
1537

1538
1539
1540
            if (OPTIMIZER == ADEMAMIX) {
                smem_exchange3[0] = new_local_abs_max3;
            }
Tim Dettmers's avatar
Tim Dettmers committed
1541
1542
1543
1544
        }

        __syncthreads();

1545
1546
1547
        if (threadIdx.x == 0) {
            absmax1[i / BLOCK_SIZE] = new_local_abs_max1;
            absmax2[i / BLOCK_SIZE] = new_local_abs_max2;
1548

1549
1550
1551
1552
1553
1554
            if (OPTIMIZER == ADEMAMIX) {
                absmax1[(n + i) / BLOCK_SIZE] = new_local_abs_max3;
            }
        } else {
            new_local_abs_max1 = smem_exchange1[0];
            new_local_abs_max2 = smem_exchange2[0];
1555

1556
1557
1558
            if (OPTIMIZER == ADEMAMIX) {
                new_local_abs_max3 = smem_exchange3[0];
            }
Tim Dettmers's avatar
Tim Dettmers committed
1559
1560
1561
        }

        __syncthreads();
1562
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items, (T)0.0f);
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
//  reduce: 2.67/1.69 -> 2.67/1.70
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            // if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
            if (!isnan((float)g_vals[j]) && !isinf((float)g_vals[j])) {
                if (OPTIMIZER == ADEMAMIX) {
                    p_vals[j] =
                        T((float)p_vals[j] - lr * (((s1_vals[j] / correction1) + (alpha * s3_vals[j])) /
                                                   ((sqrtf(s2_vals[j]) / correction2) + eps)));
                } else {
                    p_vals[j] =
                        (T)(((float)p_vals[j]) +
                            ((step_size * (__fdividef(s1_vals[j], (sqrtf(s2_vals[j]) + (correction2 * eps)))))));
                }

                if (weight_decay > 0.0f)
                    p_vals[j] = ((float)p_vals[j]) * (1.0f - (lr * weight_decay));
            }
Tim Dettmers's avatar
Tim Dettmers committed
1581
1582
1583
1584
        }

        //  store: 0.85/1.44 -> 2.48/1.57
        __syncthreads();
1585
        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
1586

1587
1588
1589
1590
1591
//  quantizaztion: 2.67/1.70  -> 3.4/3.3
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            c1s[j] = quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s1_vals[j], new_local_abs_max1));
            c2s[j] = quantize_2D<0>(quadrants2, smem_quantiles2[lane_id], __fdividef(s2_vals[j], new_local_abs_max2));
Tim Dettmers's avatar
Tim Dettmers committed
1592
1593
1594

            // make sure state1 term has still the same sign after quantization
            // (not needed for state2 term which has only positive values)
1595
1596
1597
1598
1599
            if (signbit(smem_quantiles1[lane_id][c1s[j]]) != signbit(s1_vals[j])) {
                if (s1_vals[j] > 0.0f)
                    c1s[j] += 1;
                else
                    c1s[j] -= 1;
Tim Dettmers's avatar
Tim Dettmers committed
1600
            }
1601
1602

            if (OPTIMIZER == ADEMAMIX) {
1603
1604
                c3s[j] =
                    quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s3_vals[j], new_local_abs_max3));
1605

1606
1607
1608
                if (signbit(smem_quantiles1[lane_id][c3s[j]]) != signbit(s3_vals[j])) {
                    c3s[j] += (s3_vals[j] > 0.0f) ? 1 : -1;
                }
1609
            }
Tim Dettmers's avatar
Tim Dettmers committed
1610
1611
1612
1613
1614
1615
        }

        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state2[i]), c2s, valid_items);
1616
1617

        if (OPTIMIZER == ADEMAMIX) {
1618
1619
            __syncthreads();
            StoreChar(temp_storage.storec).Store(&(state1[n + i]), c3s, valid_items);
1620
        }
Tim Dettmers's avatar
Tim Dettmers committed
1621
1622
1623
1624
1625
    }
}

#define LANES 2
#define QUAD 3
1626
1627
1628
1629
1630
1631
1632
1633
1634

template <typename T, int OPTIMIZER, int BLOCK_SIZE, int N_PER_TH>
__launch_bounds__(256, 3) __global__ void kOptimizerStatic8bit1StateBlockwise(
    T* p, T* __restrict__ const g, unsigned char* state1, const float beta1, const float beta2, const float eps,
    const int step, const float lr, float* __restrict__ const quantiles1, float* absmax1, float weight_decay,
    const float gnorm_scale, const bool skip_zeros, const int n
) {

    // const int n_full = n + (n%BLOCK_SIZE);
Tim Dettmers's avatar
Tim Dettmers committed
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
    const int n_full = gridDim.x * BLOCK_SIZE;
    const int base_idx = (blockIdx.x * BLOCK_SIZE);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[N_PER_TH];
    // 2-5%
    const int lane_id = threadIdx.x % LANES;
    float new_local_abs_max1 = -FLT_MAX;
    float quadrants1[QUAD];

    unsigned char c1s[N_PER_TH];
    T g_vals[N_PER_TH];
1647
    T p_vals[N_PER_TH];
Tim Dettmers's avatar
Tim Dettmers committed
1648

1649
1650
    typedef cub::BlockLoad<T, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;
Tim Dettmers's avatar
Tim Dettmers committed
1651

1652
1653
    typedef cub::BlockStore<unsigned char, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;
Tim Dettmers's avatar
Tim Dettmers committed
1654
1655

    __shared__ float smem_quantiles1[LANES][257];
1656
    typedef cub::BlockReduce<float, BLOCK_SIZE / N_PER_TH> BlockReduce1;
Tim Dettmers's avatar
Tim Dettmers committed
1657
1658
1659
1660
1661
1662
1663
1664
1665
    __shared__ typename BlockReduce1::TempStorage reduce1;
    __shared__ float smem_exchange1[1];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;
1666

Tim Dettmers's avatar
Tim Dettmers committed
1667
1668
1669
    // init: 0.2 -> 0.23

    // 0.23 -> 0.23
1670
1671
1672
1673
    smem_quantiles1[0][threadIdx.x] = quantiles1[threadIdx.x];
#pragma unroll
    for (unsigned int j = 1; j < LANES; j++)
        smem_quantiles1[j][threadIdx.x] = smem_quantiles1[0][threadIdx.x];
Tim Dettmers's avatar
Tim Dettmers committed
1674
1675
1676

    __syncthreads();

1677
1678
1679
#pragma unroll
    for (int k = 0; k < QUAD; k++)
        quadrants1[k] = smem_quantiles1[lane_id][(k * 256 / (QUAD + 1)) + (256 / (QUAD + 1) - 1)];
Tim Dettmers's avatar
Tim Dettmers committed
1680

1681
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
Tim Dettmers's avatar
Tim Dettmers committed
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
        // loads: 0.23 -> 0.85/1.44
        valid_items = n - i >= BLOCK_SIZE ? BLOCK_SIZE : n - i;
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items, (T)0.0f);

        new_local_abs_max1 = -FLT_MAX;

1693
1694
1695
//  update: 2.48/1.57 -> 2.51/1.60
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1696
1697
            g_val = float(g_vals[j]);
            g_val *= gnorm_scale;
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
            if (!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f))) {
                if (weight_decay > 0.0f) {
                    switch (OPTIMIZER) {
                    case MOMENTUM:
                    case ADAGRAD:
                    case RMSPROP:
                        g_val += ((float)p_vals[j]) * weight_decay;
                        break;
                    case LION:
                        p_vals[j] = ((float)p_vals[j]) * (1.0f - lr * weight_decay);
                        break;
                    }
                }

                s1_vals[j] = smem_quantiles1[lane_id][c1s[j]] * absmax1[i / BLOCK_SIZE];

                switch (OPTIMIZER) {
                case MOMENTUM:
                    if (step == 1)
                        s1_vals[j] = g_val;
                    else
                        s1_vals[j] = (s1_vals[j] * beta1) + g_val;
                    break;
                case LION:
                    // here, using gvals[j] to store the gradient smoothed by beta1 for the following parameter update,
                    // before the momentum is updated by beta2
                    g_vals[j] = lr * sgn(((float)s1_vals[j]) * beta1 + ((1.0f - beta1) * g_val));
                    s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * g_val);
1726
                    break;
1727
1728
1729
1730
1731
                case RMSPROP:
                    s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * (g_val * g_val));
                    break;
                case ADAGRAD:
                    s1_vals[j] = s1_vals[j] + (g_val * g_val);
1732
1733
                    break;
                }
1734
            }
Tim Dettmers's avatar
Tim Dettmers committed
1735
1736
1737
1738
1739
1740
1741

            new_local_abs_max1 = fmaxf(new_local_abs_max1, fabsf(s1_vals[j]));
        }

        //  reduce: 2.51/1.60 -> 2.67/1.69
        new_local_abs_max1 = BlockReduce1(reduce1).Reduce(new_local_abs_max1, cub::Max());

1742
1743
        if (threadIdx.x == 0)
            smem_exchange1[0] = new_local_abs_max1;
Tim Dettmers's avatar
Tim Dettmers committed
1744
1745
1746

        __syncthreads();

1747
1748
        if (threadIdx.x == 0)
            absmax1[i / BLOCK_SIZE] = new_local_abs_max1;
Tim Dettmers's avatar
Tim Dettmers committed
1749
        else
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
            new_local_abs_max1 = smem_exchange1[0];

//  reduce: 2.67/1.69 -> 2.67/1.70
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            if (!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f))) {
                switch (OPTIMIZER) {
                case MOMENTUM:
                    p_vals[j] = ((float)p_vals[j]) - lr * (s1_vals[j]);
                    break;
                case LION:
                    p_vals[j] = ((float)p_vals[j]) - ((float)g_vals[j]);
                    break;
                case RMSPROP:
                    g_val = g_vals[j];
                    p_vals[j] = ((float)p_vals[j]) - lr * (__fdividef(g_val, sqrtf(s1_vals[j]) + eps));
                    break;
                case ADAGRAD:
                    g_val = g_vals[j];
                    p_vals[j] = ((float)p_vals[j]) - lr * (__fdividef(g_val, sqrtf(s1_vals[j]) + eps));
                    break;
                }
            }
        }
Tim Dettmers's avatar
Tim Dettmers committed
1774
1775
1776
1777
1778

        //  store: 0.85/1.44 -> 2.48/1.57
        __syncthreads();
        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);

1779
1780
1781
1782
//  quantizaztion: 2.67/1.70  -> 3.4/3.3
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            c1s[j] = quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s1_vals[j], new_local_abs_max1));
Tim Dettmers's avatar
Tim Dettmers committed
1783
1784
1785

            // make sure state1 term has still the same sign after quantization
            // (not needed for state2 term which has only positive values)
1786
1787
1788
1789
1790
            if (signbit(smem_quantiles1[lane_id][c1s[j]]) != signbit(s1_vals[j])) {
                if (s1_vals[j] > 0.0f)
                    c1s[j] += 1;
                else
                    c1s[j] -= 1;
Tim Dettmers's avatar
Tim Dettmers committed
1791
1792
1793
1794
1795
1796
1797
1798
            }
        }

        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
    }
}

1799
1800
1801
1802
1803
// Inputs:
//  A [rows, cols]
// Outputs:
//  rowStats [rows]
//  out [rows, cols]
1804
1805
1806
template <typename T, int THREADS, int SPARSE_DECOMP>
__launch_bounds__(1024, BNB_MAX_THREADS_PER_SM / 1024) __global__
    void kInt8VectorQuant(T* __restrict__ A, int8_t* out, float* rowStats, float threshold, int rows, int cols) {
1807

1808
1809
    // For sm50/sm52 and CUDA < 12.2 we need to do the reduction in fp32.
    // Otherwise `T` is `fp16`. This can be removed when Maxwell is dropped.
1810
#if (__CUDACC_VER_MAJOR__ >= 12 && __CUDACC_VER_MINOR >= 2) || BNB_FP16_AVAILABLE
1811
    using TReduction = T;
1812
#else
1813
    using TReduction = float;
1814
#endif
Tim Dettmers's avatar
Tim Dettmers committed
1815

1816
    using BlockReduceT = cub::BlockReduce<TReduction, THREADS>;
Tim Dettmers's avatar
Tim Dettmers committed
1817

1818
1819
1820
1821
1822
1823
    // One block per row.
    // Threads load column values in a striped arrangement.
    // e.g. t0 reads row[0], row[0+nthreads], ..
    // and  t1 reads row[1], row[1+nthreads], ..
    // Each thread will determine its local absmax.
    // We then do a blockwise reduction to determine the row's absmax.
Tim Dettmers's avatar
Tim Dettmers committed
1824

1825
1826
    __shared__ typename BlockReduceT::TempStorage temp_storage;
    __shared__ TReduction smem_row_absmax;
Tim Dettmers's avatar
Tim Dettmers committed
1827

1828
1829
    const int row_id = blockIdx.x;
    const T* row_data = A + (row_id * cols);
Tim Dettmers's avatar
Tim Dettmers committed
1830

1831
1832
1833
1834
    // Threads will read the row values in a striped access pattern and find a local absmax.
    TReduction row_local_absmax = -FLT_MIN;
    for (int i = threadIdx.x; i < cols; i += THREADS) {
        const TReduction absval = fabsf(__ldcs(&(row_data[i])));
Tim Dettmers's avatar
Tim Dettmers committed
1835

1836
1837
1838
1839
1840
1841
1842
        // For sparse decomposition, values outside of the threshold are not to be
        // included when calculating the row's absmax.
        if constexpr (SPARSE_DECOMP) {
            row_local_absmax = fmaxf(row_local_absmax, absval < TReduction(threshold) ? absval : row_local_absmax);
        } else {
            row_local_absmax = fmaxf(row_local_absmax, absval);
        }
Tim Dettmers's avatar
Tim Dettmers committed
1843
    }
1844

1845
1846
1847
1848
1849
1850
1851
    // Reduce thread-local absmax across the block.
    const TReduction row_absmax = BlockReduceT(temp_storage).Reduce(row_local_absmax, cub::Max(), cols);
    if (threadIdx.x == 0) {
        // Save our block's absmax to shared memory for the quantization step.
        rowStats[row_id] = smem_row_absmax = row_absmax;
    }
    __syncthreads();
1852

1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
    // Quantize row-wise.
    const float scale = __fdividef(127.0f, smem_row_absmax);
    for (int i = threadIdx.x; i < cols; i += THREADS) {
        float val = row_data[i];

        if constexpr (SPARSE_DECOMP) {
            // For sparse decomposition, we do not want to quantize the outliers.
            // Instead they're zeroed out.
            out[row_id * cols + i] = fabs(val) < threshold ? __float2int_rn(val * scale) : 0;
        } else {
            out[row_id * cols + i] = __float2int_rn(val * scale);
        }
    }
}
1867

1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
template <typename T, int THREADS, int SPARSE_DECOMP>
__launch_bounds__(1024, BNB_MAX_THREADS_PER_SM / 1024) __global__
    void kgetRowStats(T* __restrict__ A, float* rowStats, float threshold, int rows, int cols) {
    using BlockReduceT = cub::BlockReduce<float, THREADS>;

    // One block per row.
    // Threads load column values in a striped arrangement.
    // e.g. t0 reads row[0], row[0+nthreads], ..
    // and  t1 reads row[1], row[1+nthreads], ..
    // Each thread will determine its local absmax.
    // We then do a blockwise reduction to determine the row's absmax.

    __shared__ typename BlockReduceT::TempStorage temp_storage;

    const int row_id = blockIdx.x;
    const T* __restrict__ row_data = A + (row_id * cols);

    // Threads will read the row values in a striped access pattern and find a local absmax.
    float row_local_absmax = -FLT_MIN;
    for (int i = threadIdx.x; i < cols; i += THREADS) {
        const float absval = fabsf(row_data[i]);

        // For sparse decomposition, values outside of the threshold are not to be
        // included when calculating the row's absmax.
        if constexpr (SPARSE_DECOMP) {
            row_local_absmax = fmaxf(row_local_absmax, absval < threshold ? absval : row_local_absmax);
        } else {
            row_local_absmax = fmaxf(row_local_absmax, absval);
        }
    }
1898

1899
1900
1901
1902
1903
1904
    // Reduce thread-local absmax across the block.
    // TODO: Consider algorithm BLOCK_REDUCE_RAKING_COMMUTATIVE_ONLY
    const float row_absmax = BlockReduceT(temp_storage).Reduce(row_local_absmax, cub::Max(), cols);
    if (threadIdx.x == 0) {
        // Save our block's absmax to shared memory for the quantization step.
        rowStats[row_id] = row_absmax;
Tim Dettmers's avatar
Tim Dettmers committed
1905
    }
1906
}
Tim Dettmers's avatar
Tim Dettmers committed
1907

1908
1909
1910
1911
template __global__ void
    kgetRowStats<half, 1024, 0>(half* __restrict__ A, float* rowStats, float threshold, int rows, int cols);
template __global__ void
    kgetRowStats<half, 1024, 1>(half* __restrict__ A, float* rowStats, float threshold, int rows, int cols);
Tim Dettmers's avatar
Tim Dettmers committed
1912

1913
1914
1915
1916
1917
1918
template __global__ void kInt8VectorQuant<half, 1024, 0>(
    half* __restrict__ A, int8_t* out, float* rowStats, float threshold, int rows, int cols
);
template __global__ void kInt8VectorQuant<half, 1024, 1>(
    half* __restrict__ A, int8_t* out, float* rowStats, float threshold, int rows, int cols
);
Tim Dettmers's avatar
Tim Dettmers committed
1919

1920
#define MM_DEQUANT_CONST 6.200012e-05f // 1.0f/(127.0f*127.0f)
Tim Dettmers's avatar
Tim Dettmers committed
1921

1922
1923
template <int ITEMS_PER_THREAD, int THREADS>
__global__ void kdequant_mm_int32_fp16(
1924
1925
    int* __restrict__ const A, float* __restrict__ const rowStats, float* __restrict__ const colStats, half* out,
    half* __restrict__ const bias, const int numRows, const int numCols, const int n
1926
) {
1927
    const int n_out = numRows * numCols;
Tim Dettmers's avatar
Tim Dettmers committed
1928

1929
1930
    int block_offset = blockIdx.x * THREADS * ITEMS_PER_THREAD;
    int thread_offset = threadIdx.x * ITEMS_PER_THREAD;
Tim Dettmers's avatar
Tim Dettmers committed
1931

1932
1933
    int local_values[ITEMS_PER_THREAD];
    half local_output[ITEMS_PER_THREAD];
1934

1935
1936
1937
    float local_rowStats[ITEMS_PER_THREAD];
    float local_colStats[ITEMS_PER_THREAD];
    float local_biasValue[ITEMS_PER_THREAD];
Tim Dettmers's avatar
Tim Dettmers committed
1938

1939
1940
    typedef cub::BlockLoad<int, THREADS, ITEMS_PER_THREAD, cub::BLOCK_LOAD_VECTORIZE> LoadInt32;
    __shared__ typename LoadInt32::TempStorage loadint32;
Tim Dettmers's avatar
Tim Dettmers committed
1941

1942
    int row_idx, col_idx;
Tim Dettmers's avatar
Tim Dettmers committed
1943

1944
1945
#pragma unroll ITEMS_PER_THREAD
    for (int j = 0; j < ITEMS_PER_THREAD; ++j) {
Tim Dettmers's avatar
Tim Dettmers committed
1946

1947
1948
        row_idx = (block_offset + thread_offset + j) / numCols;
        col_idx = (block_offset + thread_offset + j) % numCols;
Tim Dettmers's avatar
Tim Dettmers committed
1949

1950
1951
1952
1953
        local_colStats[j] = col_idx >= numCols ? 0.0f : __ldg(&colStats[col_idx]);
        local_rowStats[j] = row_idx >= numRows ? 0.0f : __ldg(&rowStats[row_idx]);
        local_biasValue[j] = ((bias == nullptr) || col_idx >= numCols) ? 0.0f : __half2float(bias[col_idx]);
    }
Tim Dettmers's avatar
Tim Dettmers committed
1954

1955
1956
1957
1958
    // Each block loads THREADS * ITEMS_PER_THREAD values from A
    int valid_items =
        block_offset + THREADS * ITEMS_PER_THREAD < n_out ? THREADS * ITEMS_PER_THREAD : n_out - block_offset;
    LoadInt32(loadint32).Load(&(A[block_offset]), local_values, valid_items, 0);
Tim Dettmers's avatar
Tim Dettmers committed
1959

1960
1961
1962
1963
1964
1965
#pragma unroll ITEMS_PER_THREAD
    for (int j = 0; j < ITEMS_PER_THREAD; ++j) {
        local_output[j] = __float2half(
            fmaf(local_values[j] * local_rowStats[j] * local_colStats[j], MM_DEQUANT_CONST, local_biasValue[j])
        );
    }
Tim Dettmers's avatar
Tim Dettmers committed
1966

1967
1968
1969
1970
1971
1972
#pragma unroll ITEMS_PER_THREAD
    for (int j = 0; j < ITEMS_PER_THREAD; j++) {
        int outIdx = block_offset + thread_offset + j;
        if (outIdx < n_out) {
            out[outIdx] = local_output[j];
        }
Tim Dettmers's avatar
Tim Dettmers committed
1973
1974
1975
    }
}

1976
#define DENORM 1.0f / 127.0f
Tim Dettmers's avatar
Tim Dettmers committed
1977
#define MAX_SPARSE_COUNT 32
1978
1979
#define SMEM_SIZE 8 * 256

1980
template <typename T, int SPMM_ITEMS, int BITS>
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
__global__ void kspmm_coo_very_sparse_naive(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, T* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
) {

    // 0. load balancing: We process rows with most columns first (count_vec)and we process one row per block
    //    If a block finishes, the next one is scheduled. Since the last blocks like have fewer
    //    elements they finish faster "fillin up" the gaps left by larger blocks

    // without tensor cores
    // 1. use rowidx_length to find what to load (as many blocks as there are rows)
    // 2. Load A into registers
    // 3. each warp loads all required rows of B but each warp is offset by k
    // 4. Do mma operations that accumulate into registers
    // 5. Each warp stores its output row into matrix C

    const int count = max_count[blockIdx.x];
    const int local_max_idx = max_idx[blockIdx.x];
    const int offset = local_max_idx == 0 ? 0 : offset_rowidx[local_max_idx - 1];
    const int local_row_idx = rowidx[offset];

    const int warp_id = threadIdx.x / 32;
    const int warp_idx = threadIdx.x % 32;
    const int warp_offset = (warp_id * 32) * SPMM_ITEMS;
    const int num_items = BITS == 8 ? 8 : 8;
    int idx_col_B = warp_offset;
    int local_idx_col_B_offset = 0;

    half local_valA[MAX_SPARSE_COUNT];
    int local_colidxA[MAX_SPARSE_COUNT];
    half local_valC[SPMM_ITEMS];
    T local_valsB[num_items];
    half local_valOut[num_items];
    // 128 byte loads per warp == 4 bytes per thread

    // 2. Load A into registers
    for (int j = 0; j < MAX_SPARSE_COUNT; j++) {
        local_valA[j] = j < count ? values[offset + j] : __float2half(0.0f);
        local_colidxA[j] = j < count ? colidx[offset + j] : 0;
Tim Dettmers's avatar
Tim Dettmers committed
2020
2021
    }

2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
    // each thread processes SPMM_ITEMS=32 per iteration. We have 256 threads. 32*256=x192
    // we expect each warp to be SPMM_ITEMS*32 apart
    // we have a total of 128 bytes for the bank with a bank size of 4 bytes
    // added 3 bytes = 6 values between warps should reduce bank conflicts
    __shared__ half smem_dequant_stats[SMEM_SIZE];

    while (idx_col_B < colsB) {

        if (dequant_stats != NULL) {
            for (int i = threadIdx.x; i < SMEM_SIZE; i += blockDim.x)
                if ((idx_col_B + i - local_idx_col_B_offset) < colsB)
                    smem_dequant_stats[i] = dequant_stats[idx_col_B + i - local_idx_col_B_offset];

            __syncthreads();
        }

#pragma unroll SPMM_ITEMS
        for (int j = 0; j < SPMM_ITEMS; j++)
            local_valC[j] = 0.0f;

#pragma unroll
        for (int i = 0; i < count; i++) {
            // 3. each warp loads all required rows of B but each warp is offset by k
            int row_offset = colsB * local_colidxA[i];

#pragma unroll SPMM_ITEMS
            for (int j = 0; j < SPMM_ITEMS; j += num_items) {
                // 4. Multiply the tile -> accumulate outputs in shared memory until 128 bytes it reached
                int idx = idx_col_B + (warp_idx * SPMM_ITEMS) + j;
                if (idx >= colsB) {
                    break;
                }
                if ((idx + num_items < colsB)) {
                    if (BITS == 8)
                        reinterpret_cast<float2(&)[num_items]>(local_valsB)[0] =
                            reinterpret_cast<float2*>(B)[(row_offset + idx) / num_items];
                    else
                        reinterpret_cast<float4(&)[num_items]>(local_valsB)[0] =
                            reinterpret_cast<float4*>(B)[(row_offset + idx) / num_items];
                } else {
#pragma unroll num_items
                    for (int k = 0; k < num_items; k++)
                        if (idx + k < colsB)
                            local_valsB[k] = B[row_offset + idx + k];
                        else
                            local_valsB[k] = 0.0f;
                }
#pragma unroll num_items
                for (int k = 0; k < num_items; k++) {
                    if (BITS == 8 && dequant_stats != NULL)
                    // we do texture cache reads (__ldg) on dequant_stats which should be super fast
                    {
                        float valB = local_valsB[k];
                        float valA = local_valA[i];
                        if (valB != 0.0 && valA != 0.0)
                            local_valC[j + k] =
                                (float)local_valC[j + k] +
                                ((float)smem_dequant_stats[idx + k - local_idx_col_B_offset]) * DENORM * valB * valA;
                    } else
                        local_valC[j + k] = (float)local_valC[j + k] + (float)local_valsB[k] * (float)local_valA[i];
                }
Tim Dettmers's avatar
Tim Dettmers committed
2083
2084
2085
            }
        }

2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
        int idx_row_C = (colsB * local_row_idx);

#pragma unroll SPMM_ITEMS
        for (int j = 0; j < SPMM_ITEMS; j += num_items) {
            // int idx_col_C =  idx_col_B + (32*j) + warp_idx;
            int idx_col_C = idx_col_B + warp_idx * SPMM_ITEMS + j;
            int idx_val = idx_col_C + idx_row_C;

            if (idx_col_C + num_items < colsB) {

                // load outputs to do inplace addition
                reinterpret_cast<float4(&)[num_items / 4]>(local_valOut)[0] =
                    reinterpret_cast<float4*>(out)[idx_val / num_items];

#pragma unroll num_items
                for (int k = 0; k < num_items; k++)
                    local_valC[(j / num_items) + k] = (float)local_valC[(j / num_items) + k] + (float)local_valOut[k];

                reinterpret_cast<float4*>(out)[idx_val / num_items] =
                    reinterpret_cast<float4(&)[num_items]>(local_valC)[j / num_items];
            } else {
#pragma unroll num_items
                for (int k = 0; k < num_items; k++)
                    if (idx_col_C + k < colsB)
                        out[idx_val + k] = (float)out[idx_val + k] + (float)local_valC[j + k];
            }
        }
Tim Dettmers's avatar
Tim Dettmers committed
2113

2114
2115
2116
        idx_col_B += blockDim.x * SPMM_ITEMS;
        local_idx_col_B_offset += blockDim.x * SPMM_ITEMS;
    }
Tim Dettmers's avatar
Tim Dettmers committed
2117
2118
}

2119
#define WARPS 3
2120
2121
2122

template <typename T, int BITS, int THREADS>
__global__ void gemm_device(int M, int N, int K, T* __restrict__ const A, T* B, T* out, int lda, int ldb, int ldc) {
Tim Dettmers's avatar
Tim Dettmers committed
2123
2124

#if __CUDA_ARCH__ >= 750
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
    using namespace nvcuda;
    int col_offset = blockIdx.x * 32;
    const int warp_id = threadIdx.x / 32;
    const int half_warp_id = threadIdx.x / 16;
    const int half_warp_lane = threadIdx.x % 16;
    const int batch_size_warps = (WARPS - 1) * 2;
    const int val_per_iter = blockDim.x - 32;

    T local_A[4];
    T local_B[128];

    const int a_tile_offset = 16;
    const int b_tile_offset = (16 * 32 + 16);

    __shared__ T smem_A[8 * 16 + (2 * 16 * (batch_size_warps - 1))];
    __shared__ T smem_B[2 * batch_size_warps * 16 * 32 + (2 * 16 * (batch_size_warps - 1))];
    //__shared__ T smem_C[8*32];

    wmma::fragment<wmma::matrix_a, 8, 32, 16, half, wmma::row_major> a_frag;
    wmma::fragment<wmma::matrix_b, 8, 32, 16, half, wmma::col_major> b_frag;
    wmma::fragment<wmma::accumulator, 8, 32, 16, half> c_frag;
    wmma::fill_fragment(c_frag, 0.0f);

    int ticktock = 0;
    int idx = 0 + threadIdx.x;
    int loaded_values = 0;
    // prefetch
    if (idx < K && warp_id < (WARPS - 1)) {
        if (loaded_values == 0) {
            local_A[0] = A[idx];
            local_A[1] = A[idx + (1 * val_per_iter)];
            local_A[2] = A[idx + (2 * val_per_iter)];
            local_A[3] = A[idx + (3 * val_per_iter)];

#pragma unroll 32
            for (int col = 0; col < 32; col++) {
                local_B[col] = B[(col_offset + col) * ldb + idx];
                local_B[col + 32] = B[(col_offset + col) * ldb + idx + (1 * val_per_iter)];
                local_B[col + 64] = B[(col_offset + col) * ldb + idx + (2 * val_per_iter)];
                local_B[col + 96] = B[(col_offset + col) * ldb + idx + (3 * val_per_iter)];
            }
            loaded_values = 3;
        } else {

            if (loaded_values == 3) {
                local_A[0] = local_A[1];
#pragma unroll 32
                for (int col = 0; col < 32; col++)
                    local_B[col] = local_B[col + (32)];
            } else if (loaded_values == 2) {
                local_A[0] = local_A[2];
#pragma unroll 32
                for (int col = 0; col < 32; col++)
                    local_B[col] = local_B[col + (64)];
            } else {
                local_A[0] = local_A[3];
#pragma unroll 32
                for (int col = 0; col < 32; col++)
                    local_B[col] = local_B[col + (96)];
            }
            loaded_values--;
        }
Tim Dettmers's avatar
Tim Dettmers committed
2187

2188
        smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = local_A[0];
Tim Dettmers's avatar
Tim Dettmers committed
2189

2190
2191
2192
2193
2194
2195
2196
#pragma unroll 32
        for (int col = 0; col < 32; col++)
            smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                local_B[col];
    } else if (warp_id < (WARPS - 1)) {
        local_A[0] = T(0.0);
        smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2197

2198
2199
2200
#pragma unroll 32
        for (int col = 0; col < 32; col++)
            local_B[col] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2201

2202
2203
2204
2205
2206
2207
#pragma unroll 32
        for (int col = 0; col < 32; col++)
            smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                0.0f;
    }
    ticktock = ticktock == 0 ? 1 : 0;
Tim Dettmers's avatar
Tim Dettmers committed
2208

2209
2210
2211
    // for(int base_idx = blockDim.x-32; base_idx < K; base_idx+=blockDim.x-32)
    for (int base_idx = blockDim.x - 32; base_idx < K; base_idx += blockDim.x - 32) {
        idx = base_idx + threadIdx.x;
Tim Dettmers's avatar
Tim Dettmers committed
2212

2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
        __syncthreads();
        if (idx < K && warp_id < (WARPS - 1)) {
            // local_A[0] = A[idx];

            // #pragma unroll 32
            // for(int col = 0; col < 32; col++)
            //   local_B[col] = B[(col_offset+col)*ldb+idx];
            if (loaded_values == 0) {
                local_A[0] = A[idx];
                local_A[1] = A[idx + (1 * val_per_iter)];
                local_A[2] = A[idx + (2 * val_per_iter)];
                local_A[3] = A[idx + (3 * val_per_iter)];

#pragma unroll 32
                for (int col = 0; col < 32; col++) {
                    local_B[col] = B[(col_offset + col) * ldb + idx];
                    local_B[col + 32] = B[(col_offset + col) * ldb + idx + (1 * val_per_iter)];
                    local_B[col + 64] = B[(col_offset + col) * ldb + idx + (2 * val_per_iter)];
                    local_B[col + 96] = B[(col_offset + col) * ldb + idx + (3 * val_per_iter)];
                }
                loaded_values = 3;

            } else {

                if (loaded_values == 3) {
                    local_A[0] = local_A[1];
#pragma unroll 32
                    for (int col = 0; col < 32; col++)
                        local_B[col] = local_B[col + (32)];
                } else if (loaded_values == 2) {
                    local_A[0] = local_A[2];
#pragma unroll 32
                    for (int col = 0; col < 32; col++)
                        local_B[col] = local_B[col + (64)];
                } else {
                    local_A[0] = local_A[3];
#pragma unroll 32
                    for (int col = 0; col < 32; col++)
                        local_B[col] = local_B[col + (96)];
                }
                loaded_values--;
            }

            smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = local_A[0];

#pragma unroll 32
            for (int col = 0; col < 32; col++)
                smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                    local_B[col];
        } else if (warp_id < (WARPS - 1)) {
            local_A[0] = T(0.0);
            smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2265

2266
2267
2268
#pragma unroll 32
            for (int col = 0; col < 32; col++)
                local_B[col] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2269

2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
#pragma unroll 32
            for (int col = 0; col < 32; col++)
                smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                    0.0f;
        }
        ticktock = ticktock == 0 ? 1 : 0;

        if (warp_id == (WARPS - 1))
            for (int k = 0; k < batch_size_warps; k++) {
                wmma::load_matrix_sync(
                    a_frag, &(smem_A[(ticktock * batch_size_warps + k) * a_tile_offset]), 16
                ); //  111 mu
                wmma::load_matrix_sync(
                    b_frag, &(smem_B[(ticktock * batch_size_warps + k) * b_tile_offset]), 16
                ); // 35 mu
                wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
            }
Tim Dettmers's avatar
Tim Dettmers committed
2287
    }
2288
2289
2290
2291

    __syncthreads();
    if (warp_id != (WARPS - 1)) {
        return;
Tim Dettmers's avatar
Tim Dettmers committed
2292
    }
2293
2294
    // only warp_id == (WARPS-1) from here
    int warp_lane = threadIdx.x % 32;
Tim Dettmers's avatar
Tim Dettmers committed
2295

2296
2297
2298
2299
    ticktock = ticktock == 0 ? 1 : 0;
    for (int k = 0; k < batch_size_warps; k++) {
        wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock * batch_size_warps + k) * a_tile_offset]), 16); //  111 mu
        wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock * batch_size_warps + k) * b_tile_offset]), 16); // 35 mu
Tim Dettmers's avatar
Tim Dettmers committed
2300
        wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
2301
2302
2303
2304
2305
2306
2307
2308
    }

    // 129 mu
    if (warp_id == (WARPS - 1))
        wmma::store_matrix_sync(&(smem_A[0]), c_frag, 32, wmma::mem_row_major);

    if (col_offset + warp_lane < M)
        out[col_offset + warp_lane] = smem_A[warp_lane];
Tim Dettmers's avatar
Tim Dettmers committed
2309
#endif
Tim Dettmers's avatar
Tim Dettmers committed
2310
2311
}

2312
2313
2314
2315
template <typename T> __device__ void printnonzero(T* A, int num_values, const char* strval) {
    for (int i = 0; i < num_values; i++)
        if ((float)A[i] != 0.0)
            printf("%s %i %f\n", strval, i, (float)A[i]);
Tim Dettmers's avatar
Tim Dettmers committed
2316
2317
}

2318
2319
2320
2321
2322
template <typename T, int THREADS>
__global__ void kgemm_4bit_inference(
    int M, int N, int K, T* __restrict__ const A, unsigned char* B, float* absmax, T* out, int lda, int ldb, int ldc,
    int blocksize
) {
Tim Dettmers's avatar
Tim Dettmers committed
2323

2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
    //// element-wise kernel
    //// 1. Load batch x k into registers
    //// 2. Load k x k into registers
    //// 3. dequantize and store in second pair of k x k
    //// 4. matmul
    //// 5. sum with cub
    //// 6. store outputs
    //// TC kernel
    //// use k warps per thread block
    //// 1. threadblock use read-only cache to read in register tile for A into shared memory
    //// 2. each warp loops over shared memory tiles of A of size 8x16 and loads them into fragments
    //// 3. each warp reads a segment of values 16x32 from B
    //// 4. do dequantization from register of B into second pair of registers
    //// 5. store (4) into fragment
    //// 6. matmul aggregate into fragment C
    //// 7. aggregate files of C into shared memory block C
    //// 8. sum (7)
    //// 9. write outputs to matmul output matrix
2342
#if __CUDA_ARCH__ >= 750
2343
2344
2345
2346
2347
2348
2349
    using namespace nvcuda;
    int col_offset = blockIdx.x * 32;
    const int warp_id = threadIdx.x / 32;
    const int warp_idx = threadIdx.x % 32;
    const int half_warp_id = threadIdx.x / 16;
    const int half_warp_lane = threadIdx.x % 16;
    const int batch_size_warps = (WARPS - 1) * 2;
Tim Dettmers's avatar
Tim Dettmers committed
2350

2351
2352
2353
2354
2355
2356
    T quant_map[16];

#pragma unroll 16
    for (int i = 0; i < 16; i++)
        quant_map[i] = nf4_data[i];
    //__shared__ T quant_map[16*160];
2357

2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
    T local_A[2];
    T local_B[64];
    unsigned char local_B_4bit[32];

    const int a_tile_offset = 16;
    const int b_tile_offset = (16 * 32 + 16);

    __shared__ T smem_A[8 * 16 + (16 * (batch_size_warps - 1))];
    __shared__ T smem_B[2 * batch_size_warps * 16 * 32 + (2 * 16 * (batch_size_warps - 1))];
    __shared__ T smem_C[8 * 32];

    wmma::fragment<wmma::matrix_a, 8, 32, 16, half, wmma::row_major> a_frag;
    wmma::fragment<wmma::matrix_b, 8, 32, 16, half, wmma::col_major> b_frag;
    wmma::fragment<wmma::accumulator, 8, 32, 16, half> c_frag;
    wmma::fill_fragment(c_frag, 0.0f);

    for (int i = threadIdx.x; i < (8 * 32); i += blockDim.x)
        smem_C[i] = 0.0f;

    __syncthreads();

    int ticktock = 0;
    int idx = 0 + threadIdx.x;
    int loaded_values = 0;
    // prefetch
    if (idx < K && warp_id < (WARPS - 1)) {
        if (loaded_values == 0) {
            local_A[0] = A[idx];
            local_A[1] = A[idx + blockDim.x - 32];

#pragma unroll 32
            for (int col = 0; col < 32; col++)
                local_B_4bit[col] = B[(col_offset + col) * ldb + idx];

            loaded_values = 1;
        } else {
            local_A[0] = local_A[1];
            loaded_values--;

#pragma unroll 64
            for (int col = 0; col < 64; col += 2) {
                // local_B[col] = dhDequantizeNF4(local_B_4bit[col/2] >> 4)*T(1.0f);
                // local_B[col+1] = dhDequantizeNF4(local_B_4bit[col/2] & 0x0F)*T(1.0f);
                // local_B[col] = d2DequantizeFP4(local_B_4bit[col/2] >> 4)*(float)(17.0);
                // local_B[col+1] = d2DequantizeFP4(local_B_4bit[col/2] & 0x0F)*(float)(17.0);
                // local_B[col] = 127*(local_B_4bit[col/2] >> 4)*(float)(17.0);
                // local_B[col+1] = 127*(local_B_4bit[col/2] & 0x0F)*(float)(17.0);

                // local_B[col] = quant_map[(local_B_4bit[col/2] >> 4)]*T(17.0);
                // local_B[col+1] = quant_map[(local_B_4bit[col/2] & 0x0F)]*T(17.0);
                local_B[col] = quant_map[160 * (local_B_4bit[col / 2] >> 4) + warp_idx] * T(17.0);
                local_B[col + 1] = quant_map[160 * (local_B_4bit[col / 2] & 0x0F) + warp_idx] * T(17.0);
            }
2411
        }
Tim Dettmers's avatar
Tim Dettmers committed
2412

2413
        smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = local_A[0];
2414

2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
#pragma unroll 32
        for (int col = 0; col < 32; col++)
            smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                local_B[col];
    } else if (warp_id < (WARPS - 1)) {
        local_A[0] = T(0.0);
        smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = 0.0f;

#pragma unroll 32
        for (int col = 0; col < 32; col++)
            local_B[col] = 0.0f;

#pragma unroll 32
        for (int col = 0; col < 32; col++)
            smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                0.0f;
2431
2432
    }
    ticktock = ticktock == 0 ? 1 : 0;
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
    // if(threadIdx.x == 0)
    // printf("aa %i %i\n", idx, loaded_values);

    // for(int base_idx = blockDim.x-32; base_idx < K; base_idx+=blockDim.x-32)
    for (int base_idx = blockDim.x - 32; base_idx < K; base_idx += blockDim.x - 32) {
        idx = base_idx + threadIdx.x;
        // if(threadIdx.x == 0)
        // printf("%i %i\n", idx, loaded_values);

        //__syncthreads();
        if (idx < K && warp_id < (WARPS - 1)) {
            if (loaded_values == 0) {
                local_A[0] = A[idx];
                local_A[1] = A[idx + blockDim.x - 32];

#pragma unroll 32
                for (int col = 0; col < 32; col++) {
                    local_B_4bit[col] = B[(col_offset + col) * ldb + idx];
                    local_B_4bit[col + 16] = B[(col_offset + col) * ldb + idx];
                }

                loaded_values = 1;
            } else {
                local_A[0] = local_A[1];
                loaded_values--;

                int absidx = (idx + col_offset) / blocksize;
                half local_absmax = __ldg(&(absmax[absidx]));

#pragma unroll 64
                for (int col = 0; col < 64; col += 2) {
                    // local_B[col] = dhDequantizeNF4(local_B_4bit[col/2] >> 4)*T(absidx);
                    // local_B[col+1] = dhDequantizeNF4(local_B_4bit[col/2] & 0x0F)*T(absidx);
                    // local_B[col] = T(127)*T(local_B_4bit[col/2] >> 4)*T(absidx);
                    // local_B[col+1] = T(127)*T(local_B_4bit[col/2] & 0x0F)*T(absidx);

                    // local_B[col] = quant_map[160*(local_B_4bit[col/2] >> 4)+warp_idx]*T(local_absmax);
                    // local_B[col+1] = quant_map[160*(local_B_4bit[col/2] & 0x0F)+warp_idx]*T(local_absmax);
                    local_B[col] = quant_map[(local_B_4bit[col / 2] >> 4)] * T(absidx);
                    local_B[col + 1] = quant_map[(local_B_4bit[col / 2] & 0x0F)] * T(absidx);
                }
                // printnonzero<T>(local_B, 128, "");
            }

            smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = local_A[0];
2478

2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
#pragma unroll 32
            for (int col = 0; col < 32; col++)
                smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                    local_B[col];
        } else if (warp_id < (WARPS - 1)) {
            local_A[0] = T(0.0);
            smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = 0.0f;

#pragma unroll 32
            for (int col = 0; col < 32; col++)
                local_B[col] = 0.0f;

#pragma unroll 32
            for (int col = 0; col < 32; col++)
                smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                    0.0f;
        }
        ticktock = ticktock == 0 ? 1 : 0;

        if (warp_id == (WARPS - 1))
            for (int k = 0; k < batch_size_warps; k++) {
                wmma::load_matrix_sync(
                    a_frag, &(smem_A[(ticktock * batch_size_warps + k) * a_tile_offset]), 16
                ); //  111 mu
                wmma::load_matrix_sync(
                    b_frag, &(smem_B[(ticktock * batch_size_warps + k) * b_tile_offset]), 16
                ); // 35 mu
                wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
            }
    }

    __syncthreads();
    // if(threadIdx.x == 0)
    //{
    //   printnonzero<T>(smem_A, 8*16 + (2*16*(batch_size_warps-1)), "A: ");
    //   printnonzero<T>(smem_B, 2*batch_size_warps*16*32 + (2*16*(batch_size_warps-1)), "B: ");
    // }
    if (warp_id != (WARPS - 1)) {
        return;
    }
    // only warp_id == (WARPS-1) from here
    int warp_lane = threadIdx.x % 32;

    ticktock = ticktock == 0 ? 1 : 0;
    for (int k = 0; k < batch_size_warps; k++) {
        // if(warp_lane == 0)
        // printf("%i %i %i %i\n", (ticktock*batch_size_warps + k)*a_tile_offset, k, ticktock, threadIdx.x);
        wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock * batch_size_warps + k) * a_tile_offset]), 16); //  111 mu
        wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock * batch_size_warps + k) * b_tile_offset]), 16); // 35 mu
2528
        wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
    }

    // 129 mu
    if (warp_id == (WARPS - 1))
        wmma::store_matrix_sync(&(smem_C[0]), c_frag, 32, wmma::mem_row_major);

    // printnonzero<T>(smem_C, 32, "");

    if (col_offset + warp_lane < M)
        out[col_offset + warp_lane] = smem_C[warp_lane];
2539
#endif
Tim Dettmers's avatar
Tim Dettmers committed
2540
2541
}

2542
#define num_values_4bit 32
2543

2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
template <typename T, int THREADS, int BITS>
__global__ void kgemm_4bit_inference_naive(
    int M, int N, int K, T* __restrict__ const A, unsigned char* B, float* absmax, const float* datatype, T* out,
    int lda, int ldb, int ldc, int blocksize
) {

    // per threadblock:
    // load step-by-step in chunks of [32,warps]: 1x32 * [32,warps] -> [1,warps]
    // 4 warps -> 4 loads per iter
    // 1x32 * 32x4 -> 1x4 outputs per thread block
    typedef cub::WarpReduce<float> WarpReduce;
    __shared__ typename WarpReduce::TempStorage temp_storage[THREADS / 32];

    const int warp_idx = threadIdx.x / 32;
    const int warp_lane = threadIdx.x % 32;
    const int row_B = (THREADS / 32) * blockIdx.x + warp_idx;
    const int offset_B = ldb * row_B;
    const int num_values_8bit = num_values_4bit / 2;
    float local_C = 0.0f;

    unsigned char local_B_4bit[num_values_8bit];
    T local_B[num_values_4bit / 4];
    T local_A[num_values_4bit / 4];
    __shared__ T quant_map[16];
    T local_absmax = T(0.0f);

    if (threadIdx.x < 16)
        quant_map[threadIdx.x] = T(__ldg(&datatype[threadIdx.x]));
    // for(int i = threadIdx.x; i < 16; i++)
    // quant_map[i] = T(__ldg(&datatype[i]));
    __syncthreads();

    // A: [1, K]
    // B: [N, K]
    for (int inner_idx = warp_lane * num_values_4bit; inner_idx < K; inner_idx += 32 * num_values_4bit) {
        const int inner_idx_halved = inner_idx / 2;

        // Since blocksize will always be a power-of-2, we avoid more expensive
        // division by the blocksize and instead use a shift operation.
        // This is equivalent to (i+threadId.x*NUM_PER_TH)/blocksize.
        const int absidx = ((2 * offset_B) + inner_idx) >> (31 - __clz(blocksize));

        local_absmax = __ldg(&(absmax[absidx]));

        if (row_B < M) {
            if ((inner_idx_halved + num_values_8bit) < (K / 2)) {
                // this is the most important for performance considerations
                reinterpret_cast<int4(&)[num_values_8bit]>(local_B_4bit)[0] =
                    reinterpret_cast<int4*>(B)[(offset_B + (inner_idx_halved)) / (num_values_8bit)];
            } else {
#pragma unroll
                for (int j = 0; j < (num_values_8bit); j++)
                    if ((inner_idx_halved) + j < (K / 2))
                        local_B_4bit[j] = B[offset_B + inner_idx_halved + j];
                    else
                        local_B_4bit[j] = 0b01110111;
            }
        } else {
#pragma unroll
            for (int j = 0; j < (num_values_8bit); j++)
                local_B_4bit[j] = 0b01110111;
Tim Dettmers's avatar
Tim Dettmers committed
2605
        }
2606

2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
        for (int i = 0; i < 4; i++) {
#pragma unroll
            for (int k = 0; k < num_values_8bit / 4; k++) {
#if BNB_BF16_AVAILABLE
                local_B[k * 2] = quant_map[local_B_4bit[(i * num_values_8bit / 4) + k] >> 4] * local_absmax;
                local_B[k * 2 + 1] = quant_map[local_B_4bit[(i * num_values_8bit / 4) + k] & 0x0F] * local_absmax;
#else
                // bf16 multipliation not supported
                local_B[k * 2] =
                    T((float)quant_map[local_B_4bit[(i * num_values_8bit / 4) + k] >> 4] * (float)local_absmax);
                local_B[k * 2 + 1] =
                    T((float)quant_map[local_B_4bit[(i * num_values_8bit / 4) + k] & 0x0F] * (float)local_absmax);
#endif
            }
2621

2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
            if (inner_idx + (num_values_4bit / 4) + (i * num_values_4bit / 4) < K) {
                // this is also relatively important for performance
                if (BITS == 16) {
                    reinterpret_cast<int4(&)[num_values_4bit]>(local_A)[0] =
                        reinterpret_cast<int4*>(A)[inner_idx / (num_values_4bit / 4) + i];
                } else {
                    reinterpret_cast<int4(&)[num_values_4bit]>(local_A)[0] =
                        reinterpret_cast<int4*>(A)[inner_idx / (num_values_4bit / 8) + (2 * i) + 0];
                    reinterpret_cast<int4(&)[num_values_4bit]>(local_A)[1] =
                        reinterpret_cast<int4*>(A)[inner_idx / (num_values_4bit / 8) + (2 * i) + 1];
                }
2633

2634
2635
2636
2637
2638
2639
2640
            } else
#pragma unroll
                for (int k = 0; k < num_values_4bit / 4; k++)
                    if (inner_idx + (i * num_values_4bit / 4) + k < K)
                        local_A[k] = A[inner_idx + k + (i * num_values_4bit / 4)];
                    else
                        local_A[k] = T(0.0f);
2641

2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
// accumulate in float; small performance hit for Ampere, but lower error for outputs
#pragma unroll
            for (int k = 0; k < num_values_4bit / 4; k++) {
#if BNB_BF16_AVAILABLE
                local_C += (float)(local_A[k] * local_B[k]);
#else
                // bf16 multipliation not supported
                local_C += ((float)local_A[k] * (float)local_B[k]);
#endif
            }
        }
    }

    local_C = WarpReduce(temp_storage[warp_idx]).Sum(local_C);

    if (row_B < M && warp_lane == 0)
        out[row_B] = T(local_C);
2659
2660
}

2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
template <typename T, int FUNC> __global__ void kfunc(T* A, T* B, T value, long n) {
    for (long i = (blockDim.x * blockIdx.x) + threadIdx.x; i < n; i += (blockDim.x * gridDim.x)) {
        switch (FUNC) {
        case FILL:
            A[i] = (T)value;
            break;
        case ARANGE:
            A[i] = (T)i;
            break;
        case _MUL:
            A[i] = A[i] * B[i];
            break;
        }
Tim Dettmers's avatar
Tim Dettmers committed
2674
2675
2676
    }
}

Tim Dettmers's avatar
Tim Dettmers committed
2677
2678
2679
2680
//==============================================================
//                   TEMPLATE DEFINITIONS
//==============================================================

2681
2682
2683
2684
template __global__ void kfunc<float, FILL>(float* A, float* B, float value, long n);
template __global__ void kfunc<unsigned char, FILL>(unsigned char* A, unsigned char* B, unsigned char value, long n);
template __global__ void kfunc<float, ARANGE>(float* A, float* B, float value, long n);
template __global__ void kfunc<float, _MUL>(float* A, float* B, float value, long n);
Tim Dettmers's avatar
Tim Dettmers committed
2685
2686

// these are not used and make no sense, but the compiler needs them
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
// template __global__ void gemm_device<float, 16, 128>(int M, int N, int K, float * __restrict__ const A,  float* B,
// float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 32, 256>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 192>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 160>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 128>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
// template __global__ void gemm_device<float, 16, 32>(int M, int N, int K, float * __restrict__ const A,  float* B,
// float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 32, 32>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 64>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 96>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
Tim Dettmers's avatar
Tim Dettmers committed
2712
2713
// these are not used and make no sense, but the compiler needs them

2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
// template __global__ void gemm_device<float, 32, 128>(int M, int N, int K, float * __restrict__ const A,  float* B,
// float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 16, 256>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 192>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 160>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 128>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
// template __global__ void gemm_device<float, 32, 32>(int M, int N, int K, float * __restrict__ const A,  float* B,
// float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 16, 32>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 64>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 96>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);

template __global__ void kgemm_4bit_inference<half, 96>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, half* out, int lda, int ldb,
    int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference<half, 128>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, half* out, int lda, int ldb,
    int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference<half, 160>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, half* out, int lda, int ldb,
    int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference<half, 256>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, half* out, int lda, int ldb,
    int ldc, int blocksize
);

template __global__ void kgemm_4bit_inference_naive<half, 128, 16>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, const float* datatype, half* out,
    int lda, int ldb, int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference_naive<__nv_bfloat16, 128, 16>(
    int M, int N, int K, __nv_bfloat16* __restrict__ const A, unsigned char* B, float* absmax, const float* datatype,
    __nv_bfloat16* out, int lda, int ldb, int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference_naive<float, 128, 32>(
    int M, int N, int K, float* __restrict__ const A, unsigned char* B, float* absmax, const float* datatype,
    float* out, int lda, int ldb, int ldc, int blocksize
);

template __global__ void kspmm_coo_very_sparse_naive<half, 8, 16>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, half* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<half, 16, 16>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, half* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<half, 32, 16>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, half* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<signed char, 8, 8>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, signed char* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<signed char, 16, 8>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, signed char* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<signed char, 32, 8>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, signed char* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);

template __global__ void kdequant_mm_int32_fp16<4, 512>(
    int* __restrict__ const A, float* __restrict__ const rowStats, float* __restrict__ const colStats, half* out,
    half* __restrict__ const bias, const int numRows, const int numCols, const int n
);
Tim Dettmers's avatar
Tim Dettmers committed
2799

Tim Dettmers's avatar
Tim Dettmers committed
2800
2801
2802
template __device__ unsigned char dQuantize<0>(float* smem_code, const float rand, float x);
template __device__ unsigned char dQuantize<1>(float* smem_code, const float rand, float x);

2803
2804
2805
2806
2807
#define MAKE_PreconditionOptimizer32bit1State(oname, gtype)                                                            \
    template __global__ void kPreconditionOptimizer32bit1State<gtype, oname, 4096, 8>(                                 \
        gtype * g, gtype * p, float* state1, float* unorm, const float beta1, const float beta2, const float eps,      \
        const float weight_decay, const int step, const float lr, const float gnorm_scale, const int n                 \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2808
2809
2810

MAKE_PreconditionOptimizer32bit1State(MOMENTUM, half)
MAKE_PreconditionOptimizer32bit1State(MOMENTUM, float)
2811
MAKE_PreconditionOptimizer32bit1State(MOMENTUM, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2812
2813
MAKE_PreconditionOptimizer32bit1State(RMSPROP, half)
MAKE_PreconditionOptimizer32bit1State(RMSPROP, float)
2814
MAKE_PreconditionOptimizer32bit1State(RMSPROP, __nv_bfloat16)
2815
2816
MAKE_PreconditionOptimizer32bit1State(LION, half)
MAKE_PreconditionOptimizer32bit1State(LION, float)
Tim Dettmers's avatar
Tim Dettmers committed
2817
MAKE_PreconditionOptimizer32bit1State(LION, __nv_bfloat16)
2818
2819
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, half)
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, float)
2820
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2821

2822
2823
2824
2825
2826
2827
#define MAKE_Optimizer32bit1State(oname, gtype)                                                                        \
    template __global__ void kOptimizer32bit1State<gtype, oname>(                                                      \
        gtype * g, gtype * p, float* state1, float* unorm, const float max_unorm, const float param_norm,              \
        const float beta1, const float beta2, const float eps, const float weight_decay, const int step,               \
        const float lr, const float gnorm_scale, const bool skip_zeros, const int n                                    \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2828
2829
2830

MAKE_Optimizer32bit1State(MOMENTUM, half)
MAKE_Optimizer32bit1State(MOMENTUM, float)
2831
MAKE_Optimizer32bit1State(MOMENTUM, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2832
2833
MAKE_Optimizer32bit1State(RMSPROP, half)
MAKE_Optimizer32bit1State(RMSPROP, float)
2834
MAKE_Optimizer32bit1State(RMSPROP, __nv_bfloat16)
2835
2836
MAKE_Optimizer32bit1State(LION, half)
MAKE_Optimizer32bit1State(LION, float)
Tim Dettmers's avatar
Tim Dettmers committed
2837
MAKE_Optimizer32bit1State(LION, __nv_bfloat16)
2838
2839
MAKE_Optimizer32bit1State(ADAGRAD, half)
MAKE_Optimizer32bit1State(ADAGRAD, float)
2840
MAKE_Optimizer32bit1State(ADAGRAD, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2841

2842
2843
2844
2845
2846
2847
#define MAKE_PreconditionOptimizer32bit2State(oname, gtype)                                                            \
    template __global__ void kPreconditionOptimizer32bit2State<gtype, oname, 4096, 8>(                                 \
        gtype * g, gtype * p, float* state1, float* state2, float* unorm, const float beta1, const float beta2,        \
        const float eps, const float weight_decay, const int step, const float lr, const float gnorm_scale,            \
        const int n                                                                                                    \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2848
2849

MAKE_PreconditionOptimizer32bit2State(ADAM, float)
2850
2851
MAKE_PreconditionOptimizer32bit2State(ADAM, half)
MAKE_PreconditionOptimizer32bit2State(ADAM, __nv_bfloat16)
2852
2853
2854
MAKE_PreconditionOptimizer32bit2State(ADEMAMIX, float)
MAKE_PreconditionOptimizer32bit2State(ADEMAMIX, half)
MAKE_PreconditionOptimizer32bit2State(ADEMAMIX, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2855

2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
template __global__ void kOptimizer32bit2State<float, ADAM>(
    float* g, float* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<half, ADAM>(
    half* g, half* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<__nv_bfloat16, ADAM>(
    __nv_bfloat16* g, __nv_bfloat16* p, float* state1, float* state2, float* unorm, const float max_unorm,
    const float param_norm, const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<float, ADEMAMIX>(
    float* g, float* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<half, ADEMAMIX>(
    half* g, half* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<__nv_bfloat16, ADEMAMIX>(
    __nv_bfloat16* g, __nv_bfloat16* p, float* state1, float* state2, float* unorm, const float max_unorm,
    const float param_norm, const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);

#define MAKE_PreconditionStatic8bit1State(oname, gtype)                                                                \
    template __global__ void kPreconditionOptimizerStatic8bit1State<gtype, oname>(                                     \
        gtype * p, gtype* __restrict__ const g, unsigned char* __restrict__ const state1, float* unorm,                \
        const float beta1, const float beta2, const float eps, const int step, float* __restrict__ const quantiles1,   \
        float* max1, float* new_max1, const float weight_decay, const float gnorm_scale, const int n                   \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2899
2900
2901
2902
2903

MAKE_PreconditionStatic8bit1State(MOMENTUM, half)
MAKE_PreconditionStatic8bit1State(MOMENTUM, float)
MAKE_PreconditionStatic8bit1State(RMSPROP, half)
MAKE_PreconditionStatic8bit1State(RMSPROP, float)
2904
2905
MAKE_PreconditionStatic8bit1State(LION, half)
MAKE_PreconditionStatic8bit1State(LION, float)
2906
2907
MAKE_PreconditionStatic8bit1State(ADAGRAD, half)
MAKE_PreconditionStatic8bit1State(ADAGRAD, float)
Tim Dettmers's avatar
Tim Dettmers committed
2908

2909
2910
2911
2912
2913
2914
2915
#define MAKE_optimizerStatic8bit1State(oname, gtype)                                                                   \
    template __global__ void kOptimizerStatic8bit1State<gtype, oname>(                                                 \
        gtype * p, gtype* const g, unsigned char* state1, const float* unorm, const float max_unorm,                   \
        const float param_norm, const float beta1, const float beta2, const float eps, const int step, const float lr, \
        float* __restrict__ const quantiles1, float* max1, float* new_max1, float weight_decay,                        \
        const float gnorm_scale, const int n                                                                           \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2916
2917
2918
2919
2920

MAKE_optimizerStatic8bit1State(MOMENTUM, half)
MAKE_optimizerStatic8bit1State(MOMENTUM, float)
MAKE_optimizerStatic8bit1State(RMSPROP, half)
MAKE_optimizerStatic8bit1State(RMSPROP, float)
2921
2922
MAKE_optimizerStatic8bit1State(LION, half)
MAKE_optimizerStatic8bit1State(LION, float)
2923
2924
2925
MAKE_optimizerStatic8bit1State(ADAGRAD, half)
MAKE_optimizerStatic8bit1State(ADAGRAD, float)

2926
2927
2928
2929
2930
2931
2932
#define MAKE_PreconditionStatic8bit2State(oname, gtype)                                                                \
    template __global__ void kPreconditionOptimizerStatic8bit2State<gtype, oname>(                                     \
        gtype * p, gtype* __restrict__ const g, unsigned char* __restrict__ const state1,                              \
        unsigned char* __restrict__ const state2, float* unorm, const float beta1, const float beta2, const float eps, \
        const int step, float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* max1,       \
        float* max2, float* new_max1, float* new_max2, const float gnorm_scale, const int n                            \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2933
2934
2935
2936

MAKE_PreconditionStatic8bit2State(ADAM, half)
MAKE_PreconditionStatic8bit2State(ADAM, float)

2937
2938
2939
2940
2941
2942
2943
2944
#define MAKE_optimizerStatic8bit2State(oname, gtype)                                                                   \
    template __global__ void kOptimizerStatic8bit2State<gtype, oname>(                                                 \
        gtype * p, gtype* const g, unsigned char* state1, unsigned char* state2, const float* unorm,                   \
        const float max_unorm, const float param_norm, const float beta1, const float beta2, const float eps,          \
        const int step, const float lr, float* __restrict__ const quantiles1, float* __restrict__ const quantiles2,    \
        float* max1, float* max2, float* new_max1, float* new_max2, float weight_decay, const float gnorm_scale,       \
        const int n                                                                                                    \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2945
2946
2947
2948

MAKE_optimizerStatic8bit2State(ADAM, half)
MAKE_optimizerStatic8bit2State(ADAM, float)

2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
template __global__ void
    kPercentileClipping<float, 2048, 4>(float* __restrict__ g, float* gnorm_vec, int step, const int n);
template __global__ void
    kPercentileClipping<half, 2048, 4>(half* __restrict__ g, float* gnorm_vec, int step, const int n);

#define MAKE_kQuantizeBlockwise(dtype, blocksize, num_per_thread, stochastic, data_type_name)                          \
    template __global__ void kQuantizeBlockwise<dtype, blocksize, num_per_thread, stochastic, data_type_name>(         \
        float* code, dtype* __restrict__ const A, float* absmax, unsigned char* out, float* __restrict__ const rand,   \
        const int rand_offset, const int n                                                                             \
    );

MAKE_kQuantizeBlockwise(half, 4096, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 4096, 4, 1, General8bit)
MAKE_kQuantizeBlockwise(half, 2048, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 1024, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 512, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 256, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 128, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 64, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 4096, 4, 0, FP4)
MAKE_kQuantizeBlockwise(half, 2048, 4, 0, FP4)
MAKE_kQuantizeBlockwise(half, 1024, 4, 0, FP4)
MAKE_kQuantizeBlockwise(half, 512, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half, 256, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half, 128, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half, 64, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half, 4096, 4, 0, NF4)
MAKE_kQuantizeBlockwise(half, 2048, 4, 0, NF4)
MAKE_kQuantizeBlockwise(half, 1024, 4, 0, NF4)
MAKE_kQuantizeBlockwise(half, 512, 2, 0, NF4)
MAKE_kQuantizeBlockwise(half, 256, 2, 0, NF4)
MAKE_kQuantizeBlockwise(half, 128, 2, 0, NF4)
MAKE_kQuantizeBlockwise(half, 64, 2, 0, NF4)
Tim Dettmers's avatar
Tim Dettmers committed
2982
2983
2984
2985
MAKE_kQuantizeBlockwise(float, 4096, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 4096, 4, 1, General8bit)
MAKE_kQuantizeBlockwise(float, 2048, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 1024, 4, 0, General8bit)
2986
2987
2988
2989
MAKE_kQuantizeBlockwise(float, 512, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 256, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 128, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 64, 2, 0, General8bit)
Tim Dettmers's avatar
Tim Dettmers committed
2990
2991
2992
MAKE_kQuantizeBlockwise(float, 4096, 4, 0, FP4)
MAKE_kQuantizeBlockwise(float, 2048, 4, 0, FP4)
MAKE_kQuantizeBlockwise(float, 1024, 4, 0, FP4)
2993
2994
2995
2996
MAKE_kQuantizeBlockwise(float, 512, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float, 256, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float, 128, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float, 64, 2, 0, FP4)
Tim Dettmers's avatar
Tim Dettmers committed
2997
2998
2999
MAKE_kQuantizeBlockwise(float, 4096, 4, 0, NF4)
MAKE_kQuantizeBlockwise(float, 2048, 4, 0, NF4)
MAKE_kQuantizeBlockwise(float, 1024, 4, 0, NF4)
3000
3001
3002
3003
MAKE_kQuantizeBlockwise(float, 512, 2, 0, NF4)
MAKE_kQuantizeBlockwise(float, 256, 2, 0, NF4)
MAKE_kQuantizeBlockwise(float, 128, 2, 0, NF4)
MAKE_kQuantizeBlockwise(float, 64, 2, 0, NF4)
Tim Dettmers's avatar
Tim Dettmers committed
3004

3005
3006
3007
3008
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 1, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 2048, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 1024, 4, 0, General8bit)
3009
3010
3011
3012
MAKE_kQuantizeBlockwise(__nv_bfloat16, 512, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 256, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 128, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 64, 2, 0, General8bit)
3013
3014
3015
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 2048, 4, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 1024, 4, 0, FP4)
3016
3017
3018
3019
MAKE_kQuantizeBlockwise(__nv_bfloat16, 512, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 256, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 128, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 64, 2, 0, FP4)
3020
3021
3022
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 2048, 4, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 1024, 4, 0, NF4)
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
MAKE_kQuantizeBlockwise(__nv_bfloat16, 512, 2, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 256, 2, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 128, 2, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 64, 2, 0, NF4)

template __global__ void kDequantizeBlockwise<half, 512, 64, 8, FP4>(
    float* code, unsigned char* A, float* absmax, half* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<half, 512, 64, 8, General8bit>(
    float* code, unsigned char* A, float* absmax, half* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<half, 512, 64, 8, NF4>(
    float* code, unsigned char* A, float* absmax, half* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<float, 512, 64, 8, FP4>(
    float* code, unsigned char* A, float* absmax, float* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<float, 512, 64, 8, General8bit>(
    float* code, unsigned char* A, float* absmax, float* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<float, 512, 64, 8, NF4>(
    float* code, unsigned char* A, float* absmax, float* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, FP4>(
    float* code, unsigned char* A, float* absmax, __nv_bfloat16* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, General8bit>(
    float* code, unsigned char* A, float* absmax, __nv_bfloat16* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, NF4>(
    float* code, unsigned char* A, float* absmax, __nv_bfloat16* out, const int blocksize, const int n
);

#define MAKE_OptimizerStatic8bit2StateBlockwise(oname, gtype, block_size, num_per_thread)                              \
    template __global__ void kOptimizerStatic8bit2StateBlockwise<gtype, oname, block_size, num_per_thread>(            \
        gtype * p, gtype* __restrict__ const g, unsigned char* state1, unsigned char* state2, const float beta1,       \
        const float beta2, const float beta3, const float alpha, const float eps, const int step, const float lr,      \
        float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* absmax1, float* absmax2,    \
        float weight_decay, const float gnorm_scale, const bool skip_zeros, const int n                                \
    );
Tim Dettmers's avatar
Tim Dettmers committed
3063

3064
3065
3066
3067
3068
3069
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, float, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, half, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADEMAMIX, float, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADEMAMIX, half, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADEMAMIX, __nv_bfloat16, 256, 1)
Tim Dettmers's avatar
Tim Dettmers committed
3070

3071
3072
3073
3074
3075
3076
#define MAKE_OptimizerStatic8bit1StateBlockwise(oname, gtype, block_size, num_per_thread)                              \
    template __global__ void kOptimizerStatic8bit1StateBlockwise<gtype, oname, block_size, num_per_thread>(            \
        gtype * p, gtype* __restrict__ const g, unsigned char* state1, const float beta1, const float beta2,           \
        const float eps, const int step, const float lr, float* __restrict__ const quantiles1, float* absmax1,         \
        float weight_decay, const float gnorm_scale, const bool skip_zeros, const int n                                \
    );
Tim Dettmers's avatar
Tim Dettmers committed
3077

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(LION, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(LION, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(LION, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, __nv_bfloat16, 256, 1)
3090

3091
3092
template __device__ void printnonzero<float>(float* A, int num_values, const char* strval);
template __device__ void printnonzero<half>(half* A, int num_values, const char* strval);