utils.py 55.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
15
"""Common utilities."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
import base64
17
import builtins
18
import ctypes
19
import dataclasses
20
import io
21
import ipaddress
22
import itertools
23
import json
24
import logging
Lianmin Zheng's avatar
Lianmin Zheng committed
25
import os
26
import pickle
Lianmin Zheng's avatar
Lianmin Zheng committed
27
import random
Lianmin Zheng's avatar
Lianmin Zheng committed
28
import re
29
import resource
30
31
import shutil
import signal
Lianmin Zheng's avatar
Lianmin Zheng committed
32
import socket
33
import subprocess
34
import sys
Lianmin Zheng's avatar
Lianmin Zheng committed
35
import tempfile
36
import threading
Lianmin Zheng's avatar
Lianmin Zheng committed
37
import time
38
import traceback
39
import warnings
40
from contextlib import contextmanager
41
from functools import lru_cache
42
from importlib.metadata import PackageNotFoundError, version
43
from importlib.util import find_spec
Lianmin Zheng's avatar
Lianmin Zheng committed
44
from io import BytesIO
45
from multiprocessing.reduction import ForkingPickler
46
from pathlib import Path
47
from typing import Any, Callable, Dict, List, Optional, Protocol, Set, Tuple, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
48
49

import numpy as np
50
import psutil
Lianmin Zheng's avatar
Lianmin Zheng committed
51
52
import requests
import torch
53
import torch.distributed
54
import torch.distributed as dist
55
import triton
56
import zmq
57
from fastapi.responses import ORJSONResponse
58
from packaging import version as pkg_version
Mick's avatar
Mick committed
59
from PIL import Image
Lianmin Zheng's avatar
Lianmin Zheng committed
60
from starlette.routing import Mount
61
from torch import nn
62
from torch.func import functional_call
63
from torch.library import Library
64
from torch.profiler import ProfilerActivity, profile, record_function
65
from torch.utils._contextlib import _DecoratorContextManager
66
67
68
69
70
71
from triton.runtime.cache import (
    FileCacheManager,
    default_cache_dir,
    default_dump_dir,
    default_override_dir,
)
72

73
74
logger = logging.getLogger(__name__)

Liangsheng Yin's avatar
Liangsheng Yin committed
75
76
show_time_cost = False
time_infos = {}
Lianmin Zheng's avatar
Lianmin Zheng committed
77

78
79
HIP_FP8_E4M3_FNUZ_MAX = 224.0

Lianmin Zheng's avatar
Lianmin Zheng committed
80

81
82
83
84
85
def get_bool_env_var(name: str, default: str = "false") -> bool:
    value = os.getenv(name, default)
    return value.lower() in ("true", "1")


86
# https://pytorch.org/docs/stable/notes/hip.html#checking-for-hip
87
88
89
90
def is_hip() -> bool:
    return torch.version.hip is not None


91
92
93
94
95
96
97
98
99
100
101
if is_hip():
    FP8_E4M3_MAX = HIP_FP8_E4M3_FNUZ_MAX
else:
    FP8_E4M3_MAX = torch.finfo(torch.float8_e4m3fn).max

FP8_E4M3_MIN = -FP8_E4M3_MAX

builtins.FP8_E4M3_MAX = FP8_E4M3_MAX
builtins.FP8_E4M3_MIN = FP8_E4M3_MIN


102
103
104
105
def is_rocm() -> bool:
    return torch.cuda.is_available() and torch.version.hip


106
def is_cuda():
107
    return torch.cuda.is_available() and torch.version.cuda
108
109
110
111
112
113
114
115
116
117
118
119
120
121


def is_cuda_alike():
    return is_cuda() or is_hip()


def is_hpu() -> bool:
    return hasattr(torch, "hpu") and torch.hpu.is_available()


def is_xpu() -> bool:
    return hasattr(torch, "xpu") and torch.xpu.is_available()


122
123
124
125
126
def is_flashinfer_available():
    """
    Check whether flashinfer is available.
    As of Oct. 6, 2024, it is only available on NVIDIA GPUs.
    """
127
    if not get_bool_env_var("SGLANG_IS_FLASHINFER_AVAILABLE", default="true"):
128
        return False
129
    return is_cuda()
130
131


132
def is_cuda_available():
133
    return is_cuda()
134
135


136
_ENABLE_TORCH_INFERENCE_MODE = get_bool_env_var(
137
    "SGLANG_ENABLE_TORCH_INFERENCE_MODE", "false"
138
)
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192


class DynamicGradMode(_DecoratorContextManager):
    """
    A combination of torch.no_grad and torch.inference_mode,
    with their behavior controlled by an environment variable. Just refer to them.
    """

    @staticmethod
    def set_inference_mode(mode: bool):
        if isinstance(mode, bool):
            global _ENABLE_TORCH_INFERENCE_MODE

            _ENABLE_TORCH_INFERENCE_MODE = mode
        else:
            logger.warning("mode is not a boolean object")

    def __init__(self, mode=True):
        if not torch._jit_internal.is_scripting():
            super().__init__()
        if _ENABLE_TORCH_INFERENCE_MODE:
            self.mode = mode
        else:
            self.prev = False

    def __new__(cls, mode_or_orig_func=True if _ENABLE_TORCH_INFERENCE_MODE else None):
        if mode_or_orig_func is None or isinstance(mode_or_orig_func, bool):
            return super().__new__(cls)
        return cls()(mode_or_orig_func)

    def __enter__(self) -> None:
        if _ENABLE_TORCH_INFERENCE_MODE:
            self._inference_mode_context = torch._C._InferenceMode(self.mode)
            self._inference_mode_context.__enter__()
        else:
            self.prev = torch.is_grad_enabled()
            torch.set_grad_enabled(False)

    def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
        if _ENABLE_TORCH_INFERENCE_MODE:
            self._inference_mode_context.__exit__(exc_type, exc_value, traceback)
        else:
            torch.set_grad_enabled(self.prev)

    def clone(self) -> "DynamicGradMode":
        r"""
        Create a copy of this class
        """
        if _ENABLE_TORCH_INFERENCE_MODE:
            return self.__class__(self.mode)
        else:
            return self.__class__()


Liangsheng Yin's avatar
Liangsheng Yin committed
193
194
195
196
def enable_show_time_cost():
    global show_time_cost
    show_time_cost = True

Lianmin Zheng's avatar
Lianmin Zheng committed
197

Liangsheng Yin's avatar
Liangsheng Yin committed
198
199
200
201
202
203
class TimeInfo:
    def __init__(self, name, interval=0.1, color=0, indent=0):
        self.name = name
        self.interval = interval
        self.color = color
        self.indent = indent
Lianmin Zheng's avatar
Lianmin Zheng committed
204

Liangsheng Yin's avatar
Liangsheng Yin committed
205
206
        self.acc_time = 0
        self.last_acc_time = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
207

Liangsheng Yin's avatar
Liangsheng Yin committed
208
209
210
211
212
    def check(self):
        if self.acc_time - self.last_acc_time > self.interval:
            self.last_acc_time = self.acc_time
            return True
        return False
Lianmin Zheng's avatar
Lianmin Zheng committed
213

Liangsheng Yin's avatar
Liangsheng Yin committed
214
215
216
217
    def pretty_print(self):
        print(f"\x1b[{self.color}m", end="")
        print("-" * self.indent * 2, end="")
        print(f"{self.name}: {self.acc_time:.3f}s\x1b[0m")
Lianmin Zheng's avatar
Lianmin Zheng committed
218
219


Liangsheng Yin's avatar
Liangsheng Yin committed
220
221
222
223
def mark_start(name, interval=0.1, color=0, indent=0):
    global time_infos, show_time_cost
    if not show_time_cost:
        return
Lianmin Zheng's avatar
Lianmin Zheng committed
224
    torch.cuda.synchronize()
Liangsheng Yin's avatar
Liangsheng Yin committed
225
226
227
    if time_infos.get(name, None) is None:
        time_infos[name] = TimeInfo(name, interval, color, indent)
    time_infos[name].acc_time -= time.time()
Lianmin Zheng's avatar
Lianmin Zheng committed
228
229


Liangsheng Yin's avatar
Liangsheng Yin committed
230
231
232
233
def mark_end(name):
    global time_infos, show_time_cost
    if not show_time_cost:
        return
Lianmin Zheng's avatar
Lianmin Zheng committed
234
    torch.cuda.synchronize()
Liangsheng Yin's avatar
Liangsheng Yin committed
235
236
237
    time_infos[name].acc_time += time.time()
    if time_infos[name].check():
        time_infos[name].pretty_print()
Lianmin Zheng's avatar
Lianmin Zheng committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258


def calculate_time(show=False, min_cost_ms=0.0):
    def wrapper(func):
        def inner_func(*args, **kwargs):
            torch.cuda.synchronize()
            if show:
                start_time = time.time()
            result = func(*args, **kwargs)
            torch.cuda.synchronize()
            if show:
                cost_time = (time.time() - start_time) * 1000
                if cost_time > min_cost_ms:
                    print(f"Function {func.__name__} took {cost_time} ms to run.")
            return result

        return inner_func

    return wrapper


259
def get_available_gpu_memory(device, gpu_id, distributed=False, empty_cache=True):
Lianmin Zheng's avatar
Lianmin Zheng committed
260
261
262
263
    """
    Get available memory for cuda:gpu_id device.
    When distributed is True, the available memory is the minimum available memory of all GPUs.
    """
Zhang, Liangang's avatar
Zhang, Liangang committed
264
    if device == "cuda":
265
        num_gpus = cuda_device_count_stateless()
Zhang, Liangang's avatar
Zhang, Liangang committed
266
267
268
269
270
271
272
273
        assert gpu_id < num_gpus

        if torch.cuda.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.cuda.current_device()}, ",
                "which may cause useless memory allocation for torch CUDA context.",
            )

274
275
        if empty_cache:
            torch.cuda.empty_cache()
Zhang, Liangang's avatar
Zhang, Liangang committed
276
277
278
279
280
281
282
283
284
285
286
        free_gpu_memory, _ = torch.cuda.mem_get_info(gpu_id)

    elif device == "xpu":
        num_gpus = torch.xpu.device_count()
        assert gpu_id < num_gpus

        if torch.xpu.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.xpu.current_device()}, ",
                "which may cause useless memory allocation for torch XPU context.",
            )
287
288
289

        if empty_cache:
            torch.xpu.empty_cache()
Zhang, Liangang's avatar
Zhang, Liangang committed
290
291
292
        used_memory = torch.xpu.memory_allocated()
        total_gpu_memory = torch.xpu.get_device_properties(gpu_id).total_memory
        free_gpu_memory = total_gpu_memory - used_memory
Lianmin Zheng's avatar
Lianmin Zheng committed
293

294
295
296
297
298
299
300
301
302
303
304
305
    elif device == "hpu":
        num_gpus = torch.hpu.device_count()
        assert gpu_id < num_gpus

        if torch.hpu.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.hpu.current_device()}, ",
                "which may cause useless memory allocation for torch HPU context.",
            )

        free_gpu_memory, total_gpu_memory = torch.hpu.mem_get_info()

306
307
308
309
    elif device == "cpu":
        # TODO: rename the variables in the current function to be not GPU specific
        free_gpu_memory = psutil.virtual_memory().available

Lianmin Zheng's avatar
Lianmin Zheng committed
310
311
    if distributed:
        tensor = torch.tensor(free_gpu_memory, dtype=torch.float32).to(
Zhang, Liangang's avatar
Zhang, Liangang committed
312
            torch.device(device, gpu_id)
Lianmin Zheng's avatar
Lianmin Zheng committed
313
314
315
316
317
318
319
        )
        torch.distributed.all_reduce(tensor, op=torch.distributed.ReduceOp.MIN)
        free_gpu_memory = tensor.item()

    return free_gpu_memory / (1 << 30)


320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
def is_pin_memory_available() -> bool:
    return torch.cuda.is_available()


_CPU_OFFLOAD_BYTES = 0
_CPU_OFFLOAD_MAX_BYTES = 0


def set_cpu_offload_max_bytes(max_bytes: int) -> None:
    global _CPU_OFFLOAD_MAX_BYTES, _CPU_OFFLOAD_BYTES
    _CPU_OFFLOAD_BYTES = 0
    _CPU_OFFLOAD_MAX_BYTES = max_bytes


def maybe_offload_to_cpu(module: torch.nn.Module) -> torch.nn.Module:
    device = next(module.parameters()).device

    if device == torch.device("cpu"):
        return module

    global _CPU_OFFLOAD_MAX_BYTES, _CPU_OFFLOAD_BYTES
    if _CPU_OFFLOAD_BYTES >= _CPU_OFFLOAD_MAX_BYTES:
        return module

    pin_memory = is_pin_memory_available()
    # offload parameters to CPU
    # use pin_memory if possible, which helps cudagraph capture speed
    offloaded_parameters = False
    for p in module.parameters():
        if _CPU_OFFLOAD_BYTES >= _CPU_OFFLOAD_MAX_BYTES:
            # we use per-parameter offloading
            # one module might have some parameters offloaded and some not
            break

        # `torch.empty_like` does not support `pin_memory` argument
        cpu_data = torch.empty_strided(
            size=p.data.size(),
            stride=p.data.stride(),
            dtype=p.data.dtype,
            layout=p.data.layout,
            device="cpu",
            pin_memory=pin_memory,
        )
        cpu_data.copy_(p.data)
        p.data = cpu_data
        _CPU_OFFLOAD_BYTES += p.data.numel() * p.data.element_size()
        offloaded_parameters = True

    if offloaded_parameters:
        original_forward = module.forward

        def forward(*args, **kwargs):
            module.forward = original_forward
            device_state = {
                # here we blindly call `to(device)`
                # if the parameter is already on the device, it will be a no-op
                k: v.to(device, non_blocking=True)
                for k, v in module.state_dict().items()
            }
            output = functional_call(module, device_state, args=args, kwargs=kwargs)
            module.forward = forward
            return output

        module.forward = forward

    return module


class LayerFn(Protocol):

    def __call__(self, layer_id: int, prefix: str) -> torch.nn.Module: ...


def make_layers(
    num_hidden_layers: int,
    layer_fn: LayerFn,
    prefix: str = "",
) -> Tuple[int, int, torch.nn.ModuleList]:
    """Make a list of layers with the given layer function"""
    modules = torch.nn.ModuleList(
        [
401
            maybe_offload_to_cpu(layer_fn(idx=idx, prefix=add_prefix(idx, prefix)))
402
403
404
405
406
407
            for idx in range(num_hidden_layers)
        ]
    )
    return modules


Lianmin Zheng's avatar
Lianmin Zheng committed
408
def set_random_seed(seed: int) -> None:
409
    """Set the random seed for all libraries."""
Lianmin Zheng's avatar
Lianmin Zheng committed
410
    random.seed(seed)
411
    np.random.seed(seed)
Lianmin Zheng's avatar
Lianmin Zheng committed
412
413
414
415
416
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)


417
def is_port_available(port):
418
    """Return whether a port is available."""
419
420
    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
        try:
421
            s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
422
            s.bind(("", port))
423
            s.listen(1)
424
425
426
            return True
        except socket.error:
            return False
TianYu GUO's avatar
TianYu GUO committed
427
428
        except OverflowError:
            return False
429
430


Yuanhan Zhang's avatar
Yuanhan Zhang committed
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
def decode_video_base64(video_base64):
    from PIL import Image

    # Decode the base64 string
    video_bytes = base64.b64decode(video_base64)

    # Placeholder for the start indices of each PNG image
    img_starts = []

    frame_format = "PNG"  # str(os.getenv('FRAME_FORMAT', "JPEG"))

    assert frame_format in [
        "PNG",
        "JPEG",
    ], "FRAME_FORMAT must be either 'PNG' or 'JPEG'"

    if frame_format == "PNG":
        # Find each PNG start signature to isolate images
        i = 0
        while i < len(video_bytes) - 7:  # Adjusted for the length of the PNG signature
            # Check if we found the start of a PNG file
            if (
                video_bytes[i] == 0x89
                and video_bytes[i + 1] == 0x50
                and video_bytes[i + 2] == 0x4E
                and video_bytes[i + 3] == 0x47
                and video_bytes[i + 4] == 0x0D
                and video_bytes[i + 5] == 0x0A
                and video_bytes[i + 6] == 0x1A
                and video_bytes[i + 7] == 0x0A
            ):
                img_starts.append(i)
                i += 8  # Skip the PNG signature
            else:
                i += 1
    else:
        # Find each JPEG start (0xFFD8) to isolate images
        i = 0
        while (
            i < len(video_bytes) - 1
        ):  # Adjusted for the length of the JPEG SOI signature
            # Check if we found the start of a JPEG file
            if video_bytes[i] == 0xFF and video_bytes[i + 1] == 0xD8:
                img_starts.append(i)
                # Move to the next byte to continue searching for the next image start
                i += 2
            else:
                i += 1

    frames = []
    for start_idx in img_starts:
        # Assuming each image is back-to-back, the end of one image is the start of another
        # The last image goes until the end of the byte string
        end_idx = (
            img_starts[img_starts.index(start_idx) + 1]
            if img_starts.index(start_idx) + 1 < len(img_starts)
            else len(video_bytes)
        )
        img_bytes = video_bytes[start_idx:end_idx]

        # Convert bytes to a PIL Image
        img = Image.open(BytesIO(img_bytes))

        # Convert PIL Image to a NumPy array
        frame = np.array(img)

        # Append the frame to the list of frames
        frames.append(frame)

    # Ensure there's at least one frame to avoid errors with np.stack
    if frames:
        return np.stack(frames, axis=0), img.size
    else:
        return np.array([]), (
            0,
            0,
        )  # Return an empty array and size tuple if no frames were found
Lianmin Zheng's avatar
Lianmin Zheng committed
508
509


Mick's avatar
Mick committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
def load_audio(audio_file: str, sr: int = 16000, mono: bool = True) -> np.ndarray:
    # Use soundfile here, since librosa use it under the hood,
    # and librosa will not support audio loading in the future
    import soundfile as sf
    from scipy.signal import resample

    # print(f"loading {audio_file}")
    # Load audio data
    if isinstance(audio_file, bytes):
        audio, original_sr = sf.read(BytesIO(audio_file))
    elif audio_file.startswith("data:"):
        audio_file = audio_file.split(",")[1]
        audio, original_sr = sf.read(BytesIO(base64.b64decode(audio_file)))
    elif isinstance(audio_file, str):
        audio, original_sr = sf.read(audio_file)
    else:
        raise ValueError(f"Invalid audio format: {audio_file}")

    # Resample audio if the original sample rate is different from the desired sample rate
    if original_sr != sr:
        num_samples = int(len(audio) * float(sr) / original_sr)
        audio = resample(audio, num_samples)

    # Convert to mono if requested and audio is stereo
    if mono and len(audio.shape) > 1:
        audio = np.mean(audio, axis=1)

    return audio

Lianmin Zheng's avatar
Lianmin Zheng committed
539

Mick's avatar
Mick committed
540
def load_image(image_file: Union[str, bytes]) -> tuple[Image, tuple[int, int]]:
Yuanhan Zhang's avatar
Yuanhan Zhang committed
541
    image = image_size = None
Lianmin Zheng's avatar
Lianmin Zheng committed
542

543
544
545
    if isinstance(image_file, bytes):
        image = Image.open(BytesIO(image_file))
    elif image_file.startswith("http://") or image_file.startswith("https://"):
Lianmin Zheng's avatar
Lianmin Zheng committed
546
        timeout = int(os.getenv("REQUEST_TIMEOUT", "3"))
547
548
549
        response = requests.get(image_file, stream=True, timeout=timeout).raw
        image = Image.open(response)
        response.close()
Lianmin Zheng's avatar
Lianmin Zheng committed
550
551
552
    elif image_file.lower().endswith(("png", "jpg", "jpeg", "webp", "gif")):
        image = Image.open(image_file)
    elif image_file.startswith("data:"):
553
        image_file = image_file.split(",")[1]
Lianmin Zheng's avatar
Lianmin Zheng committed
554
        image = Image.open(BytesIO(base64.b64decode(image_file)))
Yuanhan Zhang's avatar
Yuanhan Zhang committed
555
556
557
    elif image_file.startswith("video:"):
        image_file = image_file.replace("video:", "")
        image, image_size = decode_video_base64(image_file)
558
    elif isinstance(image_file, str):
Lianmin Zheng's avatar
Lianmin Zheng committed
559
        image = Image.open(BytesIO(base64.b64decode(image_file)))
560
561
    else:
        raise ValueError(f"Invalid image: {image}")
Lianmin Zheng's avatar
Lianmin Zheng committed
562

Yuanhan Zhang's avatar
Yuanhan Zhang committed
563
    return image, image_size
564
565


566
def suppress_other_loggers():
Yineng Zhang's avatar
Yineng Zhang committed
567
568
569
570
    try:
        from vllm.logger import logger as vllm_default_logger
    except ImportError:
        return
571
572

    vllm_default_logger.setLevel(logging.WARN)
573
574
575
    logging.getLogger("vllm.distributed.device_communicators.pynccl").setLevel(
        logging.WARN
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
576
577
578
    logging.getLogger("vllm.distributed.device_communicators.shm_broadcast").setLevel(
        logging.WARN
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
579
    logging.getLogger("vllm.config").setLevel(logging.ERROR)
580

581
582
583
584
    warnings.filterwarnings(
        "ignore", category=UserWarning, message="The given NumPy array is not writable"
    )

585

586
def assert_pkg_version(pkg: str, min_version: str, message: str):
587
588
589
590
    try:
        installed_version = version(pkg)
        if pkg_version.parse(installed_version) < pkg_version.parse(min_version):
            raise Exception(
591
                f"{pkg} is installed with version {installed_version}, which "
Ying Sheng's avatar
Ying Sheng committed
592
                f"is less than the minimum required version {min_version}. " + message
593
594
            )
    except PackageNotFoundError:
Yuanhan Zhang's avatar
Yuanhan Zhang committed
595
        raise Exception(
Ying Sheng's avatar
Ying Sheng committed
596
597
            f"{pkg} with minimum required version {min_version} is not installed. "
            + message
Yuanhan Zhang's avatar
Yuanhan Zhang committed
598
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
599
600


601
602
def kill_process_tree(parent_pid, include_parent: bool = True, skip_pid: int = None):
    """Kill the process and all its child processes."""
603
604
605
606
    # Remove sigchld handler to avoid spammy logs.
    if threading.current_thread() is threading.main_thread():
        signal.signal(signal.SIGCHLD, signal.SIG_DFL)

607
608
609
    if parent_pid is None:
        parent_pid = os.getpid()
        include_parent = False
Lianmin Zheng's avatar
Lianmin Zheng committed
610

611
    try:
612
        itself = psutil.Process(parent_pid)
613
614
615
    except psutil.NoSuchProcess:
        return

Lianmin Zheng's avatar
Lianmin Zheng committed
616
    children = itself.children(recursive=True)
617
    for child in children:
618
619
        if child.pid == skip_pid:
            continue
620
621
622
623
624
        try:
            child.kill()
        except psutil.NoSuchProcess:
            pass

625
    if include_parent:
626
        try:
Lianmin Zheng's avatar
Lianmin Zheng committed
627
628
629
630
            if parent_pid == os.getpid():
                itself.kill()
                sys.exit(0)

631
            itself.kill()
632

633
634
635
636
637
            # Sometime processes cannot be killed with SIGKILL (e.g, PID=1 launched by kubernetes),
            # so we send an additional signal to kill them.
            itself.send_signal(signal.SIGQUIT)
        except psutil.NoSuchProcess:
            pass
638
639


640
def monkey_patch_p2p_access_check():
641
    """
642
    Monkey patch the slow p2p access check.
643
644
645
    NOTE: We assume the p2p access is always allowed, which can be wrong for some setups.
    """

646
    import sglang.srt.distributed.device_communicators.custom_all_reduce_utils as tgt
Liangsheng Yin's avatar
Liangsheng Yin committed
647

648
    setattr(tgt, "gpu_p2p_access_check", lambda *arg, **kwargs: True)
649

Lianmin Zheng's avatar
Lianmin Zheng committed
650
    # Suppress the warnings from this delete function when using sglang.bench_one_batch
651
652
653
    from sglang.srt.distributed.device_communicators.custom_all_reduce import (
        CustomAllreduce,
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
654
655
656

    setattr(CustomAllreduce, "__del__", lambda *args, **kwargs: None)

657

658
def monkey_patch_vllm_gguf_config():
Yineng Zhang's avatar
Yineng Zhang committed
659
660
661
662
663
664
665
666
    try:
        from vllm.model_executor.layers.quantization.gguf import (
            GGUFConfig,
            GGUFEmbeddingMethod,
            GGUFLinearMethod,
        )
    except ImportError:
        return
667

Yineng Zhang's avatar
Yineng Zhang committed
668
    from sglang.srt.layers.linear import LinearBase
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
    from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding

    def get_quant_method_with_embedding_replaced(
        self, layer: torch.nn.Module, prefix: str
    ) -> Optional["QuantizeMethodBase"]:
        if isinstance(layer, LinearBase):
            return GGUFLinearMethod(self)
        elif isinstance(layer, VocabParallelEmbedding):
            # patch to own VocabParallelEmbedding
            return GGUFEmbeddingMethod(self)
        return None

    setattr(GGUFConfig, "get_quant_method", get_quant_method_with_embedding_replaced)


684
685
686
687
688
689
def maybe_set_triton_cache_manager() -> None:
    """Set environment variable to tell Triton to use a
    custom cache manager"""
    cache_manger = os.environ.get("TRITON_CACHE_MANAGER", None)
    if cache_manger is None:
        manager = "sglang.srt.utils:CustomCacheManager"
690
        logger.debug("Setting Triton cache manager to: %s", manager)
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
        os.environ["TRITON_CACHE_MANAGER"] = manager


class CustomCacheManager(FileCacheManager):
    # Adapted from: https://github.com/tdoublep/vllm/blob/3307522289fdfefe323b6c00d0db696651989a2f/vllm/triton_utils/custom_cache_manager.py
    def __init__(self, key, override=False, dump=False):

        self.key = key
        self.lock_path = None
        if dump:
            self.cache_dir = default_dump_dir()
            self.cache_dir = os.path.join(self.cache_dir, self.key)
            self.lock_path = os.path.join(self.cache_dir, "lock")
            os.makedirs(self.cache_dir, exist_ok=True)
        elif override:
            self.cache_dir = default_override_dir()
            self.cache_dir = os.path.join(self.cache_dir, self.key)
        else:
            # create cache directory if it doesn't exist
            self.cache_dir = (
                os.getenv("TRITON_CACHE_DIR", "").strip() or default_cache_dir()
            )
            if self.cache_dir:
                self.cache_dir = f"{self.cache_dir}_{os.getpid()}"
                self.cache_dir = os.path.join(self.cache_dir, self.key)
                self.lock_path = os.path.join(self.cache_dir, "lock")
                os.makedirs(self.cache_dir, exist_ok=True)
            else:
                raise RuntimeError("Could not create or locate cache dir")


722
723
724
725
726
727
728
729
def set_ulimit(target_soft_limit=65535):
    resource_type = resource.RLIMIT_NOFILE
    current_soft, current_hard = resource.getrlimit(resource_type)

    if current_soft < target_soft_limit:
        try:
            resource.setrlimit(resource_type, (target_soft_limit, current_hard))
        except ValueError as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
730
            logger.warning(f"Fail to set RLIMIT_NOFILE: {e}")
731
732


733
def add_api_key_middleware(app, api_key: str):
734
735
736
737
738
739
740
    @app.middleware("http")
    async def authentication(request, call_next):
        if request.method == "OPTIONS":
            return await call_next(request)
        if request.url.path.startswith("/health"):
            return await call_next(request)
        if request.headers.get("Authorization") != "Bearer " + api_key:
741
            return ORJSONResponse(content={"error": "Unauthorized"}, status_code=401)
742
        return await call_next(request)
743
744


745
def prepare_model_and_tokenizer(model_path: str, tokenizer_path: str):
746
    if get_bool_env_var("SGLANG_USE_MODELSCOPE"):
747
748
749
        if not os.path.exists(model_path):
            from modelscope import snapshot_download

750
751
            model_path = snapshot_download(model_path)
            tokenizer_path = snapshot_download(
752
753
                tokenizer_path, ignore_patterns=["*.bin", "*.safetensors"]
            )
754
    return model_path, tokenizer_path
755
756
757


def configure_logger(server_args, prefix: str = ""):
758
759
760
761
762
763
764
765
766
767
    if SGLANG_LOGGING_CONFIG_PATH := os.getenv("SGLANG_LOGGING_CONFIG_PATH"):
        if not os.path.exists(SGLANG_LOGGING_CONFIG_PATH):
            raise Exception(
                "Setting SGLANG_LOGGING_CONFIG_PATH from env with "
                f"{SGLANG_LOGGING_CONFIG_PATH} but it does not exist!"
            )
        with open(SGLANG_LOGGING_CONFIG_PATH, encoding="utf-8") as file:
            custom_config = json.loads(file.read())
        logging.config.dictConfig(custom_config)
        return
768
    format = f"[%(asctime)s{prefix}] %(message)s"
Lianmin Zheng's avatar
Lianmin Zheng committed
769
    # format = f"[%(asctime)s.%(msecs)03d{prefix}] %(message)s"
770
771
772
    logging.basicConfig(
        level=getattr(logging, server_args.log_level.upper()),
        format=format,
773
        datefmt="%Y-%m-%d %H:%M:%S",
774
775
        force=True,
    )
776
777
778
779
780
781
782
783
784
785
786


# source: https://github.com/vllm-project/vllm/blob/93b38bea5dd03e1b140ca997dfaadef86f8f1855/vllm/lora/utils.py#L9
def replace_submodule(
    model: nn.Module, module_name: str, new_module: nn.Module
) -> nn.Module:
    """Replace a submodule in a model with a new module."""
    parent = model.get_submodule(".".join(module_name.split(".")[:-1]))
    target_name = module_name.split(".")[-1]
    setattr(parent, target_name, new_module)
    return new_module
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806


def set_weight_attrs(
    weight: torch.Tensor,
    weight_attrs: Optional[Dict[str, Any]],
):
    """Set attributes on a weight tensor.

    This method is used to set attributes on a weight tensor. This method
    will not overwrite existing attributes.

    Args:
        weight: The weight tensor.
        weight_attrs: A dictionary of attributes to set on the weight tensor.
    """
    if weight_attrs is None:
        return
    for key, value in weight_attrs.items():
        assert not hasattr(weight, key), f"Overwriting existing tensor attribute: {key}"
        setattr(weight, key, value)
807
808
809


def broadcast_pyobj(
810
811
812
    data: List[Any],
    rank: int,
    dist_group: Optional[torch.distributed.ProcessGroup] = None,
813
    src: int = 0,
814
815
816
817
818
819
):
    """Broadcast inputs from rank=0 to all other ranks with torch.dist backend."""

    if rank == 0:
        if len(data) == 0:
            tensor_size = torch.tensor([0], dtype=torch.long)
820
            dist.broadcast(tensor_size, src=src, group=dist_group)
821
822
823
        else:
            serialized_data = pickle.dumps(data)
            size = len(serialized_data)
824
825
826
            tensor_data = torch.ByteTensor(
                np.frombuffer(serialized_data, dtype=np.uint8)
            )
827
828
            tensor_size = torch.tensor([size], dtype=torch.long)

829
830
            dist.broadcast(tensor_size, src=src, group=dist_group)
            dist.broadcast(tensor_data, src=src, group=dist_group)
831
832
833
        return data
    else:
        tensor_size = torch.tensor([0], dtype=torch.long)
834
        dist.broadcast(tensor_size, src=src, group=dist_group)
835
836
837
838
839
840
        size = tensor_size.item()

        if size == 0:
            return []

        tensor_data = torch.empty(size, dtype=torch.uint8)
841
        dist.broadcast(tensor_data, src=src, group=dist_group)
842

843
        serialized_data = bytes(tensor_data.cpu().numpy())
844
845
        data = pickle.loads(serialized_data)
        return data
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876


step_counter = 0


def pytorch_profile(name, func, *args, data_size=-1):
    """
    Args:
        name (string): the name of recorded function.
        func: the function to be profiled.
        args: the arguments of the profiled function.
        data_size (int): some measurement of the computation complexity.
            Usually, it could be the batch size.
    """
    global step_counter
    os.makedirs("trace", exist_ok=True)
    with profile(
        activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
        # schedule=torch.profiler.schedule(wait=1, warmup=1, active=3, repeat=2),
        # on_trace_ready=tensorboard_trace_handler('./log_dir'),
        record_shapes=True,
        profile_memory=True,
        with_stack=True,
    ) as prof:
        with record_function(name):
            with open(f"trace/size_{step_counter}.json", "w") as f:
                json.dump({"size": data_size}, f)
            result = func(*args)
    prof.export_chrome_trace(f"trace/{name}_{step_counter}.json")
    step_counter += 1
    return result
877
878


Lianmin Zheng's avatar
Lianmin Zheng committed
879
880
881
def get_zmq_socket(
    context: zmq.Context, socket_type: zmq.SocketType, endpoint: str, bind: bool
):
882
883
884
885
886
887
888
889
    mem = psutil.virtual_memory()
    total_mem = mem.total / 1024**3
    available_mem = mem.available / 1024**3
    if total_mem > 32 and available_mem > 16:
        buf_size = int(0.5 * 1024**3)
    else:
        buf_size = -1

890
    socket = context.socket(socket_type)
891
892

    def set_send_opt():
893
        socket.setsockopt(zmq.SNDHWM, 0)
894
        socket.setsockopt(zmq.SNDBUF, buf_size)
895
896

    def set_recv_opt():
897
        socket.setsockopt(zmq.RCVHWM, 0)
898
        socket.setsockopt(zmq.RCVBUF, buf_size)
899
900
901
902
903
904
905
906

    if socket_type == zmq.PUSH:
        set_send_opt()
    elif socket_type == zmq.PULL:
        set_recv_opt()
    elif socket_type == zmq.DEALER:
        set_send_opt()
        set_recv_opt()
907
908
909
    else:
        raise ValueError(f"Unsupported socket type: {socket_type}")

Lianmin Zheng's avatar
Lianmin Zheng committed
910
911
912
913
914
    if bind:
        socket.bind(endpoint)
    else:
        socket.connect(endpoint)

915
    return socket
916
917
918


def dump_to_file(dirpath, name, value):
919
    from sglang.srt.distributed import get_tensor_model_parallel_rank
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956

    if get_tensor_model_parallel_rank() != 0:
        return

    os.makedirs(dirpath, exist_ok=True)
    if value.dtype is torch.bfloat16:
        value = value.float()
    value = value.cpu().numpy()
    output_filename = os.path.join(dirpath, f"pytorch_dump_{name}.npy")
    logger.info(f"Dump a tensor to {output_filename}. Shape = {value.shape}")
    np.save(output_filename, value)


def is_triton_3():
    return triton.__version__.startswith("3.")


def maybe_torch_compile(*args, **kwargs):
    """
    torch.compile does not work for triton 2.2.0, which is needed in xlm1's jax.
    Therefore, we disable it here.
    """

    def decorator(func):
        if is_triton_3():
            return torch.compile(*args, **kwargs)(func)
        return func

    return decorator


def delete_directory(dirpath):
    try:
        # This will remove the directory and all its contents
        shutil.rmtree(dirpath)
    except OSError as e:
        print(f"Warning: {dirpath} : {e.strerror}")
Lianmin Zheng's avatar
Lianmin Zheng committed
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982


# Temporary directory for prometheus multiprocess mode
# Cleaned up automatically when this object is garbage collected
prometheus_multiproc_dir: tempfile.TemporaryDirectory


def set_prometheus_multiproc_dir():
    # Set prometheus multiprocess directory
    # sglang uses prometheus multiprocess mode
    # we need to set this before importing prometheus_client
    # https://prometheus.github.io/client_python/multiprocess/
    global prometheus_multiproc_dir

    if "PROMETHEUS_MULTIPROC_DIR" in os.environ:
        logger.debug("User set PROMETHEUS_MULTIPROC_DIR detected.")
        prometheus_multiproc_dir = tempfile.TemporaryDirectory(
            dir=os.environ["PROMETHEUS_MULTIPROC_DIR"]
        )
    else:
        prometheus_multiproc_dir = tempfile.TemporaryDirectory()
        os.environ["PROMETHEUS_MULTIPROC_DIR"] = prometheus_multiproc_dir.name
    logger.debug(f"PROMETHEUS_MULTIPROC_DIR: {os.environ['PROMETHEUS_MULTIPROC_DIR']}")


def add_prometheus_middleware(app):
983
    # We need to import prometheus_client after setting the env variable `PROMETHEUS_MULTIPROC_DIR`
Lianmin Zheng's avatar
Lianmin Zheng committed
984
985
986
987
988
989
990
991
992
    from prometheus_client import CollectorRegistry, make_asgi_app, multiprocess

    registry = CollectorRegistry()
    multiprocess.MultiProcessCollector(registry)
    metrics_route = Mount("/metrics", make_asgi_app(registry=registry))

    # Workaround for 307 Redirect for /metrics
    metrics_route.path_regex = re.compile("^/metrics(?P<path>.*)$")
    app.routes.append(metrics_route)
993
994


995
996
997
998
999
1000
1001
1002
1003
def bind_port(port):
    """Bind to a specific port, assuming it's available."""
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)  # Allows address reuse
    sock.bind(("", port))
    sock.listen(1)
    return sock


HAI's avatar
HAI committed
1004
1005
1006
1007
def get_amdgpu_memory_capacity():
    try:
        # Run rocm-smi and capture the output
        result = subprocess.run(
1008
            [
HAI's avatar
HAI committed
1009
                "rocminfo | grep 'gfx' -A 100 | grep 'Pool 1' -A 5 | grep 'Size:' | awk '{print $2}'"
1010
            ],
HAI's avatar
HAI committed
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            shell=True,
            text=True,
        )
        if result.returncode != 0:
            raise RuntimeError(f"rocm-smi error: {result.stderr.strip()}")

        # Parse the output to extract memory values in MiB
        memory_values = [
1021
            float(mem.split("(")[0].strip()) / 1024
HAI's avatar
HAI committed
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
            for mem in result.stdout.strip().split("\n")
        ]

        if not memory_values:
            raise ValueError("No GPU memory values found.")

        # Return the minimum memory value
        return min(memory_values)

    except FileNotFoundError:
        raise RuntimeError(
            "rocm-smi not found. Ensure AMD ROCm drivers are installed and accessible."
        )


1037
1038
1039
1040
1041
1042
1043
def get_device_sm():
    if torch.cuda.is_available():
        major, minor = torch.cuda.get_device_capability()
        return major * 10 + minor
    return 0


HAI's avatar
HAI committed
1044
def get_nvgpu_memory_capacity():
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
    try:
        # Run nvidia-smi and capture the output
        result = subprocess.run(
            ["nvidia-smi", "--query-gpu=memory.total", "--format=csv,noheader,nounits"],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            text=True,
        )

        if result.returncode != 0:
            raise RuntimeError(f"nvidia-smi error: {result.stderr.strip()}")

        # Parse the output to extract memory values
        memory_values = [
            float(mem)
            for mem in result.stdout.strip().split("\n")
            if re.match(r"^\d+(\.\d+)?$", mem.strip())
        ]

        if not memory_values:
            raise ValueError("No GPU memory values found.")

        # Return the minimum memory value
        return min(memory_values)

    except FileNotFoundError:
        raise RuntimeError(
            "nvidia-smi not found. Ensure NVIDIA drivers are installed and accessible."
        )
1074
1075


1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
def get_hpu_memory_capacity():
    try:
        # Run hl-smi and capture the output
        result = subprocess.run(
            ["hl-smi --query | grep 'Total'"],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            shell=True,
            text=True,
        )

        if result.returncode != 0:
            raise RuntimeError(f"hl-smi error: {result.stderr.strip()}")

        # Parse the output to extract memory values in MiB
        memory_values = [
            float(mem.split(" ")[-2]) for mem in result.stdout.strip().split("\n")
        ]

        if not memory_values:
            raise ValueError("No GPU memory values found.")

        # Return the minimum memory value
        return min(memory_values)

    except FileNotFoundError:
        raise RuntimeError(
            "hl-smi not found. Ensure Habana drivers are installed and accessible."
        )


1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
# Copy from pytorch and OpenRLHF to allow creating multiple main groups.
# https://github.com/pytorch/pytorch/blob/main/torch/distributed/distributed_c10d.py
# https://github.com/OpenRLHF/OpenRLHF/blob/main/openrlhf/utils/distributed_util.py
def init_custom_process_group(
    backend=None,
    init_method=None,
    timeout=None,
    world_size=-1,
    rank=-1,
    store=None,
    group_name=None,
    pg_options=None,
):
    from torch.distributed.distributed_c10d import (
        Backend,
        PrefixStore,
        _new_process_group_helper,
        _world,
        default_pg_timeout,
        rendezvous,
    )

    assert (store is None) or (
        init_method is None
    ), "Cannot specify both init_method and store."

    if store is not None:
        assert world_size > 0, "world_size must be positive if using store"
        assert rank >= 0, "rank must be non-negative if using store"
    elif init_method is None:
        init_method = "env://"

    if backend:
        backend = Backend(backend)
    else:
        backend = Backend("undefined")

    if timeout is None:
        timeout = default_pg_timeout

    # backward compatible API
    if store is None:
        rendezvous_iterator = rendezvous(init_method, rank, world_size, timeout=timeout)
        store, rank, world_size = next(rendezvous_iterator)
        store.set_timeout(timeout)

        # Use a PrefixStore to avoid accidental overrides of keys used by
        # different systems (e.g. RPC) in case the store is multi-tenant.
        store = PrefixStore(group_name, store)

    # NOTE: The pg_options parameter was renamed into backend_options in PyTorch 2.6.0
    # https://github.com/pytorch/pytorch/commit/a0c7029a75628cd5fa8df83c0de0ea98ee7fd844
    # We need to determine the appropriate parameter name based on PyTorch version
    pg_options_param_name = (
        "backend_options" if str(torch.__version__) >= "2.6" else "pg_options"
    )
    pg, _ = _new_process_group_helper(
        world_size,
        rank,
        [],
        backend,
        store,
        group_name=group_name,
        **{pg_options_param_name: pg_options},
        timeout=timeout,
    )

    _world.pg_group_ranks[pg] = {i: i for i in range(world_size)}

    return pg


1179
1180
def crash_on_warnings():
    # Crash on warning if we are running CI tests
1181
    return get_bool_env_var("SGLANG_IS_IN_CI")
1182
1183


1184
1185
1186
1187
1188
def print_warning_once(msg: str) -> None:
    # Set the stacklevel to 2 to print the caller's line info
    logger.warning(msg, stacklevel=2)


1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
def get_device_name(device_id: int = 0) -> str:
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        return torch.cuda.get_device_name(device_id)

    if hasattr(torch, "xpu") and torch.xpu.is_available():
        return torch.xpu.get_device_name(device_id)

    if hasattr(torch, "hpu") and torch.hpu.is_available():
        return torch.hpu.get_device_name(device_id)


1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
@lru_cache(maxsize=1)
def is_habana_available() -> bool:
    return find_spec("habana_frameworks") is not None


@lru_cache(maxsize=8)
def get_device(device_id: Optional[int] = None) -> str:
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        if device_id is None:
            return "cuda"
        return "cuda:{}".format(device_id)

    if hasattr(torch, "xpu") and torch.xpu.is_available():
        if device_id == None:
            return "xpu"
        return "xpu:{}".format(device_id)

    if is_habana_available():
        try:
            import habana_frameworks.torch.hpu

            if torch.hpu.is_available():
                if device_id == None:
                    return "hpu"
                return "hpu:{}".format(device_id)
        except ImportError as e:
            raise ImportError(
                "Habana frameworks detected, but failed to import 'habana_frameworks.torch.hpu'."
            )

    raise RuntimeError("No accelerator (CUDA, XPU, HPU) is available.")


@lru_cache(maxsize=1)
def get_device_count() -> int:
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        try:
            return torch.cuda.device_count()
        except RuntimeError:
            return 0

    if hasattr(torch, "xpu") and torch.xpu.is_available():
        try:
            return torch.xpu.device_count()
        except RuntimeError:
            return 0

    if is_habana_available():
        try:
            import habana_frameworks.torch.hpu

            if torch.hpu.is_available():
                return torch.hpu.device_count()
        except (ImportError, RuntimeError):
            return 0

    return 0  # No accelerators available


1259
1260
1261
1262
1263
1264
1265
def get_device_core_count(device_id: int = 0) -> int:
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        return torch.cuda.get_device_properties(device_id).multi_processor_count

    return 0


1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
def get_device_capability(device_id: int = 0) -> Tuple[int, int]:
    major, minor = None, None
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        major, minor = torch.cuda.get_device_capability(device_id)

    if hasattr(torch, "xpu") and torch.xpu.is_available():
        major, minor, *_ = torch.xpu.get_device_capability(device_id)["version"].split(
            "."
        )
        major, minor = int(major), int(minor)

    if hasattr(torch, "hpu") and torch.hpu.is_available():
        try:
1279
1280
1281
1282
            # TODO(HandH1998): `get_device_capability` is not supported by `torch.hpu` for now.
            # Update this once the support is available.
            # major, minor = torch.hpu.get_device_capability(device_id)
            major, minor = None, None
1283
1284
1285
1286
1287
1288
1289
1290
        except Exception as e:
            raise RuntimeError(
                f"An error occurred while getting device capability of hpu: {e}."
            ) from e

    return major, minor


1291
1292
1293
1294
1295
1296
1297
def get_compiler_backend() -> str:
    if hasattr(torch, "hpu") and torch.hpu.is_available():
        return "hpu_backend"

    return "inductor"


1298
1299
1300
sglang_lib = Library("sglang", "FRAGMENT")  # noqa


1301
1302
1303
1304
1305
1306
# Some backends use pytorch version < 2.4.0 which doesn't
# support `torch.library.custom_op`.
def supports_custom_op() -> bool:
    return hasattr(torch.library, "custom_op")


1307
1308
1309
1310
1311
1312
1313
def direct_register_custom_op(
    op_name: str,
    op_func: Callable,
    mutates_args: List[str],
    fake_impl: Optional[Callable] = None,
    target_lib: Optional[Library] = None,
):
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
    """
    `torch.library.custom_op` can have significant overhead because it
    needs to consider complicated dispatching logic. This function
    directly registers a custom op and dispatches it to the CUDA backend.
    See https://gist.github.com/youkaichao/ecbea9ec9fc79a45d2adce1784d7a9a5
    for more details.

    By default, the custom op is registered to the vLLM library. If you
    want to register it to a different library, you can pass the library
    object to the `target_lib` argument.

    IMPORTANT: the lifetime of the operator is tied to the lifetime of the
    library object. If you want to bind the operator to a different library,
    make sure the library object is alive when the operator is used.
    """
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
    import torch.library

    if hasattr(torch.library, "infer_schema"):
        schema_str = torch.library.infer_schema(op_func, mutates_args=mutates_args)
    else:
        # for pytorch 2.4
        import torch._custom_op.impl

        schema_str = torch._custom_op.impl.infer_schema(op_func, mutates_args)

    my_lib = target_lib or sglang_lib
    my_lib.define(op_name + schema_str)
    my_lib.impl(op_name, op_func, "CUDA")
    if fake_impl is not None:
        my_lib._register_fake(op_name, fake_impl)
1344
1345


1346
def set_gpu_proc_affinity(
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
    tp_size: int,
    nnodes: int,
    gpu_id: int,
):
    # current process
    pid = os.getpid()
    p = psutil.Process(pid)

    tp_size_per_node = tp_size // nnodes

    # total physical cores
    total_pcores = psutil.cpu_count(logical=False)
    # physical cores per TP (N.B. more Cores than GPUs on node)
    num_cores_bind = total_pcores // tp_size_per_node

    # able to handle multiple DP per node
    start_cpu_id = (gpu_id * num_cores_bind) % total_pcores
    end_cpu_id = start_cpu_id + num_cores_bind

    if psutil.cpu_count() != psutil.cpu_count(logical=False):
        # HT on
Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
1368
1369
1370
        lower_cpu_ids = [id for id in range(start_cpu_id, end_cpu_id)]
        upper_cpu_ids = [id + total_pcores for id in range(start_cpu_id, end_cpu_id)]
        bind_cpu_ids = list(itertools.chain(lower_cpu_ids, upper_cpu_ids))
1371
1372
1373
1374
1375
1376
1377
    else:
        # HT off
        bind_cpu_ids = [id for id in range(start_cpu_id, end_cpu_id)]

    # set cpu_affinity to current process
    p.cpu_affinity(bind_cpu_ids)
    logger.info(f"Process {pid} gpu_id {gpu_id} is running on CPUs: {p.cpu_affinity()}")
1378
1379


1380
1381
1382
1383
1384
@lru_cache(maxsize=2)
def disable_request_logging() -> bool:
    return get_bool_env_var("SGLANG_DISABLE_REQUEST_LOGGING")


1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
@lru_cache(maxsize=8)
def _cuda_device_count_stateless(cuda_visible_devices: Optional[str] = None) -> int:
    # Note: cuda_visible_devices is not used, but we keep it as an argument for
    # LRU Cache purposes.

    # Code below is based on
    # https://github.com/pytorch/pytorch/blob/
    # c1cd946818442aca8c7f812b16d187ce1586c3bc/
    # torch/cuda/__init__.py#L831C1-L831C17
    import torch.version

    if not torch.cuda._is_compiled():
        return 0
    if is_hip():
        # ROCm uses amdsmi instead of nvml for stateless device count
        # This requires a sufficiently modern version of Torch 2.4.0
        raw_count = (
            torch.cuda._device_count_amdsmi()
            if (hasattr(torch.cuda, "_device_count_amdsmi"))
            else -1
        )
    else:
        raw_count = torch.cuda._device_count_nvml()
    r = torch._C._cuda_getDeviceCount() if raw_count < 0 else raw_count
    return r


# Adapted from https://github.com/vllm-project/vllm/blob/a6221a144af772fd1a68fe7e627935dc53e81738/vllm/utils.py
def cuda_device_count_stateless() -> int:
    """Get number of CUDA devices, caching based on the value of
    CUDA_VISIBLE_DEVICES at the time of call.

    This should be used instead of torch.cuda.device_count()
    unless CUDA_VISIBLE_DEVICES has already been set to the desired
    value."""

    # This can be removed and simply replaced with torch.cuda.get_device_count
    # after https://github.com/pytorch/pytorch/pull/122815 is released.
    return _cuda_device_count_stateless(os.environ.get("CUDA_VISIBLE_DEVICES", None))
1424
1425


1426
1427
1428
1429
1430
def dataclass_to_string_truncated(
    data, max_length=2048, skip_names: Optional[Set[str]] = None
):
    if skip_names is None:
        skip_names = set()
1431
1432
1433
    if isinstance(data, str):
        if len(data) > max_length:
            half_length = max_length // 2
1434
            return f"{repr(data[:half_length])} ... {repr(data[-half_length:])}"
1435
        else:
1436
            return f"{repr(data)}"
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
    elif isinstance(data, (list, tuple)):
        if len(data) > max_length:
            half_length = max_length // 2
            return str(data[:half_length]) + " ... " + str(data[-half_length:])
        else:
            return str(data)
    elif isinstance(data, dict):
        return (
            "{"
            + ", ".join(
1447
                f"'{k}': {dataclass_to_string_truncated(v, max_length)}"
1448
                for k, v in data.items()
1449
                if k not in skip_names
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
            )
            + "}"
        )
    elif dataclasses.is_dataclass(data):
        fields = dataclasses.fields(data)
        return (
            f"{data.__class__.__name__}("
            + ", ".join(
                f"{f.name}={dataclass_to_string_truncated(getattr(data, f.name), max_length)}"
                for f in fields
1460
                if f.name not in skip_names
1461
1462
1463
            )
            + ")"
        )
1464
    else:
1465
        return str(data)
Tanjiro's avatar
Tanjiro committed
1466
1467


1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
def permute_weight(x: torch.Tensor) -> torch.Tensor:
    b_ = x.shape[0]
    n_ = x.shape[1]
    k_ = x.shape[2]

    x_ = x
    if x.dtype == torch.bfloat16 or x.dtype == torch.float16:
        x_ = x_.view(int(b_), int(n_ / 16), 16, int(k_ / 32), 4, 8)
    elif x.dtype == torch.float8_e4m3fnuz or x.dtype == torch.int8:
        x_ = x_.view(int(b_), int(n_ / 16), 16, int(k_ / 64), 4, 16)
    else:
1479
1480
        # return x_
        x_ = x_.view(int(b_), int(n_ / 16), 16, int(k_ / 8), 2, 4)
1481
1482
1483
1484
1485
1486
1487

    x_ = x_.permute(0, 1, 3, 4, 2, 5)
    x_ = x_.contiguous()
    x_ = x_.view(*x.shape)
    return x_


1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
class MultiprocessingSerializer:
    @staticmethod
    def serialize(obj):
        buf = io.BytesIO()
        ForkingPickler(buf).dump(obj)
        buf.seek(0)
        return buf.read()

    @staticmethod
    def deserialize(data):
        return ForkingPickler.loads(data)
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509


def debug_timing(func):
    # todo: replace with a more organized instrumentation
    def wrapper(*args, **kwargs):
        if logger.isEnabledFor(logging.DEBUG):
            tic = torch.cuda.Event(enable_timing=True)
            toc = torch.cuda.Event(enable_timing=True)
            tic.record()
            result = func(*args, **kwargs)
            toc.record()
1510
            toc.synchronize()  # Wait for the function to complete without synchronizing all ops on the GPU
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
            elapsed = tic.elapsed_time(toc)
            indices = kwargs.get("indices", args[1] if len(args) > 1 else None)
            num_tokens = len(indices) if indices is not None else 0
            throughput = num_tokens / elapsed * 1000 if elapsed > 0 else 0
            logger.debug(
                f"Transfer time: {elapsed} ms, throughput: {throughput} tokens/s"
            )
            return result
        else:
            return func(*args, **kwargs)

    return wrapper
bjmsong's avatar
bjmsong committed
1523
1524
1525
1526
1527
1528


def nullable_str(val: str):
    if not val or val == "None":
        return None
    return val
1529
1530


1531
1532
1533
1534
1535
1536
1537
1538
1539
def pyspy_dump_schedulers():
    """py-spy dump on all scheduler in a local node."""
    try:
        pid = psutil.Process().pid
        # Command to run py-spy with the PID
        cmd = f"py-spy dump --pid {pid}"
        result = subprocess.run(
            cmd, shell=True, capture_output=True, text=True, check=True
        )
1540
        logger.error(f"Pyspy dump for PID {pid}:\n{result.stdout}")
1541
    except subprocess.CalledProcessError as e:
1542
        logger.error(f"Pyspy failed to dump PID {pid}. Error: {e.stderr}")
1543
1544
1545
1546
1547
1548
1549
1550
1551


def kill_itself_when_parent_died():
    if sys.platform == "linux":
        # sigkill this process when parent worker manager dies
        PR_SET_PDEATHSIG = 1
        libc = ctypes.CDLL("libc.so.6")
        libc.prctl(PR_SET_PDEATHSIG, signal.SIGKILL)
    else:
Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
1552
        logger.warning("kill_itself_when_parent_died is only supported in linux.")
1553
1554


1555
def set_uvicorn_logging_configs():
1556
1557
    from uvicorn.config import LOGGING_CONFIG

1558
1559
1560
1561
1562
1563
1564
1565
    LOGGING_CONFIG["formatters"]["default"][
        "fmt"
    ] = "[%(asctime)s] %(levelprefix)s %(message)s"
    LOGGING_CONFIG["formatters"]["default"]["datefmt"] = "%Y-%m-%d %H:%M:%S"
    LOGGING_CONFIG["formatters"]["access"][
        "fmt"
    ] = '[%(asctime)s] %(levelprefix)s %(client_addr)s - "%(request_line)s" %(status_code)s'
    LOGGING_CONFIG["formatters"]["access"]["datefmt"] = "%Y-%m-%d %H:%M:%S"
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605


def get_ip() -> str:
    # SGLANG_HOST_IP env can be ignore
    host_ip = os.getenv("SGLANG_HOST_IP", "") or os.getenv("HOST_IP", "")
    if host_ip:
        return host_ip

    # IP is not set, try to get it from the network interface

    # try ipv4
    s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    try:
        s.connect(("8.8.8.8", 80))  # Doesn't need to be reachable
        return s.getsockname()[0]
    except Exception:
        pass

    # try ipv6
    try:
        s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)
        # Google's public DNS server, see
        # https://developers.google.com/speed/public-dns/docs/using#addresses
        s.connect(("2001:4860:4860::8888", 80))  # Doesn't need to be reachable
        return s.getsockname()[0]
    except Exception:
        pass

    warnings.warn(
        "Failed to get the IP address, using 0.0.0.0 by default."
        "The value can be set by the environment variable"
        " SGLANG_HOST_IP or HOST_IP.",
        stacklevel=2,
    )
    return "0.0.0.0"


def get_open_port() -> int:
    port = os.getenv("SGLANG_PORT")
    if port is not None:
1606
        port = int(port)
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
        while True:
            try:
                with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
                    s.bind(("", port))
                    return port
            except OSError:
                port += 1  # Increment port number if already in use
                logger.info("Port %d is already in use, trying port %d", port - 1, port)
    # try ipv4
    try:
        with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
            s.bind(("", 0))
            return s.getsockname()[1]
    except OSError:
        # try ipv6
        with socket.socket(socket.AF_INET6, socket.SOCK_STREAM) as s:
            s.bind(("", 0))
            return s.getsockname()[1]


def is_valid_ipv6_address(address: str) -> bool:
    try:
        ipaddress.IPv6Address(address)
        return True
    except ValueError:
        return False
1633
1634


Vincent's avatar
Vincent committed
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
def configure_ipv6(dist_init_addr):
    addr = dist_init_addr
    end = addr.find("]")
    if end == -1:
        raise ValueError("invalid IPv6 address format: missing ']'")

    host = addr[: end + 1]

    # this only validates the address without brackets: we still need the below checks.
    # if it's invalid, immediately raise an error so we know it's not formatting issues.
    if not is_valid_ipv6_address(host[1:end]):
        raise ValueError(f"invalid IPv6 address: {host}")

    port_str = None
    if len(addr) > end + 1:
        if addr[end + 1] == ":":
            port_str = addr[end + 2 :]
        else:
            raise ValueError("received IPv6 address format: expected ':' after ']'")

    if not port_str:
        raise ValueError(
            "a port must be specified in IPv6 address (format: [ipv6]:port)"
        )

    try:
        port = int(port_str)
    except ValueError:
        raise ValueError(f"invalid port in IPv6 address: '{port_str}'")
    return port, host


1667
1668
1669
1670
1671
def rank0_print(msg: str):
    from sglang.srt.distributed import get_tensor_model_parallel_rank

    if get_tensor_model_parallel_rank() == 0:
        print(msg, flush=True)
1672
1673


HandH1998's avatar
HandH1998 committed
1674
1675
1676
1677
1678
1679
def get_cuda_version():
    if torch.version.cuda:
        return tuple(map(int, torch.version.cuda.split(".")))
    return (0, 0)


1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
def launch_dummy_health_check_server(host, port):
    import uvicorn
    from fastapi import FastAPI, Response

    app = FastAPI()

    @app.get("/health")
    async def health():
        """Check the health of the http server."""
        return Response(status_code=200)

    @app.get("/health_generate")
    async def health_generate():
        """Check the health of the http server."""
        return Response(status_code=200)

    uvicorn.run(
        app,
        host=host,
        port=port,
        timeout_keep_alive=5,
        loop="uvloop",
    )
1703
1704


1705
1706
1707
1708
def create_checksum(directory: str):
    raise NotImplementedError()


1709
1710
1711
1712
1713
def set_cuda_arch():
    if is_flashinfer_available():
        capability = torch.cuda.get_device_capability()
        arch = f"{capability[0]}.{capability[1]}"
        os.environ["TORCH_CUDA_ARCH_LIST"] = f"{arch}{'+PTX' if arch == '9.0' else ''}"
1714
1715


Lianmin Zheng's avatar
Lianmin Zheng committed
1716
1717
1718
1719
1720
1721
1722
def next_power_of_2(n: int):
    return 1 << (n - 1).bit_length() if n > 0 else 1


setattr(triton, "next_power_of_2", next_power_of_2)


1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
@contextmanager
def empty_context(*args, **kwargs):
    try:
        # Setup code goes here
        yield
    finally:
        # Cleanup code goes here
        pass


1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
def add_prefix(name: str, prefix: str) -> str:
    """Add a weight path prefix to a module name.

    Args:
        name: base module name.
        prefix: weight prefix str to added to the front of `name` concatenated with `.`.

    Returns:
        The string `prefix.name` if prefix is non-empty, otherwise just `name`.
    """
    return name if not prefix else f"{prefix}.{name}"
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769


def is_remote_url(url: Union[str, Path]) -> bool:
    """
    Check if the URL is a remote URL of the format:
    <connector_type>://<host>:<port>/<model_name>
    """
    if isinstance(url, Path):
        return False

    pattern = r"(.+)://(.*)"
    m = re.match(pattern, url)
    return m is not None


def parse_connector_type(url: str) -> str:
    """
    Parse the connector type from the URL of the format:
    <connector_type>://<path>
    """
    pattern = r"(.+)://(.*)"
    m = re.match(pattern, url)
    if m is None:
        return ""

    return m.group(1)
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798


def retry(
    fn,
    max_retry: int,
    initial_delay: float = 2.0,
    max_delay: float = 60.0,
    should_retry: Callable[[Any], bool] = lambda e: True,
):
    for try_index in itertools.count():
        try:
            return fn()
        except Exception as e:
            if try_index >= max_retry:
                raise Exception(f"retry() exceed maximum number of retries.")

            if not should_retry(e):
                raise Exception(f"retry() observe errors that should not be retried.")

            delay = min(initial_delay * (2**try_index), max_delay) * (
                0.75 + 0.25 * random.random()
            )

            logger.warning(
                f"retry() failed once ({try_index}th try, maximum {max_retry} retries). Will delay {delay:.2f}s and retry. Error: {e}"
            )
            traceback.print_exc()

            time.sleep(delay)