utils.py 29.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
15
"""Common utilities."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
import base64
17
import ipaddress
18
import json
19
import logging
Lianmin Zheng's avatar
Lianmin Zheng committed
20
import os
21
import pickle
Lianmin Zheng's avatar
Lianmin Zheng committed
22
import random
Lianmin Zheng's avatar
Lianmin Zheng committed
23
import re
24
import resource
25
26
import shutil
import signal
Lianmin Zheng's avatar
Lianmin Zheng committed
27
import socket
28
import subprocess
Lianmin Zheng's avatar
Lianmin Zheng committed
29
import tempfile
Lianmin Zheng's avatar
Lianmin Zheng committed
30
import time
31
import warnings
32
from importlib.metadata import PackageNotFoundError, version
Lianmin Zheng's avatar
Lianmin Zheng committed
33
from io import BytesIO
34
from typing import Any, Dict, List, Optional, Protocol, Tuple, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
35
36

import numpy as np
37
import psutil
Lianmin Zheng's avatar
Lianmin Zheng committed
38
39
import requests
import torch
40
import torch.distributed as dist
41
import triton
42
import zmq
43
from fastapi.responses import ORJSONResponse
44
from packaging import version as pkg_version
Lianmin Zheng's avatar
Lianmin Zheng committed
45
from starlette.routing import Mount
46
from torch import nn
47
from torch.func import functional_call
48
from torch.profiler import ProfilerActivity, profile, record_function
49
50
51
52
53
54
from triton.runtime.cache import (
    FileCacheManager,
    default_cache_dir,
    default_dump_dir,
    default_override_dir,
)
55

56
57
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
58

Liangsheng Yin's avatar
Liangsheng Yin committed
59
60
show_time_cost = False
time_infos = {}
Lianmin Zheng's avatar
Lianmin Zheng committed
61
62


63
def is_hip() -> bool:
64
    """Return whether it is HIP on the AMD ROCm platform."""
65
66
67
    return torch.version.hip is not None


68
69
70
71
72
def is_flashinfer_available():
    """
    Check whether flashinfer is available.
    As of Oct. 6, 2024, it is only available on NVIDIA GPUs.
    """
73
74
    if os.environ.get("SGLANG_IS_FLASHINFER_AVAILABLE", "true") == "false":
        return False
75
76
77
    return torch.cuda.is_available() and not is_hip()


78
79
80
81
82
83
84
85
def is_ipv6(address):
    try:
        ipaddress.IPv6Address(address)
        return True
    except ipaddress.AddressValueError:
        return False


Liangsheng Yin's avatar
Liangsheng Yin committed
86
87
88
89
def enable_show_time_cost():
    global show_time_cost
    show_time_cost = True

Lianmin Zheng's avatar
Lianmin Zheng committed
90

Liangsheng Yin's avatar
Liangsheng Yin committed
91
92
93
94
95
96
class TimeInfo:
    def __init__(self, name, interval=0.1, color=0, indent=0):
        self.name = name
        self.interval = interval
        self.color = color
        self.indent = indent
Lianmin Zheng's avatar
Lianmin Zheng committed
97

Liangsheng Yin's avatar
Liangsheng Yin committed
98
99
        self.acc_time = 0
        self.last_acc_time = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
100

Liangsheng Yin's avatar
Liangsheng Yin committed
101
102
103
104
105
    def check(self):
        if self.acc_time - self.last_acc_time > self.interval:
            self.last_acc_time = self.acc_time
            return True
        return False
Lianmin Zheng's avatar
Lianmin Zheng committed
106

Liangsheng Yin's avatar
Liangsheng Yin committed
107
108
109
110
    def pretty_print(self):
        print(f"\x1b[{self.color}m", end="")
        print("-" * self.indent * 2, end="")
        print(f"{self.name}: {self.acc_time:.3f}s\x1b[0m")
Lianmin Zheng's avatar
Lianmin Zheng committed
111
112


Liangsheng Yin's avatar
Liangsheng Yin committed
113
114
115
116
def mark_start(name, interval=0.1, color=0, indent=0):
    global time_infos, show_time_cost
    if not show_time_cost:
        return
Lianmin Zheng's avatar
Lianmin Zheng committed
117
    torch.cuda.synchronize()
Liangsheng Yin's avatar
Liangsheng Yin committed
118
119
120
    if time_infos.get(name, None) is None:
        time_infos[name] = TimeInfo(name, interval, color, indent)
    time_infos[name].acc_time -= time.time()
Lianmin Zheng's avatar
Lianmin Zheng committed
121
122


Liangsheng Yin's avatar
Liangsheng Yin committed
123
124
125
126
def mark_end(name):
    global time_infos, show_time_cost
    if not show_time_cost:
        return
Lianmin Zheng's avatar
Lianmin Zheng committed
127
    torch.cuda.synchronize()
Liangsheng Yin's avatar
Liangsheng Yin committed
128
129
130
    time_infos[name].acc_time += time.time()
    if time_infos[name].check():
        time_infos[name].pretty_print()
Lianmin Zheng's avatar
Lianmin Zheng committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151


def calculate_time(show=False, min_cost_ms=0.0):
    def wrapper(func):
        def inner_func(*args, **kwargs):
            torch.cuda.synchronize()
            if show:
                start_time = time.time()
            result = func(*args, **kwargs)
            torch.cuda.synchronize()
            if show:
                cost_time = (time.time() - start_time) * 1000
                if cost_time > min_cost_ms:
                    print(f"Function {func.__name__} took {cost_time} ms to run.")
            return result

        return inner_func

    return wrapper


Zhang, Liangang's avatar
Zhang, Liangang committed
152
def get_available_gpu_memory(device, gpu_id, distributed=False):
Lianmin Zheng's avatar
Lianmin Zheng committed
153
154
155
156
    """
    Get available memory for cuda:gpu_id device.
    When distributed is True, the available memory is the minimum available memory of all GPUs.
    """
Zhang, Liangang's avatar
Zhang, Liangang committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    if device == "cuda":
        num_gpus = torch.cuda.device_count()
        assert gpu_id < num_gpus

        if torch.cuda.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.cuda.current_device()}, ",
                "which may cause useless memory allocation for torch CUDA context.",
            )

        torch.cuda.empty_cache()
        free_gpu_memory, _ = torch.cuda.mem_get_info(gpu_id)

    elif device == "xpu":
        num_gpus = torch.xpu.device_count()
        assert gpu_id < num_gpus

        if torch.xpu.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.xpu.current_device()}, ",
                "which may cause useless memory allocation for torch XPU context.",
            )
        torch.xpu.empty_cache()
        used_memory = torch.xpu.memory_allocated()
        total_gpu_memory = torch.xpu.get_device_properties(gpu_id).total_memory
        free_gpu_memory = total_gpu_memory - used_memory
Lianmin Zheng's avatar
Lianmin Zheng committed
183
184
185

    if distributed:
        tensor = torch.tensor(free_gpu_memory, dtype=torch.float32).to(
Zhang, Liangang's avatar
Zhang, Liangang committed
186
            torch.device(device, gpu_id)
Lianmin Zheng's avatar
Lianmin Zheng committed
187
188
189
190
191
192
193
        )
        torch.distributed.all_reduce(tensor, op=torch.distributed.ReduceOp.MIN)
        free_gpu_memory = tensor.item()

    return free_gpu_memory / (1 << 30)


194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
def is_pin_memory_available() -> bool:
    return torch.cuda.is_available()


_CPU_OFFLOAD_BYTES = 0
_CPU_OFFLOAD_MAX_BYTES = 0


def set_cpu_offload_max_bytes(max_bytes: int) -> None:
    global _CPU_OFFLOAD_MAX_BYTES, _CPU_OFFLOAD_BYTES
    _CPU_OFFLOAD_BYTES = 0
    _CPU_OFFLOAD_MAX_BYTES = max_bytes


def maybe_offload_to_cpu(module: torch.nn.Module) -> torch.nn.Module:
    device = next(module.parameters()).device

    if device == torch.device("cpu"):
        return module

    global _CPU_OFFLOAD_MAX_BYTES, _CPU_OFFLOAD_BYTES
    if _CPU_OFFLOAD_BYTES >= _CPU_OFFLOAD_MAX_BYTES:
        return module

    pin_memory = is_pin_memory_available()
    # offload parameters to CPU
    # use pin_memory if possible, which helps cudagraph capture speed
    offloaded_parameters = False
    for p in module.parameters():
        if _CPU_OFFLOAD_BYTES >= _CPU_OFFLOAD_MAX_BYTES:
            # we use per-parameter offloading
            # one module might have some parameters offloaded and some not
            break

        # `torch.empty_like` does not support `pin_memory` argument
        cpu_data = torch.empty_strided(
            size=p.data.size(),
            stride=p.data.stride(),
            dtype=p.data.dtype,
            layout=p.data.layout,
            device="cpu",
            pin_memory=pin_memory,
        )
        cpu_data.copy_(p.data)
        p.data = cpu_data
        _CPU_OFFLOAD_BYTES += p.data.numel() * p.data.element_size()
        offloaded_parameters = True

    if offloaded_parameters:
        original_forward = module.forward

        def forward(*args, **kwargs):
            module.forward = original_forward
            device_state = {
                # here we blindly call `to(device)`
                # if the parameter is already on the device, it will be a no-op
                k: v.to(device, non_blocking=True)
                for k, v in module.state_dict().items()
            }
            output = functional_call(module, device_state, args=args, kwargs=kwargs)
            module.forward = forward
            return output

        module.forward = forward

    return module


class LayerFn(Protocol):

    def __call__(self, layer_id: int, prefix: str) -> torch.nn.Module: ...


def make_layers(
    num_hidden_layers: int,
    layer_fn: LayerFn,
    prefix: str = "",
) -> Tuple[int, int, torch.nn.ModuleList]:
    """Make a list of layers with the given layer function"""
    modules = torch.nn.ModuleList(
        [
            maybe_offload_to_cpu(layer_fn(idx=idx, prefix=f"{prefix}.{idx}"))
            for idx in range(num_hidden_layers)
        ]
    )
    return modules


Lianmin Zheng's avatar
Lianmin Zheng committed
282
def set_random_seed(seed: int) -> None:
283
    """Set the random seed for all libraries."""
Lianmin Zheng's avatar
Lianmin Zheng committed
284
    random.seed(seed)
285
    np.random.seed(seed)
Lianmin Zheng's avatar
Lianmin Zheng committed
286
287
288
289
290
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)


291
def is_port_available(port):
292
    """Return whether a port is available."""
293
294
    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
        try:
295
            s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
296
            s.bind(("", port))
297
            s.listen(1)
298
299
300
301
302
            return True
        except socket.error:
            return False


Yuanhan Zhang's avatar
Yuanhan Zhang committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
def decode_video_base64(video_base64):
    from PIL import Image

    # Decode the base64 string
    video_bytes = base64.b64decode(video_base64)

    # Placeholder for the start indices of each PNG image
    img_starts = []

    frame_format = "PNG"  # str(os.getenv('FRAME_FORMAT', "JPEG"))

    assert frame_format in [
        "PNG",
        "JPEG",
    ], "FRAME_FORMAT must be either 'PNG' or 'JPEG'"

    if frame_format == "PNG":
        # Find each PNG start signature to isolate images
        i = 0
        while i < len(video_bytes) - 7:  # Adjusted for the length of the PNG signature
            # Check if we found the start of a PNG file
            if (
                video_bytes[i] == 0x89
                and video_bytes[i + 1] == 0x50
                and video_bytes[i + 2] == 0x4E
                and video_bytes[i + 3] == 0x47
                and video_bytes[i + 4] == 0x0D
                and video_bytes[i + 5] == 0x0A
                and video_bytes[i + 6] == 0x1A
                and video_bytes[i + 7] == 0x0A
            ):
                img_starts.append(i)
                i += 8  # Skip the PNG signature
            else:
                i += 1
    else:
        # Find each JPEG start (0xFFD8) to isolate images
        i = 0
        while (
            i < len(video_bytes) - 1
        ):  # Adjusted for the length of the JPEG SOI signature
            # Check if we found the start of a JPEG file
            if video_bytes[i] == 0xFF and video_bytes[i + 1] == 0xD8:
                img_starts.append(i)
                # Move to the next byte to continue searching for the next image start
                i += 2
            else:
                i += 1

    frames = []
    for start_idx in img_starts:
        # Assuming each image is back-to-back, the end of one image is the start of another
        # The last image goes until the end of the byte string
        end_idx = (
            img_starts[img_starts.index(start_idx) + 1]
            if img_starts.index(start_idx) + 1 < len(img_starts)
            else len(video_bytes)
        )
        img_bytes = video_bytes[start_idx:end_idx]

        # Convert bytes to a PIL Image
        img = Image.open(BytesIO(img_bytes))

        # Convert PIL Image to a NumPy array
        frame = np.array(img)

        # Append the frame to the list of frames
        frames.append(frame)

    # Ensure there's at least one frame to avoid errors with np.stack
    if frames:
        return np.stack(frames, axis=0), img.size
    else:
        return np.array([]), (
            0,
            0,
        )  # Return an empty array and size tuple if no frames were found
Lianmin Zheng's avatar
Lianmin Zheng committed
380
381


382
def load_image(image_file: Union[str, bytes]):
Lianmin Zheng's avatar
Lianmin Zheng committed
383
384
    from PIL import Image

Yuanhan Zhang's avatar
Yuanhan Zhang committed
385
    image = image_size = None
Lianmin Zheng's avatar
Lianmin Zheng committed
386

387
388
389
    if isinstance(image_file, bytes):
        image = Image.open(BytesIO(image_file))
    elif image_file.startswith("http://") or image_file.startswith("https://"):
Lianmin Zheng's avatar
Lianmin Zheng committed
390
391
392
393
394
395
        timeout = int(os.getenv("REQUEST_TIMEOUT", "3"))
        response = requests.get(image_file, timeout=timeout)
        image = Image.open(BytesIO(response.content))
    elif image_file.lower().endswith(("png", "jpg", "jpeg", "webp", "gif")):
        image = Image.open(image_file)
    elif image_file.startswith("data:"):
396
        image_file = image_file.split(",")[1]
Lianmin Zheng's avatar
Lianmin Zheng committed
397
        image = Image.open(BytesIO(base64.b64decode(image_file)))
Yuanhan Zhang's avatar
Yuanhan Zhang committed
398
399
400
    elif image_file.startswith("video:"):
        image_file = image_file.replace("video:", "")
        image, image_size = decode_video_base64(image_file)
401
    elif isinstance(image_file, str):
Lianmin Zheng's avatar
Lianmin Zheng committed
402
        image = Image.open(BytesIO(base64.b64decode(image_file)))
403
404
    else:
        raise ValueError(f"Invalid image: {image}")
Lianmin Zheng's avatar
Lianmin Zheng committed
405

Yuanhan Zhang's avatar
Yuanhan Zhang committed
406
    return image, image_size
407
408


409
410
411
412
413
def suppress_other_loggers():
    from vllm.logger import logger as vllm_default_logger

    vllm_default_logger.setLevel(logging.WARN)
    logging.getLogger("vllm.config").setLevel(logging.ERROR)
414
415
416
    logging.getLogger("vllm.distributed.device_communicators.pynccl").setLevel(
        logging.WARN
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
417
418
419
    logging.getLogger("vllm.distributed.device_communicators.shm_broadcast").setLevel(
        logging.WARN
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
420
    logging.getLogger("vllm.selector").setLevel(logging.WARN)
421
    logging.getLogger("vllm.utils").setLevel(logging.ERROR)
422
    logging.getLogger("vllm.model_executor.model_loader.loader").setLevel(logging.ERROR)
423

424
425
426
427
    warnings.filterwarnings(
        "ignore", category=UserWarning, message="The given NumPy array is not writable"
    )

428

429
def assert_pkg_version(pkg: str, min_version: str, message: str):
430
431
432
433
    try:
        installed_version = version(pkg)
        if pkg_version.parse(installed_version) < pkg_version.parse(min_version):
            raise Exception(
434
                f"{pkg} is installed with version {installed_version}, which "
Ying Sheng's avatar
Ying Sheng committed
435
                f"is less than the minimum required version {min_version}. " + message
436
437
            )
    except PackageNotFoundError:
Yuanhan Zhang's avatar
Yuanhan Zhang committed
438
        raise Exception(
Ying Sheng's avatar
Ying Sheng committed
439
440
            f"{pkg} with minimum required version {min_version} is not installed. "
            + message
Yuanhan Zhang's avatar
Yuanhan Zhang committed
441
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
442
443


444
445
446
447
def kill_parent_process():
    """Kill the parent process and all children of the parent process."""
    current_process = psutil.Process()
    parent_process = current_process.parent()
Lianmin Zheng's avatar
Lianmin Zheng committed
448
449
450
451
452
453
454
    kill_child_process(
        parent_process.pid, include_self=True, skip_pid=current_process.pid
    )
    try:
        current_process.kill()
    except psutil.NoSuchProcess:
        pass
455
456


Lianmin Zheng's avatar
Lianmin Zheng committed
457
def kill_child_process(pid=None, include_self=False, skip_pid=None):
458
    """Kill the process and all its children process."""
Lianmin Zheng's avatar
Lianmin Zheng committed
459
460
461
    if pid is None:
        pid = os.getpid()

462
    try:
Lianmin Zheng's avatar
Lianmin Zheng committed
463
        itself = psutil.Process(pid)
464
465
466
    except psutil.NoSuchProcess:
        return

Lianmin Zheng's avatar
Lianmin Zheng committed
467
    children = itself.children(recursive=True)
468
    for child in children:
469
470
        if child.pid == skip_pid:
            continue
471
472
473
474
475
        try:
            child.kill()
        except psutil.NoSuchProcess:
            pass

Lianmin Zheng's avatar
Lianmin Zheng committed
476
    if include_self:
477
        try:
Lianmin Zheng's avatar
Lianmin Zheng committed
478
            itself.kill()
479
480
481
482

            # Sometime processes cannot be killed with SIGKILL (e.g, PID=1 launched by kubernetes),
            # so we send an additional signal to kill them.
            itself.send_signal(signal.SIGINT)
483
484
485
486
        except psutil.NoSuchProcess:
            pass


487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
def monkey_patch_vllm_model_config():
    from vllm.config import ModelConfig

    if not hasattr(ModelConfig, "_resolve_task"):
        return

    def _resolve_task(
        self,
        task_option,
        hf_config,
    ):
        supported_tasks = {
            "generate": True,
            "embedding": False,
        }
        selected_task = "generate"
        return supported_tasks, selected_task

    setattr(ModelConfig, "_resolve_task", _resolve_task)


508
def monkey_patch_vllm_p2p_access_check(gpu_id: int):
509
510
511
512
513
    """
    Monkey patch the slow p2p access check in vllm.
    NOTE: We assume the p2p access is always allowed, which can be wrong for some setups.
    """

514
    import vllm.distributed.device_communicators.custom_all_reduce_utils as tgt
Liangsheng Yin's avatar
Liangsheng Yin committed
515

516
    setattr(tgt, "gpu_p2p_access_check", lambda *arg, **kwargs: True)
517
518


519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
vllm_all_gather_backup = None


def monkey_patch_vllm_all_gather(reverse: bool = False):
    """Monkey patch all-gather to remove in-place operations."""
    from torch.distributed import _functional_collectives as funcol
    from vllm.distributed.parallel_state import GroupCoordinator

    global vllm_all_gather_backup
    if vllm_all_gather_backup is None:
        vllm_all_gather_backup = GroupCoordinator.all_gather

    def all_gather(self, input_: torch.Tensor, dim: int = -1) -> torch.Tensor:
        world_size = self.world_size
        # Bypass the function if we are using only 1 GPU.
        if world_size == 1:
            return input_
        assert (
            -input_.dim() <= dim < input_.dim()
        ), f"Invalid dim ({dim}) for input tensor with shape {input_.size()}"
        if dim < 0:
            # Convert negative dim to positive.
            dim += input_.dim()
        input_size = input_.size()
        # Allocate output tensor.
        output_tensor = torch.empty(
            (world_size,) + input_size, dtype=input_.dtype, device=input_.device
        )

        output_tensor = funcol.all_gather_tensor(
            input_, gather_dim=0, group=self.device_group
        ).view((world_size,) + input_size)

        # Reshape
        output_tensor = output_tensor.movedim(0, dim)
        output_tensor = output_tensor.reshape(
            input_size[:dim] + (world_size * input_size[dim],) + input_size[dim + 1 :]
        )
        return output_tensor

    if reverse:
        setattr(GroupCoordinator, "all_gather", vllm_all_gather_backup)
    else:
        setattr(GroupCoordinator, "all_gather", all_gather)


565
566
567
568
569
570
def maybe_set_triton_cache_manager() -> None:
    """Set environment variable to tell Triton to use a
    custom cache manager"""
    cache_manger = os.environ.get("TRITON_CACHE_MANAGER", None)
    if cache_manger is None:
        manager = "sglang.srt.utils:CustomCacheManager"
571
        logger.debug("Setting Triton cache manager to: %s", manager)
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
        os.environ["TRITON_CACHE_MANAGER"] = manager


class CustomCacheManager(FileCacheManager):
    # Adapted from: https://github.com/tdoublep/vllm/blob/3307522289fdfefe323b6c00d0db696651989a2f/vllm/triton_utils/custom_cache_manager.py
    def __init__(self, key, override=False, dump=False):

        self.key = key
        self.lock_path = None
        if dump:
            self.cache_dir = default_dump_dir()
            self.cache_dir = os.path.join(self.cache_dir, self.key)
            self.lock_path = os.path.join(self.cache_dir, "lock")
            os.makedirs(self.cache_dir, exist_ok=True)
        elif override:
            self.cache_dir = default_override_dir()
            self.cache_dir = os.path.join(self.cache_dir, self.key)
        else:
            # create cache directory if it doesn't exist
            self.cache_dir = (
                os.getenv("TRITON_CACHE_DIR", "").strip() or default_cache_dir()
            )
            if self.cache_dir:
                self.cache_dir = f"{self.cache_dir}_{os.getpid()}"
                self.cache_dir = os.path.join(self.cache_dir, self.key)
                self.lock_path = os.path.join(self.cache_dir, "lock")
                os.makedirs(self.cache_dir, exist_ok=True)
            else:
                raise RuntimeError("Could not create or locate cache dir")


603
604
605
606
607
608
609
610
def set_ulimit(target_soft_limit=65535):
    resource_type = resource.RLIMIT_NOFILE
    current_soft, current_hard = resource.getrlimit(resource_type)

    if current_soft < target_soft_limit:
        try:
            resource.setrlimit(resource_type, (target_soft_limit, current_hard))
        except ValueError as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
611
            logger.warning(f"Fail to set RLIMIT_NOFILE: {e}")
612
613


614
def add_api_key_middleware(app, api_key: str):
615
616
617
618
619
620
621
    @app.middleware("http")
    async def authentication(request, call_next):
        if request.method == "OPTIONS":
            return await call_next(request)
        if request.url.path.startswith("/health"):
            return await call_next(request)
        if request.headers.get("Authorization") != "Bearer " + api_key:
622
            return ORJSONResponse(content={"error": "Unauthorized"}, status_code=401)
623
        return await call_next(request)
624
625


626
def prepare_model_and_tokenizer(model_path: str, tokenizer_path: str):
627
628
629
630
    if "SGLANG_USE_MODELSCOPE" in os.environ:
        if not os.path.exists(model_path):
            from modelscope import snapshot_download

631
632
            model_path = snapshot_download(model_path)
            tokenizer_path = snapshot_download(
633
634
                tokenizer_path, ignore_patterns=["*.bin", "*.safetensors"]
            )
635
    return model_path, tokenizer_path
636
637
638
639


def configure_logger(server_args, prefix: str = ""):
    format = f"[%(asctime)s{prefix}] %(message)s"
Lianmin Zheng's avatar
Lianmin Zheng committed
640
    # format = f"[%(asctime)s.%(msecs)03d{prefix}] %(message)s"
641
642
643
    logging.basicConfig(
        level=getattr(logging, server_args.log_level.upper()),
        format=format,
644
        datefmt="%Y-%m-%d %H:%M:%S",
645
646
        force=True,
    )
647
648
649
650
651
652
653
654
655
656
657


# source: https://github.com/vllm-project/vllm/blob/93b38bea5dd03e1b140ca997dfaadef86f8f1855/vllm/lora/utils.py#L9
def replace_submodule(
    model: nn.Module, module_name: str, new_module: nn.Module
) -> nn.Module:
    """Replace a submodule in a model with a new module."""
    parent = model.get_submodule(".".join(module_name.split(".")[:-1]))
    target_name = module_name.split(".")[-1]
    setattr(parent, target_name, new_module)
    return new_module
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677


def set_weight_attrs(
    weight: torch.Tensor,
    weight_attrs: Optional[Dict[str, Any]],
):
    """Set attributes on a weight tensor.

    This method is used to set attributes on a weight tensor. This method
    will not overwrite existing attributes.

    Args:
        weight: The weight tensor.
        weight_attrs: A dictionary of attributes to set on the weight tensor.
    """
    if weight_attrs is None:
        return
    for key, value in weight_attrs.items():
        assert not hasattr(weight, key), f"Overwriting existing tensor attribute: {key}"
        setattr(weight, key, value)
678
679
680


def broadcast_pyobj(
681
682
683
    data: List[Any],
    rank: int,
    dist_group: Optional[torch.distributed.ProcessGroup] = None,
684
685
686
687
688
689
690
691
692
693
):
    """Broadcast inputs from rank=0 to all other ranks with torch.dist backend."""

    if rank == 0:
        if len(data) == 0:
            tensor_size = torch.tensor([0], dtype=torch.long)
            dist.broadcast(tensor_size, src=0, group=dist_group)
        else:
            serialized_data = pickle.dumps(data)
            size = len(serialized_data)
694
695
696
            tensor_data = torch.ByteTensor(
                np.frombuffer(serialized_data, dtype=np.uint8)
            )
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
            tensor_size = torch.tensor([size], dtype=torch.long)

            dist.broadcast(tensor_size, src=0, group=dist_group)
            dist.broadcast(tensor_data, src=0, group=dist_group)
        return data
    else:
        tensor_size = torch.tensor([0], dtype=torch.long)
        dist.broadcast(tensor_size, src=0, group=dist_group)
        size = tensor_size.item()

        if size == 0:
            return []

        tensor_data = torch.empty(size, dtype=torch.uint8)
        dist.broadcast(tensor_data, src=0, group=dist_group)

713
        serialized_data = bytes(tensor_data.cpu().numpy())
714
715
        data = pickle.loads(serialized_data)
        return data
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746


step_counter = 0


def pytorch_profile(name, func, *args, data_size=-1):
    """
    Args:
        name (string): the name of recorded function.
        func: the function to be profiled.
        args: the arguments of the profiled function.
        data_size (int): some measurement of the computation complexity.
            Usually, it could be the batch size.
    """
    global step_counter
    os.makedirs("trace", exist_ok=True)
    with profile(
        activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
        # schedule=torch.profiler.schedule(wait=1, warmup=1, active=3, repeat=2),
        # on_trace_ready=tensorboard_trace_handler('./log_dir'),
        record_shapes=True,
        profile_memory=True,
        with_stack=True,
    ) as prof:
        with record_function(name):
            with open(f"trace/size_{step_counter}.json", "w") as f:
                json.dump({"size": data_size}, f)
            result = func(*args)
    prof.export_chrome_trace(f"trace/{name}_{step_counter}.json")
    step_counter += 1
    return result
747
748
749
750
751
752
753


def first_rank_print(*args, **kwargs):
    if torch.cuda.current_device() == 0:
        print(*args, **kwargs)
    else:
        pass
754
755
756


def get_zmq_socket(context: zmq.Context, socket_type: zmq.SocketType, endpoint: str):
757
758
759
760
761
762
763
764
    mem = psutil.virtual_memory()
    total_mem = mem.total / 1024**3
    available_mem = mem.available / 1024**3
    if total_mem > 32 and available_mem > 16:
        buf_size = int(0.5 * 1024**3)
    else:
        buf_size = -1

765
766
767
    socket = context.socket(socket_type)
    if socket_type == zmq.PUSH:
        socket.setsockopt(zmq.SNDHWM, 0)
768
        socket.setsockopt(zmq.SNDBUF, buf_size)
769
770
771
        socket.connect(f"ipc://{endpoint}")
    elif socket_type == zmq.PULL:
        socket.setsockopt(zmq.RCVHWM, 0)
772
        socket.setsockopt(zmq.RCVBUF, buf_size)
773
774
775
776
777
        socket.bind(f"ipc://{endpoint}")
    else:
        raise ValueError(f"Unsupported socket type: {socket_type}")

    return socket
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818


def dump_to_file(dirpath, name, value):
    from vllm.distributed import get_tensor_model_parallel_rank

    if get_tensor_model_parallel_rank() != 0:
        return

    os.makedirs(dirpath, exist_ok=True)
    if value.dtype is torch.bfloat16:
        value = value.float()
    value = value.cpu().numpy()
    output_filename = os.path.join(dirpath, f"pytorch_dump_{name}.npy")
    logger.info(f"Dump a tensor to {output_filename}. Shape = {value.shape}")
    np.save(output_filename, value)


def is_triton_3():
    return triton.__version__.startswith("3.")


def maybe_torch_compile(*args, **kwargs):
    """
    torch.compile does not work for triton 2.2.0, which is needed in xlm1's jax.
    Therefore, we disable it here.
    """

    def decorator(func):
        if is_triton_3():
            return torch.compile(*args, **kwargs)(func)
        return func

    return decorator


def delete_directory(dirpath):
    try:
        # This will remove the directory and all its contents
        shutil.rmtree(dirpath)
    except OSError as e:
        print(f"Warning: {dirpath} : {e.strerror}")
Lianmin Zheng's avatar
Lianmin Zheng committed
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844


# Temporary directory for prometheus multiprocess mode
# Cleaned up automatically when this object is garbage collected
prometheus_multiproc_dir: tempfile.TemporaryDirectory


def set_prometheus_multiproc_dir():
    # Set prometheus multiprocess directory
    # sglang uses prometheus multiprocess mode
    # we need to set this before importing prometheus_client
    # https://prometheus.github.io/client_python/multiprocess/
    global prometheus_multiproc_dir

    if "PROMETHEUS_MULTIPROC_DIR" in os.environ:
        logger.debug("User set PROMETHEUS_MULTIPROC_DIR detected.")
        prometheus_multiproc_dir = tempfile.TemporaryDirectory(
            dir=os.environ["PROMETHEUS_MULTIPROC_DIR"]
        )
    else:
        prometheus_multiproc_dir = tempfile.TemporaryDirectory()
        os.environ["PROMETHEUS_MULTIPROC_DIR"] = prometheus_multiproc_dir.name
    logger.debug(f"PROMETHEUS_MULTIPROC_DIR: {os.environ['PROMETHEUS_MULTIPROC_DIR']}")


def add_prometheus_middleware(app):
845
    # We need to import prometheus_client after setting the env variable `PROMETHEUS_MULTIPROC_DIR`
Lianmin Zheng's avatar
Lianmin Zheng committed
846
847
848
849
850
851
852
853
854
    from prometheus_client import CollectorRegistry, make_asgi_app, multiprocess

    registry = CollectorRegistry()
    multiprocess.MultiProcessCollector(registry)
    metrics_route = Mount("/metrics", make_asgi_app(registry=registry))

    # Workaround for 307 Redirect for /metrics
    metrics_route.path_regex = re.compile("^/metrics(?P<path>.*)$")
    app.routes.append(metrics_route)
855
856


857
858
859
860
861
862
863
864
865
def bind_port(port):
    """Bind to a specific port, assuming it's available."""
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)  # Allows address reuse
    sock.bind(("", port))
    sock.listen(1)
    return sock


HAI's avatar
HAI committed
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
def get_amdgpu_memory_capacity():
    try:
        # Run rocm-smi and capture the output
        result = subprocess.run(
            ["rocm-smi --showmeminfo vram | grep 'Total Memory' | awk '{print $NF}'"],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            shell=True,
            text=True,
        )
        if result.returncode != 0:
            raise RuntimeError(f"rocm-smi error: {result.stderr.strip()}")

        # Parse the output to extract memory values in MiB
        memory_values = [
            float(mem) / 1024 / 1024
            for mem in result.stdout.strip().split("\n")
            if re.match(r"^\d+(\.\d+)?$", mem.strip())
        ]

        if not memory_values:
            raise ValueError("No GPU memory values found.")

        # Return the minimum memory value
        return min(memory_values)

    except FileNotFoundError:
        raise RuntimeError(
            "rocm-smi not found. Ensure AMD ROCm drivers are installed and accessible."
        )


def get_nvgpu_memory_capacity():
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
    try:
        # Run nvidia-smi and capture the output
        result = subprocess.run(
            ["nvidia-smi", "--query-gpu=memory.total", "--format=csv,noheader,nounits"],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            text=True,
        )

        if result.returncode != 0:
            raise RuntimeError(f"nvidia-smi error: {result.stderr.strip()}")

        # Parse the output to extract memory values
        memory_values = [
            float(mem)
            for mem in result.stdout.strip().split("\n")
            if re.match(r"^\d+(\.\d+)?$", mem.strip())
        ]

        if not memory_values:
            raise ValueError("No GPU memory values found.")

        # Return the minimum memory value
        return min(memory_values)

    except FileNotFoundError:
        raise RuntimeError(
            "nvidia-smi not found. Ensure NVIDIA drivers are installed and accessible."
        )
928
929
930
931
932


def crash_on_warnings():
    # Crash on warning if we are running CI tests
    return os.getenv("SGLANG_IS_IN_CI", "false") == "true"