utils.py 26.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

16
17
"""Common utilities."""

Lianmin Zheng's avatar
Lianmin Zheng committed
18
import base64
19
import ipaddress
20
import json
21
import logging
Lianmin Zheng's avatar
Lianmin Zheng committed
22
import os
23
import pickle
Lianmin Zheng's avatar
Lianmin Zheng committed
24
import random
Lianmin Zheng's avatar
Lianmin Zheng committed
25
import re
26
import resource
27
28
import shutil
import signal
Lianmin Zheng's avatar
Lianmin Zheng committed
29
import socket
30
import subprocess
Lianmin Zheng's avatar
Lianmin Zheng committed
31
import tempfile
Lianmin Zheng's avatar
Lianmin Zheng committed
32
import time
33
import warnings
34
from importlib.metadata import PackageNotFoundError, version
Lianmin Zheng's avatar
Lianmin Zheng committed
35
from io import BytesIO
36
from typing import Any, Dict, List, Optional, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
37
38

import numpy as np
39
import psutil
Lianmin Zheng's avatar
Lianmin Zheng committed
40
41
import requests
import torch
42
import torch.distributed as dist
43
import triton
44
import zmq
45
from fastapi.responses import ORJSONResponse
46
from packaging import version as pkg_version
Lianmin Zheng's avatar
Lianmin Zheng committed
47
from starlette.routing import Mount
48
from torch import nn
49
from torch.profiler import ProfilerActivity, profile, record_function
50
51
52
53
54
55
from triton.runtime.cache import (
    FileCacheManager,
    default_cache_dir,
    default_dump_dir,
    default_override_dir,
)
56

57
58
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
59

Liangsheng Yin's avatar
Liangsheng Yin committed
60
61
show_time_cost = False
time_infos = {}
Lianmin Zheng's avatar
Lianmin Zheng committed
62
63


64
def is_hip() -> bool:
65
    """Return whether it is HIP on the AMD ROCm platform."""
66
67
68
    return torch.version.hip is not None


69
70
71
72
73
def is_flashinfer_available():
    """
    Check whether flashinfer is available.
    As of Oct. 6, 2024, it is only available on NVIDIA GPUs.
    """
74
75
    if os.environ.get("SGLANG_IS_FLASHINFER_AVAILABLE", "true") == "false":
        return False
76
77
78
    return torch.cuda.is_available() and not is_hip()


79
80
81
82
83
84
85
86
def is_ipv6(address):
    try:
        ipaddress.IPv6Address(address)
        return True
    except ipaddress.AddressValueError:
        return False


Liangsheng Yin's avatar
Liangsheng Yin committed
87
88
89
90
def enable_show_time_cost():
    global show_time_cost
    show_time_cost = True

Lianmin Zheng's avatar
Lianmin Zheng committed
91

Liangsheng Yin's avatar
Liangsheng Yin committed
92
93
94
95
96
97
class TimeInfo:
    def __init__(self, name, interval=0.1, color=0, indent=0):
        self.name = name
        self.interval = interval
        self.color = color
        self.indent = indent
Lianmin Zheng's avatar
Lianmin Zheng committed
98

Liangsheng Yin's avatar
Liangsheng Yin committed
99
100
        self.acc_time = 0
        self.last_acc_time = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
101

Liangsheng Yin's avatar
Liangsheng Yin committed
102
103
104
105
106
    def check(self):
        if self.acc_time - self.last_acc_time > self.interval:
            self.last_acc_time = self.acc_time
            return True
        return False
Lianmin Zheng's avatar
Lianmin Zheng committed
107

Liangsheng Yin's avatar
Liangsheng Yin committed
108
109
110
111
    def pretty_print(self):
        print(f"\x1b[{self.color}m", end="")
        print("-" * self.indent * 2, end="")
        print(f"{self.name}: {self.acc_time:.3f}s\x1b[0m")
Lianmin Zheng's avatar
Lianmin Zheng committed
112
113


Liangsheng Yin's avatar
Liangsheng Yin committed
114
115
116
117
def mark_start(name, interval=0.1, color=0, indent=0):
    global time_infos, show_time_cost
    if not show_time_cost:
        return
Lianmin Zheng's avatar
Lianmin Zheng committed
118
    torch.cuda.synchronize()
Liangsheng Yin's avatar
Liangsheng Yin committed
119
120
121
    if time_infos.get(name, None) is None:
        time_infos[name] = TimeInfo(name, interval, color, indent)
    time_infos[name].acc_time -= time.time()
Lianmin Zheng's avatar
Lianmin Zheng committed
122
123


Liangsheng Yin's avatar
Liangsheng Yin committed
124
125
126
127
def mark_end(name):
    global time_infos, show_time_cost
    if not show_time_cost:
        return
Lianmin Zheng's avatar
Lianmin Zheng committed
128
    torch.cuda.synchronize()
Liangsheng Yin's avatar
Liangsheng Yin committed
129
130
131
    time_infos[name].acc_time += time.time()
    if time_infos[name].check():
        time_infos[name].pretty_print()
Lianmin Zheng's avatar
Lianmin Zheng committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152


def calculate_time(show=False, min_cost_ms=0.0):
    def wrapper(func):
        def inner_func(*args, **kwargs):
            torch.cuda.synchronize()
            if show:
                start_time = time.time()
            result = func(*args, **kwargs)
            torch.cuda.synchronize()
            if show:
                cost_time = (time.time() - start_time) * 1000
                if cost_time > min_cost_ms:
                    print(f"Function {func.__name__} took {cost_time} ms to run.")
            return result

        return inner_func

    return wrapper


Zhang, Liangang's avatar
Zhang, Liangang committed
153
def get_available_gpu_memory(device, gpu_id, distributed=False):
Lianmin Zheng's avatar
Lianmin Zheng committed
154
155
156
157
    """
    Get available memory for cuda:gpu_id device.
    When distributed is True, the available memory is the minimum available memory of all GPUs.
    """
Zhang, Liangang's avatar
Zhang, Liangang committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    if device == "cuda":
        num_gpus = torch.cuda.device_count()
        assert gpu_id < num_gpus

        if torch.cuda.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.cuda.current_device()}, ",
                "which may cause useless memory allocation for torch CUDA context.",
            )

        torch.cuda.empty_cache()
        free_gpu_memory, _ = torch.cuda.mem_get_info(gpu_id)

    elif device == "xpu":
        num_gpus = torch.xpu.device_count()
        assert gpu_id < num_gpus

        if torch.xpu.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.xpu.current_device()}, ",
                "which may cause useless memory allocation for torch XPU context.",
            )
        torch.xpu.empty_cache()
        used_memory = torch.xpu.memory_allocated()
        total_gpu_memory = torch.xpu.get_device_properties(gpu_id).total_memory
        free_gpu_memory = total_gpu_memory - used_memory
Lianmin Zheng's avatar
Lianmin Zheng committed
184
185
186

    if distributed:
        tensor = torch.tensor(free_gpu_memory, dtype=torch.float32).to(
Zhang, Liangang's avatar
Zhang, Liangang committed
187
            torch.device(device, gpu_id)
Lianmin Zheng's avatar
Lianmin Zheng committed
188
189
190
191
192
193
194
        )
        torch.distributed.all_reduce(tensor, op=torch.distributed.ReduceOp.MIN)
        free_gpu_memory = tensor.item()

    return free_gpu_memory / (1 << 30)


Lianmin Zheng's avatar
Lianmin Zheng committed
195
def set_random_seed(seed: int) -> None:
196
    """Set the random seed for all libraries."""
Lianmin Zheng's avatar
Lianmin Zheng committed
197
    random.seed(seed)
198
    np.random.seed(seed)
Lianmin Zheng's avatar
Lianmin Zheng committed
199
200
201
202
203
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)


204
def is_port_available(port):
205
    """Return whether a port is available."""
206
207
    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
        try:
208
            s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
209
            s.bind(("", port))
210
            s.listen(1)
211
212
213
214
215
            return True
        except socket.error:
            return False


Yuanhan Zhang's avatar
Yuanhan Zhang committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
def decode_video_base64(video_base64):
    from PIL import Image

    # Decode the base64 string
    video_bytes = base64.b64decode(video_base64)

    # Placeholder for the start indices of each PNG image
    img_starts = []

    frame_format = "PNG"  # str(os.getenv('FRAME_FORMAT', "JPEG"))

    assert frame_format in [
        "PNG",
        "JPEG",
    ], "FRAME_FORMAT must be either 'PNG' or 'JPEG'"

    if frame_format == "PNG":
        # Find each PNG start signature to isolate images
        i = 0
        while i < len(video_bytes) - 7:  # Adjusted for the length of the PNG signature
            # Check if we found the start of a PNG file
            if (
                video_bytes[i] == 0x89
                and video_bytes[i + 1] == 0x50
                and video_bytes[i + 2] == 0x4E
                and video_bytes[i + 3] == 0x47
                and video_bytes[i + 4] == 0x0D
                and video_bytes[i + 5] == 0x0A
                and video_bytes[i + 6] == 0x1A
                and video_bytes[i + 7] == 0x0A
            ):
                img_starts.append(i)
                i += 8  # Skip the PNG signature
            else:
                i += 1
    else:
        # Find each JPEG start (0xFFD8) to isolate images
        i = 0
        while (
            i < len(video_bytes) - 1
        ):  # Adjusted for the length of the JPEG SOI signature
            # Check if we found the start of a JPEG file
            if video_bytes[i] == 0xFF and video_bytes[i + 1] == 0xD8:
                img_starts.append(i)
                # Move to the next byte to continue searching for the next image start
                i += 2
            else:
                i += 1

    frames = []
    for start_idx in img_starts:
        # Assuming each image is back-to-back, the end of one image is the start of another
        # The last image goes until the end of the byte string
        end_idx = (
            img_starts[img_starts.index(start_idx) + 1]
            if img_starts.index(start_idx) + 1 < len(img_starts)
            else len(video_bytes)
        )
        img_bytes = video_bytes[start_idx:end_idx]

        # Convert bytes to a PIL Image
        img = Image.open(BytesIO(img_bytes))

        # Convert PIL Image to a NumPy array
        frame = np.array(img)

        # Append the frame to the list of frames
        frames.append(frame)

    # Ensure there's at least one frame to avoid errors with np.stack
    if frames:
        return np.stack(frames, axis=0), img.size
    else:
        return np.array([]), (
            0,
            0,
        )  # Return an empty array and size tuple if no frames were found
Lianmin Zheng's avatar
Lianmin Zheng committed
293
294


295
def load_image(image_file: Union[str, bytes]):
Lianmin Zheng's avatar
Lianmin Zheng committed
296
297
    from PIL import Image

Yuanhan Zhang's avatar
Yuanhan Zhang committed
298
    image = image_size = None
Lianmin Zheng's avatar
Lianmin Zheng committed
299

300
301
302
    if isinstance(image_file, bytes):
        image = Image.open(BytesIO(image_file))
    elif image_file.startswith("http://") or image_file.startswith("https://"):
Lianmin Zheng's avatar
Lianmin Zheng committed
303
304
305
306
307
308
        timeout = int(os.getenv("REQUEST_TIMEOUT", "3"))
        response = requests.get(image_file, timeout=timeout)
        image = Image.open(BytesIO(response.content))
    elif image_file.lower().endswith(("png", "jpg", "jpeg", "webp", "gif")):
        image = Image.open(image_file)
    elif image_file.startswith("data:"):
309
        image_file = image_file.split(",")[1]
Lianmin Zheng's avatar
Lianmin Zheng committed
310
        image = Image.open(BytesIO(base64.b64decode(image_file)))
Yuanhan Zhang's avatar
Yuanhan Zhang committed
311
312
313
    elif image_file.startswith("video:"):
        image_file = image_file.replace("video:", "")
        image, image_size = decode_video_base64(image_file)
314
    elif isinstance(image_file, str):
Lianmin Zheng's avatar
Lianmin Zheng committed
315
        image = Image.open(BytesIO(base64.b64decode(image_file)))
316
317
    else:
        raise ValueError(f"Invalid image: {image}")
Lianmin Zheng's avatar
Lianmin Zheng committed
318

Yuanhan Zhang's avatar
Yuanhan Zhang committed
319
    return image, image_size
320
321


322
323
324
325
326
def suppress_other_loggers():
    from vllm.logger import logger as vllm_default_logger

    vllm_default_logger.setLevel(logging.WARN)
    logging.getLogger("vllm.config").setLevel(logging.ERROR)
327
328
329
    logging.getLogger("vllm.distributed.device_communicators.pynccl").setLevel(
        logging.WARN
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
330
331
332
    logging.getLogger("vllm.distributed.device_communicators.shm_broadcast").setLevel(
        logging.WARN
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
333
    logging.getLogger("vllm.selector").setLevel(logging.WARN)
334
    logging.getLogger("vllm.utils").setLevel(logging.ERROR)
335

336
337
338
339
    warnings.filterwarnings(
        "ignore", category=UserWarning, message="The given NumPy array is not writable"
    )

340

341
def assert_pkg_version(pkg: str, min_version: str, message: str):
342
343
344
345
    try:
        installed_version = version(pkg)
        if pkg_version.parse(installed_version) < pkg_version.parse(min_version):
            raise Exception(
346
                f"{pkg} is installed with version {installed_version}, which "
Ying Sheng's avatar
Ying Sheng committed
347
                f"is less than the minimum required version {min_version}. " + message
348
349
            )
    except PackageNotFoundError:
Yuanhan Zhang's avatar
Yuanhan Zhang committed
350
        raise Exception(
Ying Sheng's avatar
Ying Sheng committed
351
352
            f"{pkg} with minimum required version {min_version} is not installed. "
            + message
Yuanhan Zhang's avatar
Yuanhan Zhang committed
353
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
354
355


356
357
358
359
def kill_parent_process():
    """Kill the parent process and all children of the parent process."""
    current_process = psutil.Process()
    parent_process = current_process.parent()
Lianmin Zheng's avatar
Lianmin Zheng committed
360
361
362
363
364
365
366
    kill_child_process(
        parent_process.pid, include_self=True, skip_pid=current_process.pid
    )
    try:
        current_process.kill()
    except psutil.NoSuchProcess:
        pass
367
368


Lianmin Zheng's avatar
Lianmin Zheng committed
369
def kill_child_process(pid=None, include_self=False, skip_pid=None):
370
    """Kill the process and all its children process."""
Lianmin Zheng's avatar
Lianmin Zheng committed
371
372
373
    if pid is None:
        pid = os.getpid()

374
    try:
Lianmin Zheng's avatar
Lianmin Zheng committed
375
        itself = psutil.Process(pid)
376
377
378
    except psutil.NoSuchProcess:
        return

Lianmin Zheng's avatar
Lianmin Zheng committed
379
    children = itself.children(recursive=True)
380
    for child in children:
381
382
        if child.pid == skip_pid:
            continue
383
384
385
386
387
        try:
            child.kill()
        except psutil.NoSuchProcess:
            pass

Lianmin Zheng's avatar
Lianmin Zheng committed
388
    if include_self:
389
        try:
Lianmin Zheng's avatar
Lianmin Zheng committed
390
            itself.kill()
391
392
393
394

            # Sometime processes cannot be killed with SIGKILL (e.g, PID=1 launched by kubernetes),
            # so we send an additional signal to kill them.
            itself.send_signal(signal.SIGINT)
395
396
397
398
        except psutil.NoSuchProcess:
            pass


399
def monkey_patch_vllm_p2p_access_check(gpu_id: int):
400
401
402
403
404
    """
    Monkey patch the slow p2p access check in vllm.
    NOTE: We assume the p2p access is always allowed, which can be wrong for some setups.
    """

405
    import vllm.distributed.device_communicators.custom_all_reduce_utils as tgt
Liangsheng Yin's avatar
Liangsheng Yin committed
406

407
    setattr(tgt, "gpu_p2p_access_check", lambda *arg, **kwargs: True)
408
409


410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
vllm_all_gather_backup = None


def monkey_patch_vllm_all_gather(reverse: bool = False):
    """Monkey patch all-gather to remove in-place operations."""
    from torch.distributed import _functional_collectives as funcol
    from vllm.distributed.parallel_state import GroupCoordinator

    global vllm_all_gather_backup
    if vllm_all_gather_backup is None:
        vllm_all_gather_backup = GroupCoordinator.all_gather

    def all_gather(self, input_: torch.Tensor, dim: int = -1) -> torch.Tensor:
        world_size = self.world_size
        # Bypass the function if we are using only 1 GPU.
        if world_size == 1:
            return input_
        assert (
            -input_.dim() <= dim < input_.dim()
        ), f"Invalid dim ({dim}) for input tensor with shape {input_.size()}"
        if dim < 0:
            # Convert negative dim to positive.
            dim += input_.dim()
        input_size = input_.size()
        # Allocate output tensor.
        output_tensor = torch.empty(
            (world_size,) + input_size, dtype=input_.dtype, device=input_.device
        )

        output_tensor = funcol.all_gather_tensor(
            input_, gather_dim=0, group=self.device_group
        ).view((world_size,) + input_size)

        # Reshape
        output_tensor = output_tensor.movedim(0, dim)
        output_tensor = output_tensor.reshape(
            input_size[:dim] + (world_size * input_size[dim],) + input_size[dim + 1 :]
        )
        return output_tensor

    if reverse:
        setattr(GroupCoordinator, "all_gather", vllm_all_gather_backup)
    else:
        setattr(GroupCoordinator, "all_gather", all_gather)


456
457
458
459
460
461
def maybe_set_triton_cache_manager() -> None:
    """Set environment variable to tell Triton to use a
    custom cache manager"""
    cache_manger = os.environ.get("TRITON_CACHE_MANAGER", None)
    if cache_manger is None:
        manager = "sglang.srt.utils:CustomCacheManager"
462
        logger.debug("Setting Triton cache manager to: %s", manager)
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
        os.environ["TRITON_CACHE_MANAGER"] = manager


class CustomCacheManager(FileCacheManager):
    # Adapted from: https://github.com/tdoublep/vllm/blob/3307522289fdfefe323b6c00d0db696651989a2f/vllm/triton_utils/custom_cache_manager.py
    def __init__(self, key, override=False, dump=False):

        self.key = key
        self.lock_path = None
        if dump:
            self.cache_dir = default_dump_dir()
            self.cache_dir = os.path.join(self.cache_dir, self.key)
            self.lock_path = os.path.join(self.cache_dir, "lock")
            os.makedirs(self.cache_dir, exist_ok=True)
        elif override:
            self.cache_dir = default_override_dir()
            self.cache_dir = os.path.join(self.cache_dir, self.key)
        else:
            # create cache directory if it doesn't exist
            self.cache_dir = (
                os.getenv("TRITON_CACHE_DIR", "").strip() or default_cache_dir()
            )
            if self.cache_dir:
                self.cache_dir = f"{self.cache_dir}_{os.getpid()}"
                self.cache_dir = os.path.join(self.cache_dir, self.key)
                self.lock_path = os.path.join(self.cache_dir, "lock")
                os.makedirs(self.cache_dir, exist_ok=True)
            else:
                raise RuntimeError("Could not create or locate cache dir")


494
495
496
497
498
499
500
501
def set_ulimit(target_soft_limit=65535):
    resource_type = resource.RLIMIT_NOFILE
    current_soft, current_hard = resource.getrlimit(resource_type)

    if current_soft < target_soft_limit:
        try:
            resource.setrlimit(resource_type, (target_soft_limit, current_hard))
        except ValueError as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
502
            logger.warning(f"Fail to set RLIMIT_NOFILE: {e}")
503
504


505
def add_api_key_middleware(app, api_key: str):
506
507
508
509
510
511
512
    @app.middleware("http")
    async def authentication(request, call_next):
        if request.method == "OPTIONS":
            return await call_next(request)
        if request.url.path.startswith("/health"):
            return await call_next(request)
        if request.headers.get("Authorization") != "Bearer " + api_key:
513
            return ORJSONResponse(content={"error": "Unauthorized"}, status_code=401)
514
        return await call_next(request)
515
516


517
def prepare_model_and_tokenizer(model_path: str, tokenizer_path: str):
518
519
520
521
    if "SGLANG_USE_MODELSCOPE" in os.environ:
        if not os.path.exists(model_path):
            from modelscope import snapshot_download

522
523
            model_path = snapshot_download(model_path)
            tokenizer_path = snapshot_download(
524
525
                tokenizer_path, ignore_patterns=["*.bin", "*.safetensors"]
            )
526
    return model_path, tokenizer_path
527
528
529
530


def configure_logger(server_args, prefix: str = ""):
    format = f"[%(asctime)s{prefix}] %(message)s"
Lianmin Zheng's avatar
Lianmin Zheng committed
531
    # format = f"[%(asctime)s.%(msecs)03d{prefix}] %(message)s"
532
533
534
    logging.basicConfig(
        level=getattr(logging, server_args.log_level.upper()),
        format=format,
535
        datefmt="%Y-%m-%d %H:%M:%S",
536
537
        force=True,
    )
538
539
540
541
542
543
544
545
546
547
548


# source: https://github.com/vllm-project/vllm/blob/93b38bea5dd03e1b140ca997dfaadef86f8f1855/vllm/lora/utils.py#L9
def replace_submodule(
    model: nn.Module, module_name: str, new_module: nn.Module
) -> nn.Module:
    """Replace a submodule in a model with a new module."""
    parent = model.get_submodule(".".join(module_name.split(".")[:-1]))
    target_name = module_name.split(".")[-1]
    setattr(parent, target_name, new_module)
    return new_module
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568


def set_weight_attrs(
    weight: torch.Tensor,
    weight_attrs: Optional[Dict[str, Any]],
):
    """Set attributes on a weight tensor.

    This method is used to set attributes on a weight tensor. This method
    will not overwrite existing attributes.

    Args:
        weight: The weight tensor.
        weight_attrs: A dictionary of attributes to set on the weight tensor.
    """
    if weight_attrs is None:
        return
    for key, value in weight_attrs.items():
        assert not hasattr(weight, key), f"Overwriting existing tensor attribute: {key}"
        setattr(weight, key, value)
569
570
571


def broadcast_pyobj(
572
573
574
    data: List[Any],
    rank: int,
    dist_group: Optional[torch.distributed.ProcessGroup] = None,
575
576
577
578
579
580
581
582
583
584
):
    """Broadcast inputs from rank=0 to all other ranks with torch.dist backend."""

    if rank == 0:
        if len(data) == 0:
            tensor_size = torch.tensor([0], dtype=torch.long)
            dist.broadcast(tensor_size, src=0, group=dist_group)
        else:
            serialized_data = pickle.dumps(data)
            size = len(serialized_data)
585
586
587
            tensor_data = torch.ByteTensor(
                np.frombuffer(serialized_data, dtype=np.uint8)
            )
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
            tensor_size = torch.tensor([size], dtype=torch.long)

            dist.broadcast(tensor_size, src=0, group=dist_group)
            dist.broadcast(tensor_data, src=0, group=dist_group)
        return data
    else:
        tensor_size = torch.tensor([0], dtype=torch.long)
        dist.broadcast(tensor_size, src=0, group=dist_group)
        size = tensor_size.item()

        if size == 0:
            return []

        tensor_data = torch.empty(size, dtype=torch.uint8)
        dist.broadcast(tensor_data, src=0, group=dist_group)

604
        serialized_data = bytes(tensor_data.cpu().numpy())
605
606
        data = pickle.loads(serialized_data)
        return data
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637


step_counter = 0


def pytorch_profile(name, func, *args, data_size=-1):
    """
    Args:
        name (string): the name of recorded function.
        func: the function to be profiled.
        args: the arguments of the profiled function.
        data_size (int): some measurement of the computation complexity.
            Usually, it could be the batch size.
    """
    global step_counter
    os.makedirs("trace", exist_ok=True)
    with profile(
        activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
        # schedule=torch.profiler.schedule(wait=1, warmup=1, active=3, repeat=2),
        # on_trace_ready=tensorboard_trace_handler('./log_dir'),
        record_shapes=True,
        profile_memory=True,
        with_stack=True,
    ) as prof:
        with record_function(name):
            with open(f"trace/size_{step_counter}.json", "w") as f:
                json.dump({"size": data_size}, f)
            result = func(*args)
    prof.export_chrome_trace(f"trace/{name}_{step_counter}.json")
    step_counter += 1
    return result
638
639
640
641
642
643
644


def first_rank_print(*args, **kwargs):
    if torch.cuda.current_device() == 0:
        print(*args, **kwargs)
    else:
        pass
645
646
647


def get_zmq_socket(context: zmq.Context, socket_type: zmq.SocketType, endpoint: str):
648
649
650
651
652
653
654
655
    mem = psutil.virtual_memory()
    total_mem = mem.total / 1024**3
    available_mem = mem.available / 1024**3
    if total_mem > 32 and available_mem > 16:
        buf_size = int(0.5 * 1024**3)
    else:
        buf_size = -1

656
657
658
    socket = context.socket(socket_type)
    if socket_type == zmq.PUSH:
        socket.setsockopt(zmq.SNDHWM, 0)
659
        socket.setsockopt(zmq.SNDBUF, buf_size)
660
661
662
        socket.connect(f"ipc://{endpoint}")
    elif socket_type == zmq.PULL:
        socket.setsockopt(zmq.RCVHWM, 0)
663
        socket.setsockopt(zmq.RCVBUF, buf_size)
664
665
666
667
668
        socket.bind(f"ipc://{endpoint}")
    else:
        raise ValueError(f"Unsupported socket type: {socket_type}")

    return socket
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709


def dump_to_file(dirpath, name, value):
    from vllm.distributed import get_tensor_model_parallel_rank

    if get_tensor_model_parallel_rank() != 0:
        return

    os.makedirs(dirpath, exist_ok=True)
    if value.dtype is torch.bfloat16:
        value = value.float()
    value = value.cpu().numpy()
    output_filename = os.path.join(dirpath, f"pytorch_dump_{name}.npy")
    logger.info(f"Dump a tensor to {output_filename}. Shape = {value.shape}")
    np.save(output_filename, value)


def is_triton_3():
    return triton.__version__.startswith("3.")


def maybe_torch_compile(*args, **kwargs):
    """
    torch.compile does not work for triton 2.2.0, which is needed in xlm1's jax.
    Therefore, we disable it here.
    """

    def decorator(func):
        if is_triton_3():
            return torch.compile(*args, **kwargs)(func)
        return func

    return decorator


def delete_directory(dirpath):
    try:
        # This will remove the directory and all its contents
        shutil.rmtree(dirpath)
    except OSError as e:
        print(f"Warning: {dirpath} : {e.strerror}")
Lianmin Zheng's avatar
Lianmin Zheng committed
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735


# Temporary directory for prometheus multiprocess mode
# Cleaned up automatically when this object is garbage collected
prometheus_multiproc_dir: tempfile.TemporaryDirectory


def set_prometheus_multiproc_dir():
    # Set prometheus multiprocess directory
    # sglang uses prometheus multiprocess mode
    # we need to set this before importing prometheus_client
    # https://prometheus.github.io/client_python/multiprocess/
    global prometheus_multiproc_dir

    if "PROMETHEUS_MULTIPROC_DIR" in os.environ:
        logger.debug("User set PROMETHEUS_MULTIPROC_DIR detected.")
        prometheus_multiproc_dir = tempfile.TemporaryDirectory(
            dir=os.environ["PROMETHEUS_MULTIPROC_DIR"]
        )
    else:
        prometheus_multiproc_dir = tempfile.TemporaryDirectory()
        os.environ["PROMETHEUS_MULTIPROC_DIR"] = prometheus_multiproc_dir.name
    logger.debug(f"PROMETHEUS_MULTIPROC_DIR: {os.environ['PROMETHEUS_MULTIPROC_DIR']}")


def add_prometheus_middleware(app):
736
    # We need to import prometheus_client after setting the env variable `PROMETHEUS_MULTIPROC_DIR`
Lianmin Zheng's avatar
Lianmin Zheng committed
737
738
739
740
741
742
743
744
745
    from prometheus_client import CollectorRegistry, make_asgi_app, multiprocess

    registry = CollectorRegistry()
    multiprocess.MultiProcessCollector(registry)
    metrics_route = Mount("/metrics", make_asgi_app(registry=registry))

    # Workaround for 307 Redirect for /metrics
    metrics_route.path_regex = re.compile("^/metrics(?P<path>.*)$")
    app.routes.append(metrics_route)
746
747


748
749
750
751
752
753
754
755
756
def bind_port(port):
    """Bind to a specific port, assuming it's available."""
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)  # Allows address reuse
    sock.bind(("", port))
    sock.listen(1)
    return sock


HAI's avatar
HAI committed
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
def get_amdgpu_memory_capacity():
    try:
        # Run rocm-smi and capture the output
        result = subprocess.run(
            ["rocm-smi --showmeminfo vram | grep 'Total Memory' | awk '{print $NF}'"],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            shell=True,
            text=True,
        )
        if result.returncode != 0:
            raise RuntimeError(f"rocm-smi error: {result.stderr.strip()}")

        # Parse the output to extract memory values in MiB
        memory_values = [
            float(mem) / 1024 / 1024
            for mem in result.stdout.strip().split("\n")
            if re.match(r"^\d+(\.\d+)?$", mem.strip())
        ]

        if not memory_values:
            raise ValueError("No GPU memory values found.")

        # Return the minimum memory value
        return min(memory_values)

    except FileNotFoundError:
        raise RuntimeError(
            "rocm-smi not found. Ensure AMD ROCm drivers are installed and accessible."
        )


def get_nvgpu_memory_capacity():
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
    try:
        # Run nvidia-smi and capture the output
        result = subprocess.run(
            ["nvidia-smi", "--query-gpu=memory.total", "--format=csv,noheader,nounits"],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            text=True,
        )

        if result.returncode != 0:
            raise RuntimeError(f"nvidia-smi error: {result.stderr.strip()}")

        # Parse the output to extract memory values
        memory_values = [
            float(mem)
            for mem in result.stdout.strip().split("\n")
            if re.match(r"^\d+(\.\d+)?$", mem.strip())
        ]

        if not memory_values:
            raise ValueError("No GPU memory values found.")

        # Return the minimum memory value
        return min(memory_values)

    except FileNotFoundError:
        raise RuntimeError(
            "nvidia-smi not found. Ensure NVIDIA drivers are installed and accessible."
        )