"official/benchmark/perfzero_benchmark.py" did not exist on "38e48f910f816ed59cea5c06dc6b64dc82406f86"
utils.py 48.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
15
"""Common utilities."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
import base64
17
import builtins
18
import ctypes
19
import dataclasses
20
import io
21
import ipaddress
22
import itertools
23
import json
24
import logging
Lianmin Zheng's avatar
Lianmin Zheng committed
25
import os
26
import pickle
Lianmin Zheng's avatar
Lianmin Zheng committed
27
import random
Lianmin Zheng's avatar
Lianmin Zheng committed
28
import re
29
import resource
30
31
import shutil
import signal
Lianmin Zheng's avatar
Lianmin Zheng committed
32
import socket
33
import subprocess
34
import sys
Lianmin Zheng's avatar
Lianmin Zheng committed
35
import tempfile
36
import threading
Lianmin Zheng's avatar
Lianmin Zheng committed
37
import time
38
import warnings
39
from functools import lru_cache
40
from importlib.metadata import PackageNotFoundError, version
41
from importlib.util import find_spec
Lianmin Zheng's avatar
Lianmin Zheng committed
42
from io import BytesIO
43
from multiprocessing import Pool
44
from multiprocessing.reduction import ForkingPickler
45
from typing import Any, Callable, Dict, List, Optional, Protocol, Set, Tuple, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
46
47

import numpy as np
48
import psutil
Lianmin Zheng's avatar
Lianmin Zheng committed
49
50
import requests
import torch
51
import torch.distributed
52
import torch.distributed as dist
53
import triton
54
import zmq
55
from fastapi.responses import ORJSONResponse
56
from packaging import version as pkg_version
HandH1998's avatar
HandH1998 committed
57
from packaging.version import Version, parse
Lianmin Zheng's avatar
Lianmin Zheng committed
58
from starlette.routing import Mount
59
from torch import nn
60
from torch.func import functional_call
61
from torch.library import Library
62
from torch.profiler import ProfilerActivity, profile, record_function
HandH1998's avatar
HandH1998 committed
63
from torch.utils.cpp_extension import CUDA_HOME
64
65
66
67
68
69
from triton.runtime.cache import (
    FileCacheManager,
    default_cache_dir,
    default_dump_dir,
    default_override_dir,
)
70

71
72
logger = logging.getLogger(__name__)

Liangsheng Yin's avatar
Liangsheng Yin committed
73
74
show_time_cost = False
time_infos = {}
Lianmin Zheng's avatar
Lianmin Zheng committed
75

76
77
HIP_FP8_E4M3_FNUZ_MAX = 224.0

Lianmin Zheng's avatar
Lianmin Zheng committed
78

79
# https://pytorch.org/docs/stable/notes/hip.html#checking-for-hip
80
81
82
83
def is_hip() -> bool:
    return torch.version.hip is not None


84
85
86
87
88
89
90
91
92
93
94
if is_hip():
    FP8_E4M3_MAX = HIP_FP8_E4M3_FNUZ_MAX
else:
    FP8_E4M3_MAX = torch.finfo(torch.float8_e4m3fn).max

FP8_E4M3_MIN = -FP8_E4M3_MAX

builtins.FP8_E4M3_MAX = FP8_E4M3_MAX
builtins.FP8_E4M3_MIN = FP8_E4M3_MIN


95
96
97
98
def is_rocm() -> bool:
    return torch.cuda.is_available() and torch.version.hip


99
def is_cuda():
100
    return torch.cuda.is_available() and torch.version.cuda
101
102
103
104
105
106
107
108
109
110
111
112
113
114


def is_cuda_alike():
    return is_cuda() or is_hip()


def is_hpu() -> bool:
    return hasattr(torch, "hpu") and torch.hpu.is_available()


def is_xpu() -> bool:
    return hasattr(torch, "xpu") and torch.xpu.is_available()


115
116
117
118
119
def is_flashinfer_available():
    """
    Check whether flashinfer is available.
    As of Oct. 6, 2024, it is only available on NVIDIA GPUs.
    """
120
    if not get_bool_env_var("SGLANG_IS_FLASHINFER_AVAILABLE", default="true"):
121
        return False
122
    return is_cuda()
123
124


125
def is_cuda_available():
126
    return is_cuda()
127
128


Liangsheng Yin's avatar
Liangsheng Yin committed
129
130
131
132
def enable_show_time_cost():
    global show_time_cost
    show_time_cost = True

Lianmin Zheng's avatar
Lianmin Zheng committed
133

Liangsheng Yin's avatar
Liangsheng Yin committed
134
135
136
137
138
139
class TimeInfo:
    def __init__(self, name, interval=0.1, color=0, indent=0):
        self.name = name
        self.interval = interval
        self.color = color
        self.indent = indent
Lianmin Zheng's avatar
Lianmin Zheng committed
140

Liangsheng Yin's avatar
Liangsheng Yin committed
141
142
        self.acc_time = 0
        self.last_acc_time = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
143

Liangsheng Yin's avatar
Liangsheng Yin committed
144
145
146
147
148
    def check(self):
        if self.acc_time - self.last_acc_time > self.interval:
            self.last_acc_time = self.acc_time
            return True
        return False
Lianmin Zheng's avatar
Lianmin Zheng committed
149

Liangsheng Yin's avatar
Liangsheng Yin committed
150
151
152
153
    def pretty_print(self):
        print(f"\x1b[{self.color}m", end="")
        print("-" * self.indent * 2, end="")
        print(f"{self.name}: {self.acc_time:.3f}s\x1b[0m")
Lianmin Zheng's avatar
Lianmin Zheng committed
154
155


Liangsheng Yin's avatar
Liangsheng Yin committed
156
157
158
159
def mark_start(name, interval=0.1, color=0, indent=0):
    global time_infos, show_time_cost
    if not show_time_cost:
        return
Lianmin Zheng's avatar
Lianmin Zheng committed
160
    torch.cuda.synchronize()
Liangsheng Yin's avatar
Liangsheng Yin committed
161
162
163
    if time_infos.get(name, None) is None:
        time_infos[name] = TimeInfo(name, interval, color, indent)
    time_infos[name].acc_time -= time.time()
Lianmin Zheng's avatar
Lianmin Zheng committed
164
165


Liangsheng Yin's avatar
Liangsheng Yin committed
166
167
168
169
def mark_end(name):
    global time_infos, show_time_cost
    if not show_time_cost:
        return
Lianmin Zheng's avatar
Lianmin Zheng committed
170
    torch.cuda.synchronize()
Liangsheng Yin's avatar
Liangsheng Yin committed
171
172
173
    time_infos[name].acc_time += time.time()
    if time_infos[name].check():
        time_infos[name].pretty_print()
Lianmin Zheng's avatar
Lianmin Zheng committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194


def calculate_time(show=False, min_cost_ms=0.0):
    def wrapper(func):
        def inner_func(*args, **kwargs):
            torch.cuda.synchronize()
            if show:
                start_time = time.time()
            result = func(*args, **kwargs)
            torch.cuda.synchronize()
            if show:
                cost_time = (time.time() - start_time) * 1000
                if cost_time > min_cost_ms:
                    print(f"Function {func.__name__} took {cost_time} ms to run.")
            return result

        return inner_func

    return wrapper


195
def get_available_gpu_memory(device, gpu_id, distributed=False, empty_cache=True):
Lianmin Zheng's avatar
Lianmin Zheng committed
196
197
198
199
    """
    Get available memory for cuda:gpu_id device.
    When distributed is True, the available memory is the minimum available memory of all GPUs.
    """
Zhang, Liangang's avatar
Zhang, Liangang committed
200
201
202
203
204
205
206
207
208
209
    if device == "cuda":
        num_gpus = torch.cuda.device_count()
        assert gpu_id < num_gpus

        if torch.cuda.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.cuda.current_device()}, ",
                "which may cause useless memory allocation for torch CUDA context.",
            )

210
211
        if empty_cache:
            torch.cuda.empty_cache()
Zhang, Liangang's avatar
Zhang, Liangang committed
212
213
214
215
216
217
218
219
220
221
222
        free_gpu_memory, _ = torch.cuda.mem_get_info(gpu_id)

    elif device == "xpu":
        num_gpus = torch.xpu.device_count()
        assert gpu_id < num_gpus

        if torch.xpu.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.xpu.current_device()}, ",
                "which may cause useless memory allocation for torch XPU context.",
            )
223
224
225

        if empty_cache:
            torch.xpu.empty_cache()
Zhang, Liangang's avatar
Zhang, Liangang committed
226
227
228
        used_memory = torch.xpu.memory_allocated()
        total_gpu_memory = torch.xpu.get_device_properties(gpu_id).total_memory
        free_gpu_memory = total_gpu_memory - used_memory
Lianmin Zheng's avatar
Lianmin Zheng committed
229

230
231
232
233
234
235
236
237
238
239
240
241
    elif device == "hpu":
        num_gpus = torch.hpu.device_count()
        assert gpu_id < num_gpus

        if torch.hpu.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.hpu.current_device()}, ",
                "which may cause useless memory allocation for torch HPU context.",
            )

        free_gpu_memory, total_gpu_memory = torch.hpu.mem_get_info()

242
243
244
245
    elif device == "cpu":
        # TODO: rename the variables in the current function to be not GPU specific
        free_gpu_memory = psutil.virtual_memory().available

Lianmin Zheng's avatar
Lianmin Zheng committed
246
247
    if distributed:
        tensor = torch.tensor(free_gpu_memory, dtype=torch.float32).to(
Zhang, Liangang's avatar
Zhang, Liangang committed
248
            torch.device(device, gpu_id)
Lianmin Zheng's avatar
Lianmin Zheng committed
249
250
251
252
253
254
255
        )
        torch.distributed.all_reduce(tensor, op=torch.distributed.ReduceOp.MIN)
        free_gpu_memory = tensor.item()

    return free_gpu_memory / (1 << 30)


256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
def is_pin_memory_available() -> bool:
    return torch.cuda.is_available()


_CPU_OFFLOAD_BYTES = 0
_CPU_OFFLOAD_MAX_BYTES = 0


def set_cpu_offload_max_bytes(max_bytes: int) -> None:
    global _CPU_OFFLOAD_MAX_BYTES, _CPU_OFFLOAD_BYTES
    _CPU_OFFLOAD_BYTES = 0
    _CPU_OFFLOAD_MAX_BYTES = max_bytes


def maybe_offload_to_cpu(module: torch.nn.Module) -> torch.nn.Module:
    device = next(module.parameters()).device

    if device == torch.device("cpu"):
        return module

    global _CPU_OFFLOAD_MAX_BYTES, _CPU_OFFLOAD_BYTES
    if _CPU_OFFLOAD_BYTES >= _CPU_OFFLOAD_MAX_BYTES:
        return module

    pin_memory = is_pin_memory_available()
    # offload parameters to CPU
    # use pin_memory if possible, which helps cudagraph capture speed
    offloaded_parameters = False
    for p in module.parameters():
        if _CPU_OFFLOAD_BYTES >= _CPU_OFFLOAD_MAX_BYTES:
            # we use per-parameter offloading
            # one module might have some parameters offloaded and some not
            break

        # `torch.empty_like` does not support `pin_memory` argument
        cpu_data = torch.empty_strided(
            size=p.data.size(),
            stride=p.data.stride(),
            dtype=p.data.dtype,
            layout=p.data.layout,
            device="cpu",
            pin_memory=pin_memory,
        )
        cpu_data.copy_(p.data)
        p.data = cpu_data
        _CPU_OFFLOAD_BYTES += p.data.numel() * p.data.element_size()
        offloaded_parameters = True

    if offloaded_parameters:
        original_forward = module.forward

        def forward(*args, **kwargs):
            module.forward = original_forward
            device_state = {
                # here we blindly call `to(device)`
                # if the parameter is already on the device, it will be a no-op
                k: v.to(device, non_blocking=True)
                for k, v in module.state_dict().items()
            }
            output = functional_call(module, device_state, args=args, kwargs=kwargs)
            module.forward = forward
            return output

        module.forward = forward

    return module


class LayerFn(Protocol):

    def __call__(self, layer_id: int, prefix: str) -> torch.nn.Module: ...


def make_layers(
    num_hidden_layers: int,
    layer_fn: LayerFn,
    prefix: str = "",
) -> Tuple[int, int, torch.nn.ModuleList]:
    """Make a list of layers with the given layer function"""
    modules = torch.nn.ModuleList(
        [
337
            maybe_offload_to_cpu(layer_fn(idx=idx, prefix=add_prefix(idx, prefix)))
338
339
340
341
342
343
            for idx in range(num_hidden_layers)
        ]
    )
    return modules


Lianmin Zheng's avatar
Lianmin Zheng committed
344
def set_random_seed(seed: int) -> None:
345
    """Set the random seed for all libraries."""
Lianmin Zheng's avatar
Lianmin Zheng committed
346
    random.seed(seed)
347
    np.random.seed(seed)
Lianmin Zheng's avatar
Lianmin Zheng committed
348
349
350
351
352
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)


353
def is_port_available(port):
354
    """Return whether a port is available."""
355
356
    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
        try:
357
            s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
358
            s.bind(("", port))
359
            s.listen(1)
360
361
362
            return True
        except socket.error:
            return False
TianYu GUO's avatar
TianYu GUO committed
363
364
        except OverflowError:
            return False
365
366


Yuanhan Zhang's avatar
Yuanhan Zhang committed
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
def decode_video_base64(video_base64):
    from PIL import Image

    # Decode the base64 string
    video_bytes = base64.b64decode(video_base64)

    # Placeholder for the start indices of each PNG image
    img_starts = []

    frame_format = "PNG"  # str(os.getenv('FRAME_FORMAT', "JPEG"))

    assert frame_format in [
        "PNG",
        "JPEG",
    ], "FRAME_FORMAT must be either 'PNG' or 'JPEG'"

    if frame_format == "PNG":
        # Find each PNG start signature to isolate images
        i = 0
        while i < len(video_bytes) - 7:  # Adjusted for the length of the PNG signature
            # Check if we found the start of a PNG file
            if (
                video_bytes[i] == 0x89
                and video_bytes[i + 1] == 0x50
                and video_bytes[i + 2] == 0x4E
                and video_bytes[i + 3] == 0x47
                and video_bytes[i + 4] == 0x0D
                and video_bytes[i + 5] == 0x0A
                and video_bytes[i + 6] == 0x1A
                and video_bytes[i + 7] == 0x0A
            ):
                img_starts.append(i)
                i += 8  # Skip the PNG signature
            else:
                i += 1
    else:
        # Find each JPEG start (0xFFD8) to isolate images
        i = 0
        while (
            i < len(video_bytes) - 1
        ):  # Adjusted for the length of the JPEG SOI signature
            # Check if we found the start of a JPEG file
            if video_bytes[i] == 0xFF and video_bytes[i + 1] == 0xD8:
                img_starts.append(i)
                # Move to the next byte to continue searching for the next image start
                i += 2
            else:
                i += 1

    frames = []
    for start_idx in img_starts:
        # Assuming each image is back-to-back, the end of one image is the start of another
        # The last image goes until the end of the byte string
        end_idx = (
            img_starts[img_starts.index(start_idx) + 1]
            if img_starts.index(start_idx) + 1 < len(img_starts)
            else len(video_bytes)
        )
        img_bytes = video_bytes[start_idx:end_idx]

        # Convert bytes to a PIL Image
        img = Image.open(BytesIO(img_bytes))

        # Convert PIL Image to a NumPy array
        frame = np.array(img)

        # Append the frame to the list of frames
        frames.append(frame)

    # Ensure there's at least one frame to avoid errors with np.stack
    if frames:
        return np.stack(frames, axis=0), img.size
    else:
        return np.array([]), (
            0,
            0,
        )  # Return an empty array and size tuple if no frames were found
Lianmin Zheng's avatar
Lianmin Zheng committed
444
445


446
def load_image(image_file: Union[str, bytes]):
Lianmin Zheng's avatar
Lianmin Zheng committed
447
448
    from PIL import Image

Yuanhan Zhang's avatar
Yuanhan Zhang committed
449
    image = image_size = None
Lianmin Zheng's avatar
Lianmin Zheng committed
450

451
452
453
    if isinstance(image_file, bytes):
        image = Image.open(BytesIO(image_file))
    elif image_file.startswith("http://") or image_file.startswith("https://"):
Lianmin Zheng's avatar
Lianmin Zheng committed
454
455
456
457
458
459
        timeout = int(os.getenv("REQUEST_TIMEOUT", "3"))
        response = requests.get(image_file, timeout=timeout)
        image = Image.open(BytesIO(response.content))
    elif image_file.lower().endswith(("png", "jpg", "jpeg", "webp", "gif")):
        image = Image.open(image_file)
    elif image_file.startswith("data:"):
460
        image_file = image_file.split(",")[1]
Lianmin Zheng's avatar
Lianmin Zheng committed
461
        image = Image.open(BytesIO(base64.b64decode(image_file)))
Yuanhan Zhang's avatar
Yuanhan Zhang committed
462
463
464
    elif image_file.startswith("video:"):
        image_file = image_file.replace("video:", "")
        image, image_size = decode_video_base64(image_file)
465
    elif isinstance(image_file, str):
Lianmin Zheng's avatar
Lianmin Zheng committed
466
        image = Image.open(BytesIO(base64.b64decode(image_file)))
467
468
    else:
        raise ValueError(f"Invalid image: {image}")
Lianmin Zheng's avatar
Lianmin Zheng committed
469

Yuanhan Zhang's avatar
Yuanhan Zhang committed
470
    return image, image_size
471
472


473
474
475
476
def suppress_other_loggers():
    from vllm.logger import logger as vllm_default_logger

    vllm_default_logger.setLevel(logging.WARN)
477
478
479
    logging.getLogger("vllm.distributed.device_communicators.pynccl").setLevel(
        logging.WARN
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
480
481
482
    logging.getLogger("vllm.distributed.device_communicators.shm_broadcast").setLevel(
        logging.WARN
    )
483

484
485
486
487
    warnings.filterwarnings(
        "ignore", category=UserWarning, message="The given NumPy array is not writable"
    )

488

489
def assert_pkg_version(pkg: str, min_version: str, message: str):
490
491
492
493
    try:
        installed_version = version(pkg)
        if pkg_version.parse(installed_version) < pkg_version.parse(min_version):
            raise Exception(
494
                f"{pkg} is installed with version {installed_version}, which "
Ying Sheng's avatar
Ying Sheng committed
495
                f"is less than the minimum required version {min_version}. " + message
496
497
            )
    except PackageNotFoundError:
Yuanhan Zhang's avatar
Yuanhan Zhang committed
498
        raise Exception(
Ying Sheng's avatar
Ying Sheng committed
499
500
            f"{pkg} with minimum required version {min_version} is not installed. "
            + message
Yuanhan Zhang's avatar
Yuanhan Zhang committed
501
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
502
503


504
505
def kill_process_tree(parent_pid, include_parent: bool = True, skip_pid: int = None):
    """Kill the process and all its child processes."""
506
507
508
509
    # Remove sigchld handler to avoid spammy logs.
    if threading.current_thread() is threading.main_thread():
        signal.signal(signal.SIGCHLD, signal.SIG_DFL)

510
511
512
    if parent_pid is None:
        parent_pid = os.getpid()
        include_parent = False
Lianmin Zheng's avatar
Lianmin Zheng committed
513

514
    try:
515
        itself = psutil.Process(parent_pid)
516
517
518
    except psutil.NoSuchProcess:
        return

Lianmin Zheng's avatar
Lianmin Zheng committed
519
    children = itself.children(recursive=True)
520
    for child in children:
521
522
        if child.pid == skip_pid:
            continue
523
524
525
526
527
        try:
            child.kill()
        except psutil.NoSuchProcess:
            pass

528
    if include_parent:
529
530
        try:
            itself.kill()
531

532
533
534
535
536
            # Sometime processes cannot be killed with SIGKILL (e.g, PID=1 launched by kubernetes),
            # so we send an additional signal to kill them.
            itself.send_signal(signal.SIGQUIT)
        except psutil.NoSuchProcess:
            pass
537
538


539
def monkey_patch_p2p_access_check():
540
    """
541
    Monkey patch the slow p2p access check.
542
543
544
    NOTE: We assume the p2p access is always allowed, which can be wrong for some setups.
    """

545
    import sglang.srt.distributed.device_communicators.custom_all_reduce_utils as tgt
Liangsheng Yin's avatar
Liangsheng Yin committed
546

547
    setattr(tgt, "gpu_p2p_access_check", lambda *arg, **kwargs: True)
548

Lianmin Zheng's avatar
Lianmin Zheng committed
549
    # Suppress the warnings from this delete function when using sglang.bench_one_batch
550
551
552
    from sglang.srt.distributed.device_communicators.custom_all_reduce import (
        CustomAllreduce,
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
553
554
555

    setattr(CustomAllreduce, "__del__", lambda *args, **kwargs: None)

556

557
558
559
560
561
562
563
def monkey_patch_vllm_gguf_config():
    from vllm.model_executor.layers.quantization.gguf import (
        GGUFConfig,
        GGUFEmbeddingMethod,
        GGUFLinearMethod,
    )

Yineng Zhang's avatar
Yineng Zhang committed
564
    from sglang.srt.layers.linear import LinearBase
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
    from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding

    def get_quant_method_with_embedding_replaced(
        self, layer: torch.nn.Module, prefix: str
    ) -> Optional["QuantizeMethodBase"]:
        if isinstance(layer, LinearBase):
            return GGUFLinearMethod(self)
        elif isinstance(layer, VocabParallelEmbedding):
            # patch to own VocabParallelEmbedding
            return GGUFEmbeddingMethod(self)
        return None

    setattr(GGUFConfig, "get_quant_method", get_quant_method_with_embedding_replaced)


580
581
582
583
584
585
def maybe_set_triton_cache_manager() -> None:
    """Set environment variable to tell Triton to use a
    custom cache manager"""
    cache_manger = os.environ.get("TRITON_CACHE_MANAGER", None)
    if cache_manger is None:
        manager = "sglang.srt.utils:CustomCacheManager"
586
        logger.debug("Setting Triton cache manager to: %s", manager)
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
        os.environ["TRITON_CACHE_MANAGER"] = manager


class CustomCacheManager(FileCacheManager):
    # Adapted from: https://github.com/tdoublep/vllm/blob/3307522289fdfefe323b6c00d0db696651989a2f/vllm/triton_utils/custom_cache_manager.py
    def __init__(self, key, override=False, dump=False):

        self.key = key
        self.lock_path = None
        if dump:
            self.cache_dir = default_dump_dir()
            self.cache_dir = os.path.join(self.cache_dir, self.key)
            self.lock_path = os.path.join(self.cache_dir, "lock")
            os.makedirs(self.cache_dir, exist_ok=True)
        elif override:
            self.cache_dir = default_override_dir()
            self.cache_dir = os.path.join(self.cache_dir, self.key)
        else:
            # create cache directory if it doesn't exist
            self.cache_dir = (
                os.getenv("TRITON_CACHE_DIR", "").strip() or default_cache_dir()
            )
            if self.cache_dir:
                self.cache_dir = f"{self.cache_dir}_{os.getpid()}"
                self.cache_dir = os.path.join(self.cache_dir, self.key)
                self.lock_path = os.path.join(self.cache_dir, "lock")
                os.makedirs(self.cache_dir, exist_ok=True)
            else:
                raise RuntimeError("Could not create or locate cache dir")


618
619
620
621
622
623
624
625
def set_ulimit(target_soft_limit=65535):
    resource_type = resource.RLIMIT_NOFILE
    current_soft, current_hard = resource.getrlimit(resource_type)

    if current_soft < target_soft_limit:
        try:
            resource.setrlimit(resource_type, (target_soft_limit, current_hard))
        except ValueError as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
626
            logger.warning(f"Fail to set RLIMIT_NOFILE: {e}")
627
628


629
def add_api_key_middleware(app, api_key: str):
630
631
632
633
634
635
636
    @app.middleware("http")
    async def authentication(request, call_next):
        if request.method == "OPTIONS":
            return await call_next(request)
        if request.url.path.startswith("/health"):
            return await call_next(request)
        if request.headers.get("Authorization") != "Bearer " + api_key:
637
            return ORJSONResponse(content={"error": "Unauthorized"}, status_code=401)
638
        return await call_next(request)
639
640


641
def prepare_model_and_tokenizer(model_path: str, tokenizer_path: str):
642
    if get_bool_env_var("SGLANG_USE_MODELSCOPE"):
643
644
645
        if not os.path.exists(model_path):
            from modelscope import snapshot_download

646
647
            model_path = snapshot_download(model_path)
            tokenizer_path = snapshot_download(
648
649
                tokenizer_path, ignore_patterns=["*.bin", "*.safetensors"]
            )
650
    return model_path, tokenizer_path
651
652
653
654


def configure_logger(server_args, prefix: str = ""):
    format = f"[%(asctime)s{prefix}] %(message)s"
Lianmin Zheng's avatar
Lianmin Zheng committed
655
    # format = f"[%(asctime)s.%(msecs)03d{prefix}] %(message)s"
656
657
658
    logging.basicConfig(
        level=getattr(logging, server_args.log_level.upper()),
        format=format,
659
        datefmt="%Y-%m-%d %H:%M:%S",
660
661
        force=True,
    )
662
663
664
665
666
667
668
669
670
671
672


# source: https://github.com/vllm-project/vllm/blob/93b38bea5dd03e1b140ca997dfaadef86f8f1855/vllm/lora/utils.py#L9
def replace_submodule(
    model: nn.Module, module_name: str, new_module: nn.Module
) -> nn.Module:
    """Replace a submodule in a model with a new module."""
    parent = model.get_submodule(".".join(module_name.split(".")[:-1]))
    target_name = module_name.split(".")[-1]
    setattr(parent, target_name, new_module)
    return new_module
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692


def set_weight_attrs(
    weight: torch.Tensor,
    weight_attrs: Optional[Dict[str, Any]],
):
    """Set attributes on a weight tensor.

    This method is used to set attributes on a weight tensor. This method
    will not overwrite existing attributes.

    Args:
        weight: The weight tensor.
        weight_attrs: A dictionary of attributes to set on the weight tensor.
    """
    if weight_attrs is None:
        return
    for key, value in weight_attrs.items():
        assert not hasattr(weight, key), f"Overwriting existing tensor attribute: {key}"
        setattr(weight, key, value)
693
694
695


def broadcast_pyobj(
696
697
698
    data: List[Any],
    rank: int,
    dist_group: Optional[torch.distributed.ProcessGroup] = None,
699
    src: int = 0,
700
701
702
703
704
705
):
    """Broadcast inputs from rank=0 to all other ranks with torch.dist backend."""

    if rank == 0:
        if len(data) == 0:
            tensor_size = torch.tensor([0], dtype=torch.long)
706
            dist.broadcast(tensor_size, src=src, group=dist_group)
707
708
709
        else:
            serialized_data = pickle.dumps(data)
            size = len(serialized_data)
710
711
712
            tensor_data = torch.ByteTensor(
                np.frombuffer(serialized_data, dtype=np.uint8)
            )
713
714
            tensor_size = torch.tensor([size], dtype=torch.long)

715
716
            dist.broadcast(tensor_size, src=src, group=dist_group)
            dist.broadcast(tensor_data, src=src, group=dist_group)
717
718
719
        return data
    else:
        tensor_size = torch.tensor([0], dtype=torch.long)
720
        dist.broadcast(tensor_size, src=src, group=dist_group)
721
722
723
724
725
726
        size = tensor_size.item()

        if size == 0:
            return []

        tensor_data = torch.empty(size, dtype=torch.uint8)
727
        dist.broadcast(tensor_data, src=src, group=dist_group)
728

729
        serialized_data = bytes(tensor_data.cpu().numpy())
730
731
        data = pickle.loads(serialized_data)
        return data
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762


step_counter = 0


def pytorch_profile(name, func, *args, data_size=-1):
    """
    Args:
        name (string): the name of recorded function.
        func: the function to be profiled.
        args: the arguments of the profiled function.
        data_size (int): some measurement of the computation complexity.
            Usually, it could be the batch size.
    """
    global step_counter
    os.makedirs("trace", exist_ok=True)
    with profile(
        activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
        # schedule=torch.profiler.schedule(wait=1, warmup=1, active=3, repeat=2),
        # on_trace_ready=tensorboard_trace_handler('./log_dir'),
        record_shapes=True,
        profile_memory=True,
        with_stack=True,
    ) as prof:
        with record_function(name):
            with open(f"trace/size_{step_counter}.json", "w") as f:
                json.dump({"size": data_size}, f)
            result = func(*args)
    prof.export_chrome_trace(f"trace/{name}_{step_counter}.json")
    step_counter += 1
    return result
763
764


Lianmin Zheng's avatar
Lianmin Zheng committed
765
766
767
def get_zmq_socket(
    context: zmq.Context, socket_type: zmq.SocketType, endpoint: str, bind: bool
):
768
769
770
771
772
773
774
775
    mem = psutil.virtual_memory()
    total_mem = mem.total / 1024**3
    available_mem = mem.available / 1024**3
    if total_mem > 32 and available_mem > 16:
        buf_size = int(0.5 * 1024**3)
    else:
        buf_size = -1

776
777
778
    socket = context.socket(socket_type)
    if socket_type == zmq.PUSH:
        socket.setsockopt(zmq.SNDHWM, 0)
779
        socket.setsockopt(zmq.SNDBUF, buf_size)
780
781
    elif socket_type == zmq.PULL:
        socket.setsockopt(zmq.RCVHWM, 0)
782
        socket.setsockopt(zmq.RCVBUF, buf_size)
783
784
785
    else:
        raise ValueError(f"Unsupported socket type: {socket_type}")

Lianmin Zheng's avatar
Lianmin Zheng committed
786
787
788
789
790
    if bind:
        socket.bind(endpoint)
    else:
        socket.connect(endpoint)

791
    return socket
792
793
794


def dump_to_file(dirpath, name, value):
795
    from sglang.srt.distributed import get_tensor_model_parallel_rank
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832

    if get_tensor_model_parallel_rank() != 0:
        return

    os.makedirs(dirpath, exist_ok=True)
    if value.dtype is torch.bfloat16:
        value = value.float()
    value = value.cpu().numpy()
    output_filename = os.path.join(dirpath, f"pytorch_dump_{name}.npy")
    logger.info(f"Dump a tensor to {output_filename}. Shape = {value.shape}")
    np.save(output_filename, value)


def is_triton_3():
    return triton.__version__.startswith("3.")


def maybe_torch_compile(*args, **kwargs):
    """
    torch.compile does not work for triton 2.2.0, which is needed in xlm1's jax.
    Therefore, we disable it here.
    """

    def decorator(func):
        if is_triton_3():
            return torch.compile(*args, **kwargs)(func)
        return func

    return decorator


def delete_directory(dirpath):
    try:
        # This will remove the directory and all its contents
        shutil.rmtree(dirpath)
    except OSError as e:
        print(f"Warning: {dirpath} : {e.strerror}")
Lianmin Zheng's avatar
Lianmin Zheng committed
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858


# Temporary directory for prometheus multiprocess mode
# Cleaned up automatically when this object is garbage collected
prometheus_multiproc_dir: tempfile.TemporaryDirectory


def set_prometheus_multiproc_dir():
    # Set prometheus multiprocess directory
    # sglang uses prometheus multiprocess mode
    # we need to set this before importing prometheus_client
    # https://prometheus.github.io/client_python/multiprocess/
    global prometheus_multiproc_dir

    if "PROMETHEUS_MULTIPROC_DIR" in os.environ:
        logger.debug("User set PROMETHEUS_MULTIPROC_DIR detected.")
        prometheus_multiproc_dir = tempfile.TemporaryDirectory(
            dir=os.environ["PROMETHEUS_MULTIPROC_DIR"]
        )
    else:
        prometheus_multiproc_dir = tempfile.TemporaryDirectory()
        os.environ["PROMETHEUS_MULTIPROC_DIR"] = prometheus_multiproc_dir.name
    logger.debug(f"PROMETHEUS_MULTIPROC_DIR: {os.environ['PROMETHEUS_MULTIPROC_DIR']}")


def add_prometheus_middleware(app):
859
    # We need to import prometheus_client after setting the env variable `PROMETHEUS_MULTIPROC_DIR`
Lianmin Zheng's avatar
Lianmin Zheng committed
860
861
862
863
864
865
866
867
868
    from prometheus_client import CollectorRegistry, make_asgi_app, multiprocess

    registry = CollectorRegistry()
    multiprocess.MultiProcessCollector(registry)
    metrics_route = Mount("/metrics", make_asgi_app(registry=registry))

    # Workaround for 307 Redirect for /metrics
    metrics_route.path_regex = re.compile("^/metrics(?P<path>.*)$")
    app.routes.append(metrics_route)
869
870


871
872
873
874
875
876
877
878
879
def bind_port(port):
    """Bind to a specific port, assuming it's available."""
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)  # Allows address reuse
    sock.bind(("", port))
    sock.listen(1)
    return sock


HAI's avatar
HAI committed
880
881
882
883
def get_amdgpu_memory_capacity():
    try:
        # Run rocm-smi and capture the output
        result = subprocess.run(
884
            [
HAI's avatar
HAI committed
885
                "rocminfo | grep 'gfx' -A 100 | grep 'Pool 1' -A 5 | grep 'Size:' | awk '{print $2}'"
886
            ],
HAI's avatar
HAI committed
887
888
889
890
891
892
893
894
895
896
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            shell=True,
            text=True,
        )
        if result.returncode != 0:
            raise RuntimeError(f"rocm-smi error: {result.stderr.strip()}")

        # Parse the output to extract memory values in MiB
        memory_values = [
897
            float(mem.split("(")[0].strip()) / 1024
HAI's avatar
HAI committed
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
            for mem in result.stdout.strip().split("\n")
        ]

        if not memory_values:
            raise ValueError("No GPU memory values found.")

        # Return the minimum memory value
        return min(memory_values)

    except FileNotFoundError:
        raise RuntimeError(
            "rocm-smi not found. Ensure AMD ROCm drivers are installed and accessible."
        )


def get_nvgpu_memory_capacity():
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
    try:
        # Run nvidia-smi and capture the output
        result = subprocess.run(
            ["nvidia-smi", "--query-gpu=memory.total", "--format=csv,noheader,nounits"],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            text=True,
        )

        if result.returncode != 0:
            raise RuntimeError(f"nvidia-smi error: {result.stderr.strip()}")

        # Parse the output to extract memory values
        memory_values = [
            float(mem)
            for mem in result.stdout.strip().split("\n")
            if re.match(r"^\d+(\.\d+)?$", mem.strip())
        ]

        if not memory_values:
            raise ValueError("No GPU memory values found.")

        # Return the minimum memory value
        return min(memory_values)

    except FileNotFoundError:
        raise RuntimeError(
            "nvidia-smi not found. Ensure NVIDIA drivers are installed and accessible."
        )
943
944


945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
def get_hpu_memory_capacity():
    try:
        # Run hl-smi and capture the output
        result = subprocess.run(
            ["hl-smi --query | grep 'Total'"],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            shell=True,
            text=True,
        )

        if result.returncode != 0:
            raise RuntimeError(f"hl-smi error: {result.stderr.strip()}")

        # Parse the output to extract memory values in MiB
        memory_values = [
            float(mem.split(" ")[-2]) for mem in result.stdout.strip().split("\n")
        ]

        if not memory_values:
            raise ValueError("No GPU memory values found.")

        # Return the minimum memory value
        return min(memory_values)

    except FileNotFoundError:
        raise RuntimeError(
            "hl-smi not found. Ensure Habana drivers are installed and accessible."
        )


976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
# Copy from pytorch and OpenRLHF to allow creating multiple main groups.
# https://github.com/pytorch/pytorch/blob/main/torch/distributed/distributed_c10d.py
# https://github.com/OpenRLHF/OpenRLHF/blob/main/openrlhf/utils/distributed_util.py
def init_custom_process_group(
    backend=None,
    init_method=None,
    timeout=None,
    world_size=-1,
    rank=-1,
    store=None,
    group_name=None,
    pg_options=None,
):
    from torch.distributed.distributed_c10d import (
        Backend,
        PrefixStore,
        _new_process_group_helper,
        _world,
        default_pg_timeout,
        rendezvous,
    )

    assert (store is None) or (
        init_method is None
    ), "Cannot specify both init_method and store."

    if store is not None:
        assert world_size > 0, "world_size must be positive if using store"
        assert rank >= 0, "rank must be non-negative if using store"
    elif init_method is None:
        init_method = "env://"

    if backend:
        backend = Backend(backend)
    else:
        backend = Backend("undefined")

    if timeout is None:
        timeout = default_pg_timeout

    # backward compatible API
    if store is None:
        rendezvous_iterator = rendezvous(init_method, rank, world_size, timeout=timeout)
        store, rank, world_size = next(rendezvous_iterator)
        store.set_timeout(timeout)

        # Use a PrefixStore to avoid accidental overrides of keys used by
        # different systems (e.g. RPC) in case the store is multi-tenant.
        store = PrefixStore(group_name, store)

    # NOTE: The pg_options parameter was renamed into backend_options in PyTorch 2.6.0
    # https://github.com/pytorch/pytorch/commit/a0c7029a75628cd5fa8df83c0de0ea98ee7fd844
    # We need to determine the appropriate parameter name based on PyTorch version
    pg_options_param_name = (
        "backend_options" if str(torch.__version__) >= "2.6" else "pg_options"
    )
    pg, _ = _new_process_group_helper(
        world_size,
        rank,
        [],
        backend,
        store,
        group_name=group_name,
        **{pg_options_param_name: pg_options},
        timeout=timeout,
    )

    _world.pg_group_ranks[pg] = {i: i for i in range(world_size)}

    return pg


1048
1049
def crash_on_warnings():
    # Crash on warning if we are running CI tests
1050
    return get_bool_env_var("SGLANG_IS_IN_CI")
1051
1052


1053
1054
1055
1056
1057
def print_warning_once(msg: str) -> None:
    # Set the stacklevel to 2 to print the caller's line info
    logger.warning(msg, stacklevel=2)


1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
def get_device_name(device_id: int = 0) -> str:
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        return torch.cuda.get_device_name(device_id)

    if hasattr(torch, "xpu") and torch.xpu.is_available():
        return torch.xpu.get_device_name(device_id)

    if hasattr(torch, "hpu") and torch.hpu.is_available():
        return torch.hpu.get_device_name(device_id)


1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
@lru_cache(maxsize=1)
def is_habana_available() -> bool:
    return find_spec("habana_frameworks") is not None


@lru_cache(maxsize=8)
def get_device(device_id: Optional[int] = None) -> str:
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        if device_id is None:
            return "cuda"
        return "cuda:{}".format(device_id)

    if hasattr(torch, "xpu") and torch.xpu.is_available():
        if device_id == None:
            return "xpu"
        return "xpu:{}".format(device_id)

    if is_habana_available():
        try:
            import habana_frameworks.torch.hpu

            if torch.hpu.is_available():
                if device_id == None:
                    return "hpu"
                return "hpu:{}".format(device_id)
        except ImportError as e:
            raise ImportError(
                "Habana frameworks detected, but failed to import 'habana_frameworks.torch.hpu'."
            )

    raise RuntimeError("No accelerator (CUDA, XPU, HPU) is available.")


@lru_cache(maxsize=1)
def get_device_count() -> int:
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        try:
            return torch.cuda.device_count()
        except RuntimeError:
            return 0

    if hasattr(torch, "xpu") and torch.xpu.is_available():
        try:
            return torch.xpu.device_count()
        except RuntimeError:
            return 0

    if is_habana_available():
        try:
            import habana_frameworks.torch.hpu

            if torch.hpu.is_available():
                return torch.hpu.device_count()
        except (ImportError, RuntimeError):
            return 0

    return 0  # No accelerators available


1128
1129
1130
1131
1132
1133
1134
def get_device_core_count(device_id: int = 0) -> int:
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        return torch.cuda.get_device_properties(device_id).multi_processor_count

    return 0


1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
def get_device_capability(device_id: int = 0) -> Tuple[int, int]:
    major, minor = None, None
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        major, minor = torch.cuda.get_device_capability(device_id)

    if hasattr(torch, "xpu") and torch.xpu.is_available():
        major, minor, *_ = torch.xpu.get_device_capability(device_id)["version"].split(
            "."
        )
        major, minor = int(major), int(minor)

    if hasattr(torch, "hpu") and torch.hpu.is_available():
        try:
1148
1149
1150
1151
            # TODO(HandH1998): `get_device_capability` is not supported by `torch.hpu` for now.
            # Update this once the support is available.
            # major, minor = torch.hpu.get_device_capability(device_id)
            major, minor = None, None
1152
1153
1154
1155
1156
1157
1158
1159
        except Exception as e:
            raise RuntimeError(
                f"An error occurred while getting device capability of hpu: {e}."
            ) from e

    return major, minor


1160
1161
1162
1163
1164
1165
1166
def get_compiler_backend() -> str:
    if hasattr(torch, "hpu") and torch.hpu.is_available():
        return "hpu_backend"

    return "inductor"


1167
1168
1169
sglang_lib = Library("sglang", "FRAGMENT")  # noqa


1170
1171
1172
1173
1174
1175
# Some backends use pytorch version < 2.4.0 which doesn't
# support `torch.library.custom_op`.
def supports_custom_op() -> bool:
    return hasattr(torch.library, "custom_op")


1176
1177
1178
1179
1180
1181
1182
def direct_register_custom_op(
    op_name: str,
    op_func: Callable,
    mutates_args: List[str],
    fake_impl: Optional[Callable] = None,
    target_lib: Optional[Library] = None,
):
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
    """
    `torch.library.custom_op` can have significant overhead because it
    needs to consider complicated dispatching logic. This function
    directly registers a custom op and dispatches it to the CUDA backend.
    See https://gist.github.com/youkaichao/ecbea9ec9fc79a45d2adce1784d7a9a5
    for more details.

    By default, the custom op is registered to the vLLM library. If you
    want to register it to a different library, you can pass the library
    object to the `target_lib` argument.

    IMPORTANT: the lifetime of the operator is tied to the lifetime of the
    library object. If you want to bind the operator to a different library,
    make sure the library object is alive when the operator is used.
    """
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
    import torch.library

    if hasattr(torch.library, "infer_schema"):
        schema_str = torch.library.infer_schema(op_func, mutates_args=mutates_args)
    else:
        # for pytorch 2.4
        import torch._custom_op.impl

        schema_str = torch._custom_op.impl.infer_schema(op_func, mutates_args)

    my_lib = target_lib or sglang_lib
    my_lib.define(op_name + schema_str)
    my_lib.impl(op_name, op_func, "CUDA")
    if fake_impl is not None:
        my_lib._register_fake(op_name, fake_impl)
1213
1214


1215
def set_gpu_proc_affinity(
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
    tp_size: int,
    nnodes: int,
    gpu_id: int,
):
    # current process
    pid = os.getpid()
    p = psutil.Process(pid)

    tp_size_per_node = tp_size // nnodes

    # total physical cores
    total_pcores = psutil.cpu_count(logical=False)
    # physical cores per TP (N.B. more Cores than GPUs on node)
    num_cores_bind = total_pcores // tp_size_per_node

    # able to handle multiple DP per node
    start_cpu_id = (gpu_id * num_cores_bind) % total_pcores
    end_cpu_id = start_cpu_id + num_cores_bind

    if psutil.cpu_count() != psutil.cpu_count(logical=False):
        # HT on
Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
1237
1238
1239
        lower_cpu_ids = [id for id in range(start_cpu_id, end_cpu_id)]
        upper_cpu_ids = [id + total_pcores for id in range(start_cpu_id, end_cpu_id)]
        bind_cpu_ids = list(itertools.chain(lower_cpu_ids, upper_cpu_ids))
1240
1241
1242
1243
1244
1245
1246
    else:
        # HT off
        bind_cpu_ids = [id for id in range(start_cpu_id, end_cpu_id)]

    # set cpu_affinity to current process
    p.cpu_affinity(bind_cpu_ids)
    logger.info(f"Process {pid} gpu_id {gpu_id} is running on CPUs: {p.cpu_affinity()}")
1247
1248
1249
1250
1251


def get_bool_env_var(name: str, default: str = "false") -> bool:
    value = os.getenv(name, default)
    return value.lower() in ("true", "1")
1252
1253


1254
1255
1256
1257
1258
@lru_cache(maxsize=2)
def disable_request_logging() -> bool:
    return get_bool_env_var("SGLANG_DISABLE_REQUEST_LOGGING")


1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
@lru_cache(maxsize=8)
def _cuda_device_count_stateless(cuda_visible_devices: Optional[str] = None) -> int:
    # Note: cuda_visible_devices is not used, but we keep it as an argument for
    # LRU Cache purposes.

    # Code below is based on
    # https://github.com/pytorch/pytorch/blob/
    # c1cd946818442aca8c7f812b16d187ce1586c3bc/
    # torch/cuda/__init__.py#L831C1-L831C17
    import torch.version

    if not torch.cuda._is_compiled():
        return 0
    if is_hip():
        # ROCm uses amdsmi instead of nvml for stateless device count
        # This requires a sufficiently modern version of Torch 2.4.0
        raw_count = (
            torch.cuda._device_count_amdsmi()
            if (hasattr(torch.cuda, "_device_count_amdsmi"))
            else -1
        )
    else:
        raw_count = torch.cuda._device_count_nvml()
    r = torch._C._cuda_getDeviceCount() if raw_count < 0 else raw_count
    return r


# Adapted from https://github.com/vllm-project/vllm/blob/a6221a144af772fd1a68fe7e627935dc53e81738/vllm/utils.py
def cuda_device_count_stateless() -> int:
    """Get number of CUDA devices, caching based on the value of
    CUDA_VISIBLE_DEVICES at the time of call.

    This should be used instead of torch.cuda.device_count()
    unless CUDA_VISIBLE_DEVICES has already been set to the desired
    value."""

    # This can be removed and simply replaced with torch.cuda.get_device_count
    # after https://github.com/pytorch/pytorch/pull/122815 is released.
    return _cuda_device_count_stateless(os.environ.get("CUDA_VISIBLE_DEVICES", None))
1298
1299


1300
1301
1302
1303
1304
def dataclass_to_string_truncated(
    data, max_length=2048, skip_names: Optional[Set[str]] = None
):
    if skip_names is None:
        skip_names = set()
1305
1306
1307
    if isinstance(data, str):
        if len(data) > max_length:
            half_length = max_length // 2
1308
            return f"{repr(data[:half_length])} ... {repr(data[-half_length:])}"
1309
        else:
1310
            return f"{repr(data)}"
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
    elif isinstance(data, (list, tuple)):
        if len(data) > max_length:
            half_length = max_length // 2
            return str(data[:half_length]) + " ... " + str(data[-half_length:])
        else:
            return str(data)
    elif isinstance(data, dict):
        return (
            "{"
            + ", ".join(
1321
                f"'{k}': {dataclass_to_string_truncated(v, max_length)}"
1322
                for k, v in data.items()
1323
                if k not in skip_names
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
            )
            + "}"
        )
    elif dataclasses.is_dataclass(data):
        fields = dataclasses.fields(data)
        return (
            f"{data.__class__.__name__}("
            + ", ".join(
                f"{f.name}={dataclass_to_string_truncated(getattr(data, f.name), max_length)}"
                for f in fields
1334
                if f.name not in skip_names
1335
1336
1337
            )
            + ")"
        )
1338
    else:
1339
        return str(data)
Tanjiro's avatar
Tanjiro committed
1340
1341


1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
def permute_weight(x: torch.Tensor) -> torch.Tensor:
    b_ = x.shape[0]
    n_ = x.shape[1]
    k_ = x.shape[2]

    x_ = x
    if x.dtype == torch.bfloat16 or x.dtype == torch.float16:
        x_ = x_.view(int(b_), int(n_ / 16), 16, int(k_ / 32), 4, 8)
    elif x.dtype == torch.float8_e4m3fnuz or x.dtype == torch.int8:
        x_ = x_.view(int(b_), int(n_ / 16), 16, int(k_ / 64), 4, 16)
    else:
1353
1354
        # return x_
        x_ = x_.view(int(b_), int(n_ / 16), 16, int(k_ / 8), 2, 4)
1355
1356
1357
1358
1359
1360
1361

    x_ = x_.permute(0, 1, 3, 4, 2, 5)
    x_ = x_.contiguous()
    x_ = x_.view(*x.shape)
    return x_


1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
class MultiprocessingSerializer:
    @staticmethod
    def serialize(obj):
        buf = io.BytesIO()
        ForkingPickler(buf).dump(obj)
        buf.seek(0)
        return buf.read()

    @staticmethod
    def deserialize(data):
        return ForkingPickler.loads(data)
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383


def debug_timing(func):
    # todo: replace with a more organized instrumentation
    def wrapper(*args, **kwargs):
        if logger.isEnabledFor(logging.DEBUG):
            tic = torch.cuda.Event(enable_timing=True)
            toc = torch.cuda.Event(enable_timing=True)
            tic.record()
            result = func(*args, **kwargs)
            toc.record()
1384
            toc.synchronize()  # Wait for the function to complete without synchronizing all ops on the GPU
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
            elapsed = tic.elapsed_time(toc)
            indices = kwargs.get("indices", args[1] if len(args) > 1 else None)
            num_tokens = len(indices) if indices is not None else 0
            throughput = num_tokens / elapsed * 1000 if elapsed > 0 else 0
            logger.debug(
                f"Transfer time: {elapsed} ms, throughput: {throughput} tokens/s"
            )
            return result
        else:
            return func(*args, **kwargs)

    return wrapper
bjmsong's avatar
bjmsong committed
1397
1398
1399
1400
1401
1402


def nullable_str(val: str):
    if not val or val == "None":
        return None
    return val
1403
1404


1405
1406
1407
1408
1409
1410
1411
1412
1413
def pyspy_dump_schedulers():
    """py-spy dump on all scheduler in a local node."""
    try:
        pid = psutil.Process().pid
        # Command to run py-spy with the PID
        cmd = f"py-spy dump --pid {pid}"
        result = subprocess.run(
            cmd, shell=True, capture_output=True, text=True, check=True
        )
1414
        logger.error(f"Pyspy dump for PID {pid}:\n{result.stdout}")
1415
    except subprocess.CalledProcessError as e:
1416
        logger.error(f"Pyspy failed to dump PID {pid}. Error: {e.stderr}")
1417
1418
1419
1420
1421
1422
1423
1424
1425


def kill_itself_when_parent_died():
    if sys.platform == "linux":
        # sigkill this process when parent worker manager dies
        PR_SET_PDEATHSIG = 1
        libc = ctypes.CDLL("libc.so.6")
        libc.prctl(PR_SET_PDEATHSIG, signal.SIGKILL)
    else:
Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
1426
        logger.warning("kill_itself_when_parent_died is only supported in linux.")
1427
1428


1429
def set_uvicorn_logging_configs():
1430
1431
    from uvicorn.config import LOGGING_CONFIG

1432
1433
1434
1435
1436
1437
1438
1439
    LOGGING_CONFIG["formatters"]["default"][
        "fmt"
    ] = "[%(asctime)s] %(levelprefix)s %(message)s"
    LOGGING_CONFIG["formatters"]["default"]["datefmt"] = "%Y-%m-%d %H:%M:%S"
    LOGGING_CONFIG["formatters"]["access"][
        "fmt"
    ] = '[%(asctime)s] %(levelprefix)s %(client_addr)s - "%(request_line)s" %(status_code)s'
    LOGGING_CONFIG["formatters"]["access"]["datefmt"] = "%Y-%m-%d %H:%M:%S"
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505


def get_ip() -> str:
    # SGLANG_HOST_IP env can be ignore
    host_ip = os.getenv("SGLANG_HOST_IP", "") or os.getenv("HOST_IP", "")
    if host_ip:
        return host_ip

    # IP is not set, try to get it from the network interface

    # try ipv4
    s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    try:
        s.connect(("8.8.8.8", 80))  # Doesn't need to be reachable
        return s.getsockname()[0]
    except Exception:
        pass

    # try ipv6
    try:
        s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)
        # Google's public DNS server, see
        # https://developers.google.com/speed/public-dns/docs/using#addresses
        s.connect(("2001:4860:4860::8888", 80))  # Doesn't need to be reachable
        return s.getsockname()[0]
    except Exception:
        pass

    warnings.warn(
        "Failed to get the IP address, using 0.0.0.0 by default."
        "The value can be set by the environment variable"
        " SGLANG_HOST_IP or HOST_IP.",
        stacklevel=2,
    )
    return "0.0.0.0"


def get_open_port() -> int:
    port = os.getenv("SGLANG_PORT")
    if port is not None:
        while True:
            try:
                with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
                    s.bind(("", port))
                    return port
            except OSError:
                port += 1  # Increment port number if already in use
                logger.info("Port %d is already in use, trying port %d", port - 1, port)
    # try ipv4
    try:
        with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
            s.bind(("", 0))
            return s.getsockname()[1]
    except OSError:
        # try ipv6
        with socket.socket(socket.AF_INET6, socket.SOCK_STREAM) as s:
            s.bind(("", 0))
            return s.getsockname()[1]


def is_valid_ipv6_address(address: str) -> bool:
    try:
        ipaddress.IPv6Address(address)
        return True
    except ValueError:
        return False
1506
1507
1508
1509
1510
1511
1512


def rank0_print(msg: str):
    from sglang.srt.distributed import get_tensor_model_parallel_rank

    if get_tensor_model_parallel_rank() == 0:
        print(msg, flush=True)
1513
1514


HandH1998's avatar
HandH1998 committed
1515
1516
1517
1518
1519
1520
def get_cuda_version():
    if torch.version.cuda:
        return tuple(map(int, torch.version.cuda.split(".")))
    return (0, 0)


1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
def launch_dummy_health_check_server(host, port):
    import uvicorn
    from fastapi import FastAPI, Response

    app = FastAPI()

    @app.get("/health")
    async def health():
        """Check the health of the http server."""
        return Response(status_code=200)

    @app.get("/health_generate")
    async def health_generate():
        """Check the health of the http server."""
        return Response(status_code=200)

    uvicorn.run(
        app,
        host=host,
        port=port,
        timeout_keep_alive=5,
        loop="uvloop",
    )
1544
1545


1546
1547
1548
1549
def create_checksum(directory: str):
    raise NotImplementedError()


1550
1551
1552
1553
1554
def set_cuda_arch():
    if is_flashinfer_available():
        capability = torch.cuda.get_device_capability()
        arch = f"{capability[0]}.{capability[1]}"
        os.environ["TORCH_CUDA_ARCH_LIST"] = f"{arch}{'+PTX' if arch == '9.0' else ''}"
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567


def add_prefix(name: str, prefix: str) -> str:
    """Add a weight path prefix to a module name.

    Args:
        name: base module name.
        prefix: weight prefix str to added to the front of `name` concatenated with `.`.

    Returns:
        The string `prefix.name` if prefix is non-empty, otherwise just `name`.
    """
    return name if not prefix else f"{prefix}.{name}"