utils.py 23.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

16
17
"""Common utilities."""

Lianmin Zheng's avatar
Lianmin Zheng committed
18
import base64
19
import fcntl
20
import logging
Lianmin Zheng's avatar
Lianmin Zheng committed
21
22
import os
import random
23
import resource
Lianmin Zheng's avatar
Lianmin Zheng committed
24
import socket
25
import struct
Lianmin Zheng's avatar
Lianmin Zheng committed
26
import time
27
from importlib.metadata import PackageNotFoundError, version
Lianmin Zheng's avatar
Lianmin Zheng committed
28
from io import BytesIO
29
from typing import List, Optional, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
30
31

import numpy as np
32
import psutil
Lianmin Zheng's avatar
Lianmin Zheng committed
33
34
import requests
import torch
35
import torch.distributed as dist
36
from fastapi.responses import JSONResponse
37
from packaging import version as pkg_version
38
from torch import nn
39
from torch.nn.parameter import Parameter
40
41
42
43
44
45
from triton.runtime.cache import (
    FileCacheManager,
    default_cache_dir,
    default_dump_dir,
    default_override_dir,
)
46

47
48
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
49

Liangsheng Yin's avatar
Liangsheng Yin committed
50
51
show_time_cost = False
time_infos = {}
Lianmin Zheng's avatar
Lianmin Zheng committed
52
53


Liangsheng Yin's avatar
Liangsheng Yin committed
54
55
56
57
def enable_show_time_cost():
    global show_time_cost
    show_time_cost = True

Lianmin Zheng's avatar
Lianmin Zheng committed
58

Liangsheng Yin's avatar
Liangsheng Yin committed
59
60
61
62
63
64
class TimeInfo:
    def __init__(self, name, interval=0.1, color=0, indent=0):
        self.name = name
        self.interval = interval
        self.color = color
        self.indent = indent
Lianmin Zheng's avatar
Lianmin Zheng committed
65

Liangsheng Yin's avatar
Liangsheng Yin committed
66
67
        self.acc_time = 0
        self.last_acc_time = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
68

Liangsheng Yin's avatar
Liangsheng Yin committed
69
70
71
72
73
    def check(self):
        if self.acc_time - self.last_acc_time > self.interval:
            self.last_acc_time = self.acc_time
            return True
        return False
Lianmin Zheng's avatar
Lianmin Zheng committed
74

Liangsheng Yin's avatar
Liangsheng Yin committed
75
76
77
78
    def pretty_print(self):
        print(f"\x1b[{self.color}m", end="")
        print("-" * self.indent * 2, end="")
        print(f"{self.name}: {self.acc_time:.3f}s\x1b[0m")
Lianmin Zheng's avatar
Lianmin Zheng committed
79
80


Liangsheng Yin's avatar
Liangsheng Yin committed
81
82
83
84
def mark_start(name, interval=0.1, color=0, indent=0):
    global time_infos, show_time_cost
    if not show_time_cost:
        return
Lianmin Zheng's avatar
Lianmin Zheng committed
85
    torch.cuda.synchronize()
Liangsheng Yin's avatar
Liangsheng Yin committed
86
87
88
    if time_infos.get(name, None) is None:
        time_infos[name] = TimeInfo(name, interval, color, indent)
    time_infos[name].acc_time -= time.time()
Lianmin Zheng's avatar
Lianmin Zheng committed
89
90


Liangsheng Yin's avatar
Liangsheng Yin committed
91
92
93
94
def mark_end(name):
    global time_infos, show_time_cost
    if not show_time_cost:
        return
Lianmin Zheng's avatar
Lianmin Zheng committed
95
    torch.cuda.synchronize()
Liangsheng Yin's avatar
Liangsheng Yin committed
96
97
98
    time_infos[name].acc_time += time.time()
    if time_infos[name].check():
        time_infos[name].pretty_print()
Lianmin Zheng's avatar
Lianmin Zheng committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119


def calculate_time(show=False, min_cost_ms=0.0):
    def wrapper(func):
        def inner_func(*args, **kwargs):
            torch.cuda.synchronize()
            if show:
                start_time = time.time()
            result = func(*args, **kwargs)
            torch.cuda.synchronize()
            if show:
                cost_time = (time.time() - start_time) * 1000
                if cost_time > min_cost_ms:
                    print(f"Function {func.__name__} took {cost_time} ms to run.")
            return result

        return inner_func

    return wrapper


120
def get_available_gpu_memory(gpu_id, distributed=False):
Lianmin Zheng's avatar
Lianmin Zheng committed
121
122
123
124
125
126
127
128
129
130
131
132
133
    """
    Get available memory for cuda:gpu_id device.
    When distributed is True, the available memory is the minimum available memory of all GPUs.
    """
    num_gpus = torch.cuda.device_count()
    assert gpu_id < num_gpus

    if torch.cuda.current_device() != gpu_id:
        print(
            f"WARNING: current device is not {gpu_id}, but {torch.cuda.current_device()}, ",
            "which may cause useless memory allocation for torch CUDA context.",
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
134
    torch.cuda.empty_cache()
Lianmin Zheng's avatar
Lianmin Zheng committed
135
136
137
138
139
140
141
142
143
144
145
146
    free_gpu_memory, _ = torch.cuda.mem_get_info(gpu_id)

    if distributed:
        tensor = torch.tensor(free_gpu_memory, dtype=torch.float32).to(
            torch.device("cuda", gpu_id)
        )
        torch.distributed.all_reduce(tensor, op=torch.distributed.ReduceOp.MIN)
        free_gpu_memory = tensor.item()

    return free_gpu_memory / (1 << 30)


Lianmin Zheng's avatar
Lianmin Zheng committed
147
def set_random_seed(seed: int) -> None:
148
    """Set the random seed for all libraries."""
Lianmin Zheng's avatar
Lianmin Zheng committed
149
    random.seed(seed)
150
    np.random.seed(seed)
Lianmin Zheng's avatar
Lianmin Zheng committed
151
152
153
154
155
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)


156
def is_port_available(port):
157
    """Return whether a port is available."""
158
159
    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
        try:
160
            s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
161
            s.bind(("", port))
162
            s.listen(1)
163
164
165
166
167
            return True
        except socket.error:
            return False


Lianmin Zheng's avatar
Lianmin Zheng committed
168
def allocate_init_ports(
Lianmin Zheng's avatar
Lianmin Zheng committed
169
170
    port: Optional[int] = None,
    additional_ports: Optional[List[int]] = None,
171
    dp_size: int = 1,
Lianmin Zheng's avatar
Lianmin Zheng committed
172
):
173
    """Allocate ports for all connections."""
174
175
176
177
178
179
180
181
    if additional_ports:
        ret_ports = [port] + additional_ports
    else:
        ret_ports = [port]

    ret_ports = list(set(x for x in ret_ports if is_port_available(x)))
    cur_port = ret_ports[-1] + 1 if len(ret_ports) > 0 else 10000

Mingyi's avatar
Mingyi committed
182
183
    # HTTP + Tokenizer + Controller + Detokenizer + dp_size * 1 (nccl)
    num_ports_needed = 4 + dp_size
184
    while len(ret_ports) < num_ports_needed:
185
186
187
188
        if cur_port not in ret_ports and is_port_available(cur_port):
            ret_ports.append(cur_port)
        cur_port += 1

189
    if port is not None and ret_ports[0] != port:
190
191
192
        logger.warn(
            f"WARNING: Port {port} is not available. Use port {ret_ports[0]} instead."
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
193

194
    return ret_ports[0], ret_ports[1:num_ports_needed]
195

Lianmin Zheng's avatar
Lianmin Zheng committed
196

197
198
199
200
201
202
203
204
205
206
def is_multimodal_model(model_architectures):
    if (
        "LlavaLlamaForCausalLM" in model_architectures
        or "LlavaQwenForCausalLM" in model_architectures
        or "LlavaMistralForCausalLM" in model_architectures
        or "LlavaVidForCausalLM" in model_architectures
    ):
        return True
    else:
        return False
Yuanhan Zhang's avatar
Yuanhan Zhang committed
207
208


209
210
211
212
213
def is_generation_model(model_architectures, is_embedding: bool = False):
    # We have two ways to determine whether a model is a generative model.
    # 1. Check the model architectue
    # 2. check the `is_embedding` server args

214
215
216
217
218
    if (
        "LlamaEmbeddingModel" in model_architectures
        or "MistralModel" in model_architectures
    ):
        return False
219
220
    else:
        return not is_embedding
221
222


Yuanhan Zhang's avatar
Yuanhan Zhang committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
def decode_video_base64(video_base64):
    from PIL import Image

    # Decode the base64 string
    video_bytes = base64.b64decode(video_base64)

    # Placeholder for the start indices of each PNG image
    img_starts = []

    frame_format = "PNG"  # str(os.getenv('FRAME_FORMAT', "JPEG"))

    assert frame_format in [
        "PNG",
        "JPEG",
    ], "FRAME_FORMAT must be either 'PNG' or 'JPEG'"

    if frame_format == "PNG":
        # Find each PNG start signature to isolate images
        i = 0
        while i < len(video_bytes) - 7:  # Adjusted for the length of the PNG signature
            # Check if we found the start of a PNG file
            if (
                video_bytes[i] == 0x89
                and video_bytes[i + 1] == 0x50
                and video_bytes[i + 2] == 0x4E
                and video_bytes[i + 3] == 0x47
                and video_bytes[i + 4] == 0x0D
                and video_bytes[i + 5] == 0x0A
                and video_bytes[i + 6] == 0x1A
                and video_bytes[i + 7] == 0x0A
            ):
                img_starts.append(i)
                i += 8  # Skip the PNG signature
            else:
                i += 1
    else:
        # Find each JPEG start (0xFFD8) to isolate images
        i = 0
        while (
            i < len(video_bytes) - 1
        ):  # Adjusted for the length of the JPEG SOI signature
            # Check if we found the start of a JPEG file
            if video_bytes[i] == 0xFF and video_bytes[i + 1] == 0xD8:
                img_starts.append(i)
                # Move to the next byte to continue searching for the next image start
                i += 2
            else:
                i += 1

    frames = []
    for start_idx in img_starts:
        # Assuming each image is back-to-back, the end of one image is the start of another
        # The last image goes until the end of the byte string
        end_idx = (
            img_starts[img_starts.index(start_idx) + 1]
            if img_starts.index(start_idx) + 1 < len(img_starts)
            else len(video_bytes)
        )
        img_bytes = video_bytes[start_idx:end_idx]

        # Convert bytes to a PIL Image
        img = Image.open(BytesIO(img_bytes))

        # Convert PIL Image to a NumPy array
        frame = np.array(img)

        # Append the frame to the list of frames
        frames.append(frame)

    # Ensure there's at least one frame to avoid errors with np.stack
    if frames:
        return np.stack(frames, axis=0), img.size
    else:
        return np.array([]), (
            0,
            0,
        )  # Return an empty array and size tuple if no frames were found
Lianmin Zheng's avatar
Lianmin Zheng committed
300
301


302
def load_image(image_file: Union[str, bytes]):
Lianmin Zheng's avatar
Lianmin Zheng committed
303
304
    from PIL import Image

Yuanhan Zhang's avatar
Yuanhan Zhang committed
305
    image = image_size = None
Lianmin Zheng's avatar
Lianmin Zheng committed
306

307
308
309
    if isinstance(image_file, bytes):
        image = Image.open(BytesIO(image_file))
    elif image_file.startswith("http://") or image_file.startswith("https://"):
Lianmin Zheng's avatar
Lianmin Zheng committed
310
311
312
313
314
315
        timeout = int(os.getenv("REQUEST_TIMEOUT", "3"))
        response = requests.get(image_file, timeout=timeout)
        image = Image.open(BytesIO(response.content))
    elif image_file.lower().endswith(("png", "jpg", "jpeg", "webp", "gif")):
        image = Image.open(image_file)
    elif image_file.startswith("data:"):
316
        image_file = image_file.split(",")[1]
Lianmin Zheng's avatar
Lianmin Zheng committed
317
        image = Image.open(BytesIO(base64.b64decode(image_file)))
Yuanhan Zhang's avatar
Yuanhan Zhang committed
318
319
320
    elif image_file.startswith("video:"):
        image_file = image_file.replace("video:", "")
        image, image_size = decode_video_base64(image_file)
321
    elif isinstance(image_file, str):
Lianmin Zheng's avatar
Lianmin Zheng committed
322
        image = Image.open(BytesIO(base64.b64decode(image_file)))
323
324
    else:
        raise ValueError(f"Invalid image: {image}")
Lianmin Zheng's avatar
Lianmin Zheng committed
325

Yuanhan Zhang's avatar
Yuanhan Zhang committed
326
    return image, image_size
327
328


329
330
331
332
333
def suppress_other_loggers():
    from vllm.logger import logger as vllm_default_logger

    vllm_default_logger.setLevel(logging.WARN)
    logging.getLogger("vllm.config").setLevel(logging.ERROR)
334
335
336
    logging.getLogger("vllm.distributed.device_communicators.pynccl").setLevel(
        logging.WARN
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
337
338
339
    logging.getLogger("vllm.distributed.device_communicators.shm_broadcast").setLevel(
        logging.WARN
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
340
    logging.getLogger("vllm.selector").setLevel(logging.WARN)
341
    logging.getLogger("vllm.utils").setLevel(logging.ERROR)
342
343


344
def assert_pkg_version(pkg: str, min_version: str, message: str):
345
346
347
348
    try:
        installed_version = version(pkg)
        if pkg_version.parse(installed_version) < pkg_version.parse(min_version):
            raise Exception(
349
                f"{pkg} is installed with version {installed_version}, which "
Ying Sheng's avatar
Ying Sheng committed
350
                f"is less than the minimum required version {min_version}. " + message
351
352
            )
    except PackageNotFoundError:
Yuanhan Zhang's avatar
Yuanhan Zhang committed
353
        raise Exception(
Ying Sheng's avatar
Ying Sheng committed
354
355
            f"{pkg} with minimum required version {min_version} is not installed. "
            + message
Yuanhan Zhang's avatar
Yuanhan Zhang committed
356
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
357
358


359
360
361
362
def kill_parent_process():
    """Kill the parent process and all children of the parent process."""
    current_process = psutil.Process()
    parent_process = current_process.parent()
363
    kill_child_process(parent_process.pid, skip_pid=current_process.pid)
364
365


366
367
def kill_child_process(pid, including_parent=True, skip_pid=None):
    """Kill the process and all its children process."""
368
369
370
371
372
373
374
    try:
        parent = psutil.Process(pid)
    except psutil.NoSuchProcess:
        return

    children = parent.children(recursive=True)
    for child in children:
375
376
        if child.pid == skip_pid:
            continue
377
378
379
380
381
382
383
384
385
386
387
388
        try:
            child.kill()
        except psutil.NoSuchProcess:
            pass

    if including_parent:
        try:
            parent.kill()
        except psutil.NoSuchProcess:
            pass


389
def monkey_patch_vllm_p2p_access_check(gpu_id: int):
390
391
392
393
394
    """
    Monkey patch the slow p2p access check in vllm.
    NOTE: We assume the p2p access is always allowed, which can be wrong for some setups.
    """

395
    import vllm.distributed.device_communicators.custom_all_reduce_utils as tgt
Liangsheng Yin's avatar
Liangsheng Yin committed
396

397
    setattr(tgt, "gpu_p2p_access_check", lambda *arg, **kwargs: True)
398
399


400
401
402
403
404
405
def monkey_patch_vllm_dummy_weight_loader():
    """
    Monkey patch the dummy weight loader in vllm to call process_weights_after_loading.
    """

    from vllm.model_executor.model_loader.loader import (
Ying Sheng's avatar
Ying Sheng committed
406
407
408
409
410
411
412
413
414
415
416
        CacheConfig,
        DeviceConfig,
        DummyModelLoader,
        LoRAConfig,
        ModelConfig,
        ParallelConfig,
        SchedulerConfig,
        _initialize_model,
        initialize_dummy_weights,
        nn,
        set_default_torch_dtype,
417
418
    )

Ying Sheng's avatar
Ying Sheng committed
419
420
421
422
423
424
425
426
427
428
    def load_model(
        self,
        *,
        model_config: ModelConfig,
        device_config: DeviceConfig,
        lora_config: Optional[LoRAConfig],
        parallel_config: ParallelConfig,
        scheduler_config: SchedulerConfig,
        cache_config: CacheConfig,
    ) -> nn.Module:
429
430
        with set_default_torch_dtype(model_config.dtype):
            with torch.device(device_config.device):
Ying Sheng's avatar
Ying Sheng committed
431
432
433
434
435
436
                model = _initialize_model(
                    model_config,
                    self.load_config,
                    lora_config,
                    cache_config,
                )
437
438
439
440
441
442
443
444
445
446
447
448
449
450

            for _, module in model.named_modules():
                quant_method = getattr(module, "quant_method", None)
                if quant_method is not None:
                    quant_method.process_weights_after_loading(module)

            # NOTE(woosuk): For accurate performance evaluation, we assign
            # random values to the weights.
            initialize_dummy_weights(model)
        return model.eval()

    setattr(DummyModelLoader, "load_model", load_model)


451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
vllm_all_gather_backup = None


def monkey_patch_vllm_all_gather(reverse: bool = False):
    """Monkey patch all-gather to remove in-place operations."""
    from torch.distributed import _functional_collectives as funcol
    from vllm.distributed.parallel_state import GroupCoordinator

    global vllm_all_gather_backup
    if vllm_all_gather_backup is None:
        vllm_all_gather_backup = GroupCoordinator.all_gather

    def all_gather(self, input_: torch.Tensor, dim: int = -1) -> torch.Tensor:
        world_size = self.world_size
        # Bypass the function if we are using only 1 GPU.
        if world_size == 1:
            return input_
        assert (
            -input_.dim() <= dim < input_.dim()
        ), f"Invalid dim ({dim}) for input tensor with shape {input_.size()}"
        if dim < 0:
            # Convert negative dim to positive.
            dim += input_.dim()
        input_size = input_.size()
        # Allocate output tensor.
        output_tensor = torch.empty(
            (world_size,) + input_size, dtype=input_.dtype, device=input_.device
        )

        output_tensor = funcol.all_gather_tensor(
            input_, gather_dim=0, group=self.device_group
        ).view((world_size,) + input_size)

        # Reshape
        output_tensor = output_tensor.movedim(0, dim)
        output_tensor = output_tensor.reshape(
            input_size[:dim] + (world_size * input_size[dim],) + input_size[dim + 1 :]
        )
        return output_tensor

    if reverse:
        setattr(GroupCoordinator, "all_gather", vllm_all_gather_backup)
    else:
        setattr(GroupCoordinator, "all_gather", all_gather)


497
498
499
500
501
502
def maybe_set_triton_cache_manager() -> None:
    """Set environment variable to tell Triton to use a
    custom cache manager"""
    cache_manger = os.environ.get("TRITON_CACHE_MANAGER", None)
    if cache_manger is None:
        manager = "sglang.srt.utils:CustomCacheManager"
503
        logger.debug("Setting Triton cache manager to: %s", manager)
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
        os.environ["TRITON_CACHE_MANAGER"] = manager


class CustomCacheManager(FileCacheManager):
    # Adapted from: https://github.com/tdoublep/vllm/blob/3307522289fdfefe323b6c00d0db696651989a2f/vllm/triton_utils/custom_cache_manager.py
    def __init__(self, key, override=False, dump=False):

        self.key = key
        self.lock_path = None
        if dump:
            self.cache_dir = default_dump_dir()
            self.cache_dir = os.path.join(self.cache_dir, self.key)
            self.lock_path = os.path.join(self.cache_dir, "lock")
            os.makedirs(self.cache_dir, exist_ok=True)
        elif override:
            self.cache_dir = default_override_dir()
            self.cache_dir = os.path.join(self.cache_dir, self.key)
        else:
            # create cache directory if it doesn't exist
            self.cache_dir = (
                os.getenv("TRITON_CACHE_DIR", "").strip() or default_cache_dir()
            )
            if self.cache_dir:
                self.cache_dir = f"{self.cache_dir}_{os.getpid()}"
                self.cache_dir = os.path.join(self.cache_dir, self.key)
                self.lock_path = os.path.join(self.cache_dir, "lock")
                os.makedirs(self.cache_dir, exist_ok=True)
            else:
                raise RuntimeError("Could not create or locate cache dir")


535
536
537
538
539
540
541
542
543
544
545
def get_ip_address(ifname):
    """
    Get the IP address of a network interface.

    :param ifname: Name of the network interface (e.g., 'eth0')
    :return: IP address of the network interface
    """
    s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    ip_address = fcntl.ioctl(
        s.fileno(),
        0x8915,  # SIOCGIFADDR
Ying Sheng's avatar
Ying Sheng committed
546
        struct.pack("256s", bytes(ifname[:15], "utf-8")),
547
548
549
550
551
552
553
    )[20:24]
    return socket.inet_ntoa(ip_address)


def send_addrs_to_rank_0(model_port_args, server_args):
    assert server_args.node_rank != 0 and server_args.dp_size == 1

Ying Sheng's avatar
Ying Sheng committed
554
555
556
    ifname = os.environ.get(
        "SGLANG_SOCKET_IFNAME", os.environ.get("NCCL_SOCKET_IFNAME", "eth0")
    )
557
558
559
560
561
    ip_addr = get_ip_address(ifname)

    num_tp_ports = server_args.tp_size // server_args.nnodes
    model_port_args.model_tp_ips[:num_tp_ports] = [ip_addr] * num_tp_ports
    ip_addr = [int(x) for x in ip_addr.split(".")]
Ying Sheng's avatar
Ying Sheng committed
562
563
564
    addrs_tensor = torch.tensor(
        ip_addr + model_port_args.model_tp_ports, dtype=torch.int
    )
565
566

    init_method = f"tcp://{server_args.nccl_init_addr}"
Ying Sheng's avatar
Ying Sheng committed
567
568
569
570
571
572
    dist.init_process_group(
        backend="gloo",
        init_method=init_method,
        rank=server_args.node_rank,
        world_size=server_args.nnodes,
    )
573
    dist.send(addrs_tensor, dst=0)
Ying Sheng's avatar
Ying Sheng committed
574
575
576
    print(
        f"Node {server_args.node_rank} sent: ip_address {ip_addr} and ports {model_port_args.model_tp_ports}"
    )
577
578

    dist.barrier()
Ying Sheng's avatar
Ying Sheng committed
579
    dist.destroy_process_group()
580
581
582
583
584


def receive_addrs(model_port_args, server_args):
    assert server_args.node_rank == 0 and server_args.dp_size == 1

Ying Sheng's avatar
Ying Sheng committed
585
586
587
    ifname = os.environ.get(
        "SGLANG_SOCKET_IFNAME", os.environ.get("NCCL_SOCKET_IFNAME", "eth0")
    )
588
589
590
591
592
593
    ip_addr = get_ip_address(ifname)

    num_tp_ports = server_args.tp_size // server_args.nnodes
    model_port_args.model_tp_ips[:num_tp_ports] = [ip_addr] * num_tp_ports

    init_method = f"tcp://{server_args.nccl_init_addr}"
Ying Sheng's avatar
Ying Sheng committed
594
595
596
597
598
599
    dist.init_process_group(
        backend="gloo",
        init_method=init_method,
        rank=server_args.node_rank,
        world_size=server_args.nnodes,
    )
600
601
602
603
604
605

    for src_rank in range(1, server_args.nnodes):
        tensor = torch.zeros(4 + num_tp_ports, dtype=torch.int)
        dist.recv(tensor, src=src_rank)
        ip = ".".join([str(x) for x in tensor[:4].tolist()])
        ports = tensor[4:].tolist()
Ying Sheng's avatar
Ying Sheng committed
606
607
608
609
610
611
        model_port_args.model_tp_ips[
            num_tp_ports * src_rank : num_tp_ports * (src_rank + 1)
        ] = [ip] * num_tp_ports
        model_port_args.model_tp_ports[
            num_tp_ports * src_rank : num_tp_ports * (src_rank + 1)
        ] = ports
612
613
614
        print(f"Node 0 received from rank {src_rank}: {tensor.tolist()}")

    dist.barrier()
Ying Sheng's avatar
Ying Sheng committed
615
    dist.destroy_process_group()
616
617
618
619
620
621
622
623
624
625
626


def set_ulimit(target_soft_limit=65535):
    resource_type = resource.RLIMIT_NOFILE
    current_soft, current_hard = resource.getrlimit(resource_type)

    if current_soft < target_soft_limit:
        try:
            resource.setrlimit(resource_type, (target_soft_limit, current_hard))
        except ValueError as e:
            logger.warn(f"Fail to set RLIMIT_NOFILE: {e}")
627
628


Lianmin Zheng's avatar
Lianmin Zheng committed
629
def is_llama3_405b_fp8_head_16(model_config):
630
631
632
633
634
635
636
    """Return whether the model is meta-llama/Meta-Llama-3.1-405B-FP8 with 16 kv heads."""
    if (
        model_config.hf_config.architectures[0] == "LlamaForCausalLM"
        and model_config.hf_config.hidden_size == 16384
        and model_config.hf_config.intermediate_size == 53248
        and model_config.hf_config.num_hidden_layers == 126
        and model_config.hf_config.num_key_value_heads == 16
637
        and hasattr(model_config.hf_config, "quantization_config")
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
        and model_config.hf_config.quantization_config["quant_method"] == "fbgemm_fp8"
    ):
        return True
    return False


def monkey_patch_vllm_qvk_linear_loader():
    """A temporary hack to fix the num_heads for meta-llama/Meta-Llama-3.1-405B-FP8 checkpoints."""
    from vllm.model_executor.layers.linear import QKVParallelLinear

    origin_weight_loader = QKVParallelLinear.weight_loader

    def get_original_weight(loaded_weight, head_dim):
        n_kv_head = loaded_weight.shape[0] // (2 * head_dim)
        dim = loaded_weight.shape[1]
        for i in range(n_kv_head):
            loaded_weight[i * head_dim : (i + 1) * head_dim, :] = loaded_weight[
                2 * i * head_dim : (2 * i + 1) * head_dim, :
            ]
        original_kv_weight = loaded_weight[: n_kv_head * head_dim, :]
        assert original_kv_weight.shape == (n_kv_head * head_dim, dim)
        return original_kv_weight

    def weight_loader_srt(
        self,
        param: Parameter,
        loaded_weight: torch.Tensor,
        loaded_shard_id: Optional[str] = None,
    ):
        if (
            loaded_shard_id in ["k", "v"]
            and loaded_weight.shape[0] == self.head_size * self.total_num_kv_heads * 2
        ):
            loaded_weight = get_original_weight(loaded_weight, self.head_size)

        origin_weight_loader(self, param, loaded_weight, loaded_shard_id)

    setattr(QKVParallelLinear, "weight_loader", weight_loader_srt)
676
677


678
def add_api_key_middleware(app, api_key: str):
679
680
681
682
683
684
685
686
687
    @app.middleware("http")
    async def authentication(request, call_next):
        if request.method == "OPTIONS":
            return await call_next(request)
        if request.url.path.startswith("/health"):
            return await call_next(request)
        if request.headers.get("Authorization") != "Bearer " + api_key:
            return JSONResponse(content={"error": "Unauthorized"}, status_code=401)
        return await call_next(request)
688
689


690
def prepare_model(model_path: str):
691
692
693
694
695
696
697
698
    if "SGLANG_USE_MODELSCOPE" in os.environ:
        if not os.path.exists(model_path):
            from modelscope import snapshot_download

            return snapshot_download(model_path)
    return model_path


699
def prepare_tokenizer(tokenizer_path: str):
700
701
702
703
704
705
706
707
    if "SGLANG_USE_MODELSCOPE" in os.environ:
        if not os.path.exists(tokenizer_path):
            from modelscope import snapshot_download

            return snapshot_download(
                tokenizer_path, ignore_patterns=["*.bin", "*.safetensors"]
            )
    return tokenizer_path
708
709
710
711
712
713
714
715
716
717


def configure_logger(server_args, prefix: str = ""):
    format = f"[%(asctime)s{prefix}] %(message)s"
    logging.basicConfig(
        level=getattr(logging, server_args.log_level.upper()),
        format=format,
        datefmt="%H:%M:%S",
        force=True,
    )
718
719
720
721
722
723
724
725
726
727
728


# source: https://github.com/vllm-project/vllm/blob/93b38bea5dd03e1b140ca997dfaadef86f8f1855/vllm/lora/utils.py#L9
def replace_submodule(
    model: nn.Module, module_name: str, new_module: nn.Module
) -> nn.Module:
    """Replace a submodule in a model with a new module."""
    parent = model.get_submodule(".".join(module_name.split(".")[:-1]))
    target_name = module_name.split(".")[-1]
    setattr(parent, target_name, new_module)
    return new_module