Unverified Commit b1104538 authored by Lianmin Zheng's avatar Lianmin Zheng Committed by GitHub
Browse files

Simplify logits penalizer (#2086)

parent 3b44bbee
......@@ -1019,7 +1019,7 @@ class ScheduleBatch:
extend_prefix_lens = self.prefix_lens
extend_logprob_start_lens = self.extend_logprob_start_lens
if self.sampling_info is not None:
if self.sampling_info:
if self.has_grammar:
self.sampling_info.grammars = [req.grammar for req in self.reqs]
else:
......@@ -1063,6 +1063,7 @@ class ScheduleBatch:
out_cache_loc=self.out_cache_loc,
return_logprob=self.return_logprob,
decoding_reqs=self.decoding_reqs,
sampling_info=dataclasses.replace(self.sampling_info),
)
def __str__(self):
......@@ -1122,20 +1123,6 @@ class ModelWorkerBatch:
# Sampling info
sampling_info: SamplingBatchInfo
def copy(self):
return dataclasses.replace(self, sampling_info=self.sampling_info.copy())
def to(self, device: str):
self.input_ids = self.input_ids.to(device, non_blocking=True)
self.req_pool_indices = self.req_pool_indices.to(device, non_blocking=True)
self.seq_lens = self.seq_lens.to(device, non_blocking=True)
self.out_cache_loc = self.out_cache_loc.to(device, non_blocking=True)
self.req_to_token_pool_records = [
(x, y.to(device, non_blocking=True))
for x, y in self.req_to_token_pool_records
]
self.sampling_info.to(device)
@triton.jit
def write_req_to_token_pool_triton(
......
......@@ -931,14 +931,14 @@ class Scheduler:
# Check finish conditions
logprob_pt = 0
for i, req in enumerate(batch.reqs):
for i, (req, next_token_id) in enumerate(zip(batch.reqs, next_token_ids)):
if req.is_retracted:
continue
if req.is_being_chunked <= 0:
# Inflight reqs' prefill is not finished
req.completion_tokens_wo_jump_forward += 1
req.output_ids.append(next_token_ids[i])
req.output_ids.append(next_token_id)
req.check_finished()
if req.finished():
......@@ -947,7 +947,7 @@ class Scheduler:
self.tree_cache.cache_unfinished_req(req)
if req.grammar is not None:
req.grammar.accept_token(next_token_ids[i])
req.grammar.accept_token(next_token_id)
if req.return_logprob:
logprob_pt += self.add_logprob_return_values(
......
......@@ -16,6 +16,7 @@ limitations under the License.
"""A tensor parallel worker."""
import logging
import threading
from typing import Optional
from sglang.srt.configs.model_config import ModelConfig
......@@ -138,9 +139,15 @@ class TpModelWorker:
forward_batch = ForwardBatch.init_new(model_worker_batch, self.model_runner)
self.model_runner.forward(forward_batch)
def forward_batch_generation(self, model_worker_batch: ModelWorkerBatch):
def forward_batch_generation(
self,
model_worker_batch: ModelWorkerBatch,
launch_event: Optional[threading.Event] = None,
):
forward_batch = ForwardBatch.init_new(model_worker_batch, self.model_runner)
logits_output = self.model_runner.forward(forward_batch)
if launch_event:
launch_event.set()
next_token_ids = self.model_runner.sample(logits_output, model_worker_batch)
return logits_output, next_token_ids
......
......@@ -15,6 +15,7 @@ limitations under the License.
"""A tensor parallel worker."""
import dataclasses
import logging
import threading
import time
......@@ -107,7 +108,7 @@ class TpModelWorkerClient:
# Run forward
logits_output, next_token_ids = self.worker.forward_batch_generation(
model_worker_batch
model_worker_batch, self.launch_event
)
# Update the future token ids map
......@@ -134,7 +135,6 @@ class TpModelWorkerClient:
next_token_ids = next_token_ids.to("cpu", non_blocking=True)
copy_event.record()
self.launch_event.set()
self.output_queue.put((copy_event, logits_output, next_token_ids))
def resolve_batch_result(self, bid: int):
......@@ -159,7 +159,10 @@ class TpModelWorkerClient:
def forward_batch_generation(self, model_worker_batch: ModelWorkerBatch):
# Push a new batch to the queue
self.input_queue.put((model_worker_batch.copy(), self.future_token_ids_ct))
model_worker_batch.sampling_info = dataclasses.replace(
model_worker_batch.sampling_info
)
self.input_queue.put((model_worker_batch, self.future_token_ids_ct))
# Allocate output future objects
bs = len(model_worker_batch.seq_lens)
......
import abc
import dataclasses
import typing
from typing import List, Set, Type, Union
import torch
@dataclasses.dataclass
class _ReqLike:
origin_input_ids: typing.Union[torch.Tensor, typing.List[int]]
origin_input_ids: List[int]
@dataclasses.dataclass
class _BatchLike:
reqs: typing.List[_ReqLike]
reqs: List[_ReqLike]
def batch_size(self):
return len(self.reqs)
class BatchedPenalizerOrchestrator:
batch: _BatchLike
device: str
vocab_size: int
penalizers: typing.Dict[typing.Type["_BatchedPenalizer"], "_BatchedPenalizer"]
def __init__(
self,
vocab_size: int,
batch: _BatchLike,
device: str,
Penalizers: typing.Set[typing.Type["_BatchedPenalizer"]],
Penalizers: Set[Type["_BatchedPenalizer"]],
):
self.vocab_size = vocab_size
self.batch = batch
self.device = device
self.penalizers = {Penalizer: Penalizer(self) for Penalizer in Penalizers}
is_required = False
......@@ -43,10 +37,12 @@ class BatchedPenalizerOrchestrator:
is_required |= pen_is_required
self.is_required = is_required
input_ids = [
torch.tensor(req.origin_input_ids, dtype=torch.int64, device=self.device)
for req in self.reqs()
]
if self.is_required:
self.cumulate_input_tokens(
input_ids=[req.origin_input_ids for req in self.reqs()]
)
self.cumulate_input_tokens(input_ids=input_ids)
def reqs(self):
return self.batch.reqs
......@@ -54,34 +50,24 @@ class BatchedPenalizerOrchestrator:
def batch_size(self):
return self.batch.batch_size()
def cumulate_input_tokens(
self,
input_ids: typing.Union[
typing.List[torch.Tensor], typing.List[typing.List[int]]
],
):
def cumulate_input_tokens(self, input_ids: List[torch.Tensor]):
"""
Feed the input tokens to the penalizers.
Args:
input_ids (typing.Union[typing.List[torch.Tensor], typing.List[typing.List[int]]]): The input tokens.
input_ids (List[torch.Tensor]): The input tokens.
"""
token_ids = _TokenIDs(orchestrator=self, token_ids=input_ids)
for penalizer in self.penalizers.values():
penalizer.cumulate_input_tokens(input_ids=token_ids)
def cumulate_output_tokens(
self,
output_ids: typing.Union[
typing.List[torch.Tensor], typing.List[typing.List[int]]
],
):
def cumulate_output_tokens(self, output_ids: torch.Tensor):
"""
Feed the output tokens to the penalizers.
Args:
output_ids (typing.Union[typing.List[torch.Tensor], typing.List[typing.List[int]]]): The output tokens.
output_ids (torch.Tensor): The output tokens.
"""
if not self.is_required:
return
......@@ -112,14 +98,14 @@ class BatchedPenalizerOrchestrator:
def filter(
self,
indices_to_keep: typing.List[int],
indices_to_keep: List[int],
indices_tensor_to_keep: torch.Tensor = None,
):
"""
Filter the penalizers based on the indices to keep in the batch.
Args:
indices_to_keep (typing.List[int]): List of indices to keep in the batch.
indices_to_keep (List[int]): List of indices to keep in the batch.
indices_tensor_to_keep (torch.Tensor = None): Tensor of indices to keep in the batch. If not None, it will be used instead of converting indices_to_keep to a tensor.
"""
if not self.is_required:
......@@ -174,32 +160,18 @@ class _TokenIDs:
Attributes:
orchestrator (BatchedPenalizerOrchestrator): The orchestrator that this token IDs belong to.
token_ids (typing.Union[torch.Tensor, typing.List[torch.Tensor]]): The token IDs.
token_ids (Union[torch.Tensor, List[torch.Tensor]]): The token IDs.
cached_counts (torch.Tensor): The cached occurrence count tensor.
"""
orchestrator: BatchedPenalizerOrchestrator
token_ids: typing.Union[torch.Tensor, typing.List[torch.Tensor]]
cached_counts: torch.Tensor = None
def __init__(
self,
orchestrator: BatchedPenalizerOrchestrator,
token_ids: typing.Union[
typing.List[torch.Tensor], typing.List[typing.List[int]]
],
token_ids: Union[torch.Tensor, List[torch.Tensor]],
):
self.orchestrator = orchestrator
if not isinstance(token_ids[0], torch.Tensor):
token_ids = [
torch.tensor(
data=ids, dtype=torch.int64, device=self.orchestrator.device
)
for ids in token_ids
]
self.token_ids = token_ids
self.cached_counts = None
def occurrence_count(self) -> torch.Tensor:
"""
......@@ -213,30 +185,34 @@ class _TokenIDs:
token_ids = self.token_ids
if isinstance(token_ids, torch.Tensor):
token_ids = token_ids.unsqueeze(1)
# needs to be long to be used as index in scatter_add
if token_ids.dtype != torch.int64:
token_ids = token_ids.to(torch.int64)
padded_token_ids = torch.nn.utils.rnn.pad_sequence(
sequences=token_ids,
batch_first=True,
padding_value=self.orchestrator.vocab_size,
)
self.cached_counts = torch.zeros(
size=(self.orchestrator.batch_size(), self.orchestrator.vocab_size + 1),
dtype=torch.int64,
device=self.orchestrator.device,
).scatter_add_(
dim=1,
index=padded_token_ids,
src=torch.ones_like(padded_token_ids),
)[
:, : self.orchestrator.vocab_size
]
if isinstance(token_ids, list):
# TODO: optimize this part
padded_token_ids = torch.nn.utils.rnn.pad_sequence(
sequences=token_ids,
batch_first=True,
padding_value=self.orchestrator.vocab_size,
)
self.cached_counts = torch.zeros(
size=(self.orchestrator.batch_size(), self.orchestrator.vocab_size + 1),
dtype=torch.int64,
device=self.orchestrator.device,
).scatter_add_(
dim=1,
index=padded_token_ids,
src=torch.ones_like(padded_token_ids),
)[
:, : self.orchestrator.vocab_size
]
else:
# TODO: optimize this part. We do not need to create this big tensor every time.
# We can directly apply the results on the logits.
self.cached_counts = torch.zeros(
size=(self.orchestrator.batch_size(), self.orchestrator.vocab_size),
device=self.orchestrator.device,
)
self.cached_counts[
torch.arange(len(token_ids), device=self.orchestrator.device), token_ids
] = 1
return self.cached_counts
......@@ -246,11 +222,9 @@ class _BatchedPenalizer(abc.ABC):
An abstract class for a batched penalizer.
"""
orchestrator: BatchedPenalizerOrchestrator
_is_prepared: bool = False
def __init__(self, orchestrator: BatchedPenalizerOrchestrator):
self.orchestrator = orchestrator
self._is_prepared = False
def is_prepared(self) -> bool:
return self._is_prepared
......@@ -293,9 +267,7 @@ class _BatchedPenalizer(abc.ABC):
return self._apply(logits=logits)
def filter(
self, indices_to_keep: typing.List[int], indices_tensor_to_keep: torch.Tensor
):
def filter(self, indices_to_keep: List[int], indices_tensor_to_keep: torch.Tensor):
if not self.is_prepared():
return
......@@ -360,9 +332,7 @@ class _BatchedPenalizer(abc.ABC):
pass
@abc.abstractmethod
def _filter(
self, indices_to_keep: typing.List[int], indices_tensor_to_keep: torch.Tensor
):
def _filter(self, indices_to_keep: List[int], indices_tensor_to_keep: torch.Tensor):
"""
Filter the penalizer (tensors or underlying data) based on the indices to keep in the batch.
"""
......
import typing
from typing import List
import torch
from ..orchestrator import _BatchedPenalizer, _TokenIDs
from sglang.srt.sampling.penaltylib.orchestrator import _BatchedPenalizer, _TokenIDs
class BatchedFrequencyPenalizer(_BatchedPenalizer):
......@@ -44,9 +44,6 @@ class BatchedFrequencyPenalizer(_BatchedPenalizer):
)
def _teardown(self):
del self.frequency_penalties
del self.cumulated_frequency_penalties
self.frequency_penalties = None
self.cumulated_frequency_penalties = None
......@@ -62,9 +59,7 @@ class BatchedFrequencyPenalizer(_BatchedPenalizer):
logits -= self.cumulated_frequency_penalties
return logits
def _filter(
self, indices_to_keep: typing.List[int], indices_tensor_to_keep: torch.Tensor
):
def _filter(self, indices_to_keep: List[int], indices_tensor_to_keep: torch.Tensor):
self.frequency_penalties = self.frequency_penalties[indices_tensor_to_keep]
self.cumulated_frequency_penalties = self.cumulated_frequency_penalties[
indices_tensor_to_keep
......
import typing
from typing import List
import torch
from ..orchestrator import _BatchedPenalizer, _TokenIDs
from sglang.srt.sampling.penaltylib.orchestrator import _BatchedPenalizer, _TokenIDs
class BatchedMinNewTokensPenalizer(_BatchedPenalizer):
......@@ -70,10 +70,6 @@ class BatchedMinNewTokensPenalizer(_BatchedPenalizer):
)
def _teardown(self):
del self.min_new_tokens
del self.stop_token_penalties
del self.len_output_tokens
self.min_new_tokens = None
self.stop_token_penalties = None
self.len_output_tokens = None
......@@ -89,9 +85,7 @@ class BatchedMinNewTokensPenalizer(_BatchedPenalizer):
logits[mask] += self.stop_token_penalties[mask]
return logits
def _filter(
self, indices_to_keep: typing.List[int], indices_tensor_to_keep: torch.Tensor
):
def _filter(self, indices_to_keep: List[int], indices_tensor_to_keep: torch.Tensor):
self.min_new_tokens = self.min_new_tokens[indices_tensor_to_keep]
self.stop_token_penalties = self.stop_token_penalties[indices_tensor_to_keep]
self.len_output_tokens = self.len_output_tokens[indices_tensor_to_keep]
......
import typing
from typing import List
import torch
from ..orchestrator import _BatchedPenalizer, _TokenIDs
from sglang.srt.sampling.penaltylib.orchestrator import _BatchedPenalizer, _TokenIDs
class BatchedPresencePenalizer(_BatchedPenalizer):
......@@ -44,9 +44,6 @@ class BatchedPresencePenalizer(_BatchedPenalizer):
)
def _teardown(self):
del self.presence_penalties
del self.cumulated_presence_penalties
self.presence_penalties = None
self.cumulated_presence_penalties = None
......@@ -61,9 +58,7 @@ class BatchedPresencePenalizer(_BatchedPenalizer):
logits -= self.cumulated_presence_penalties
return logits
def _filter(
self, indices_to_keep: typing.List[int], indices_tensor_to_keep: torch.Tensor
):
def _filter(self, indices_to_keep: List[int], indices_tensor_to_keep: torch.Tensor):
self.presence_penalties = self.presence_penalties[indices_tensor_to_keep]
self.cumulated_presence_penalties = self.cumulated_presence_penalties[
indices_tensor_to_keep
......
import typing
from typing import List
import torch
from ..orchestrator import _BatchedPenalizer, _TokenIDs
from sglang.srt.sampling.penaltylib.orchestrator import _BatchedPenalizer, _TokenIDs
class BatchedRepetitionPenalizer(_BatchedPenalizer):
......@@ -44,9 +44,6 @@ class BatchedRepetitionPenalizer(_BatchedPenalizer):
)
def _teardown(self):
del self.repetition_penalties
del self.cumulated_repetition_penalties
self.repetition_penalties = None
self.cumulated_repetition_penalties = None
......@@ -65,9 +62,7 @@ class BatchedRepetitionPenalizer(_BatchedPenalizer):
logits * self.cumulated_repetition_penalties,
)
def _filter(
self, indices_to_keep: typing.List[int], indices_tensor_to_keep: torch.Tensor
):
def _filter(self, indices_to_keep: List[int], indices_tensor_to_keep: torch.Tensor):
self.repetition_penalties = self.repetition_penalties[indices_tensor_to_keep]
self.cumulated_repetition_penalties = self.cumulated_repetition_penalties[
indices_tensor_to_keep
......
......@@ -27,10 +27,10 @@ class SamplingBatchInfo:
# Bias Tensors
vocab_size: int
grammars: Optional[List] = None
logit_bias: torch.Tensor = None
vocab_mask: Optional[torch.Tensor] = None
apply_mask: Optional[Callable[[torch.Tensor, torch.Tensor], None]] = None
grammars: Optional[List] = None
# Penalizer
penalizer_orchestrator: Optional[penaltylib.BatchedPenalizerOrchestrator] = None
......@@ -211,25 +211,3 @@ class SamplingBatchInfo:
self.logit_bias = SamplingBatchInfo.merge_bias_tensor(
self.logit_bias, other.logit_bias, len(self), len(other), self.device
)
def copy(self):
return SamplingBatchInfo(
temperatures=self.temperatures,
top_ps=self.top_ps,
top_ks=self.top_ks,
min_ps=self.min_ps,
is_all_greedy=self.is_all_greedy,
need_min_p_sampling=self.need_min_p_sampling,
vocab_size=self.vocab_size,
device=self.device,
)
def to(self, device: str):
for item in [
"temperatures",
"top_ps",
"top_ks",
"min_ps",
]:
value = getattr(self, item)
setattr(self, item, value.to(device, non_blocking=True))
......@@ -24,7 +24,6 @@ class SamplingParams:
def __init__(
self,
max_new_tokens: int = 128,
min_new_tokens: int = 0,
stop: Optional[Union[str, List[str]]] = None,
stop_token_ids: Optional[List[int]] = None,
temperature: float = 1.0,
......@@ -34,6 +33,7 @@ class SamplingParams:
frequency_penalty: float = 0.0,
presence_penalty: float = 0.0,
repetition_penalty: float = 1.0,
min_new_tokens: int = 0,
spaces_between_special_tokens: bool = True,
regex: Optional[str] = None,
n: int = 1,
......
......@@ -782,7 +782,7 @@ class PortArgs:
@staticmethod
def init_new(server_args) -> "PortArgs":
port = server_args.port + 42
port = server_args.port + random.randint(100, 1000)
while True:
if is_port_available(port):
break
......
import dataclasses
import enum
import typing
import unittest
from typing import Dict, List, Optional, Set, Tuple, Type
import torch
......@@ -16,7 +16,7 @@ from sglang.srt.sampling.penaltylib.orchestrator import (
class MockSamplingParams:
frequency_penalty: float = 0.0
min_new_tokens: int = 0
stop_token_ids: typing.List[int] = None
stop_token_ids: List[int] = None
presence_penalty: float = 0.0
repetition_penalty: float = 1.0
......@@ -24,12 +24,12 @@ class MockSamplingParams:
@dataclasses.dataclass
class MockTokenizer:
eos_token_id: int
additional_stop_token_ids: typing.Optional[typing.List[int]] = None
additional_stop_token_ids: Optional[List[int]] = None
@dataclasses.dataclass
class MockReq:
origin_input_ids: typing.List[int]
origin_input_ids: List[int]
sampling_params: MockSamplingParams
tokenizer: MockTokenizer
......@@ -42,8 +42,8 @@ class StepType(enum.Enum):
@dataclasses.dataclass
class Step:
type: StepType
token_ids: typing.List[int]
expected_tensors: typing.Dict[str, torch.Tensor]
token_ids: List[int]
expected_tensors: Dict[str, torch.Tensor]
# assume initial logits are all 1
expected_logits: torch.Tensor
......@@ -52,7 +52,7 @@ class Step:
class Subject:
sampling_params: MockSamplingParams
# first step must be input, which will be converted to Req
steps: typing.List[Step]
steps: List[Step]
eos_token_id: int = -1
def __post_init__(self):
......@@ -66,7 +66,7 @@ class Subject:
f"Expected tensors keys must be the same for all steps. Got {self.steps[i].expected_tensors.keys()} for key={i} and {self.steps[0].expected_tensors.keys()}"
)
def tensor_keys(self, i: int = 0) -> typing.Set[str]:
def tensor_keys(self, i: int = 0) -> Set[str]:
return set(self.steps[i].expected_tensors.keys())
def to_req(self) -> MockReq:
......@@ -80,7 +80,7 @@ class Subject:
@dataclasses.dataclass
class Case:
enabled: bool
test_subjects: typing.List[Subject]
test_subjects: List[Subject]
def __post_init__(self):
# each test_subjects.steps should have the same expected_tensors.keys()
......@@ -90,12 +90,12 @@ class Case:
f"Expected tensors keys must be the same for all test_subjects. Got {self.test_subjects[i].tensor_keys()} for key={i} and {self.test_subjects[0].tensor_keys()}"
)
def tensor_keys(self, i: int = 0) -> typing.List[str]:
def tensor_keys(self, i: int = 0) -> List[str]:
return set(self.test_subjects[i].tensor_keys())
class BaseBatchedPenalizerTest(unittest.TestCase):
Penalizer: typing.Type[_BatchedPenalizer]
Penalizer: Type[_BatchedPenalizer]
device = "cuda"
vocab_size = 5
......@@ -115,7 +115,7 @@ class BaseBatchedPenalizerTest(unittest.TestCase):
"""
return torch.tensor(data, **kwargs, device=self.device)
def create_test_subjects(self) -> typing.List[Subject]:
def create_test_subjects(self) -> List[Subject]:
raise NotImplementedError()
def create_test_cases(self):
......@@ -127,7 +127,7 @@ class BaseBatchedPenalizerTest(unittest.TestCase):
def _create_penalizer(
self, case: Case
) -> typing.Tuple[BatchedPenalizerOrchestrator, _BatchedPenalizer]:
) -> Tuple[BatchedPenalizerOrchestrator, _BatchedPenalizer]:
orchestrator = BatchedPenalizerOrchestrator(
vocab_size=self.vocab_size,
batch=_BatchLike(reqs=[subject.to_req() for subject in case.test_subjects]),
......@@ -287,22 +287,24 @@ class BaseBatchedPenalizerTest(unittest.TestCase):
if i < len(subject.steps)
]
inputs: typing.List[typing.List[int]] = []
outputs: typing.List[typing.List[int]] = []
inputs: List[List[int]] = []
outputs: List[List[int]] = []
for subject in filtered_subjects:
step = subject.steps[i]
if step.type == StepType.INPUT:
inputs.append(step.token_ids)
outputs.append([])
raise NotImplementedError()
else:
inputs.append([])
outputs.append(step.token_ids)
if any(inputs):
orchestrator.cumulate_input_tokens(inputs)
if any(outputs):
orchestrator.cumulate_output_tokens(outputs)
for j in range(max(len(x) for x in outputs)):
tmp_outputs = torch.tensor(
[x[j] for x in outputs],
dtype=torch.int32,
device=orchestrator.device,
)
orchestrator.cumulate_output_tokens(tmp_outputs)
if penalizer.is_required():
self.assertTrue(penalizer.is_prepared())
......
"""
Usage:
python3 -m unittest test_srt_backend.TestSRTBackend.test_gen_min_new_tokens
"""
import unittest
import sglang as sgl
......@@ -68,7 +73,7 @@ class TestSRTBackend(unittest.TestCase):
# Run twice to capture more bugs
for _ in range(2):
accuracy, latency = test_hellaswag_select()
assert accuracy > 0.71, f"{accuracy=}"
self.assertGreater(accuracy, 0.71)
def test_gen_min_new_tokens(self):
test_gen_min_new_tokens()
......
import typing
import unittest
from typing import List
import torch
......@@ -48,7 +48,11 @@ class BaseBatchedFrequencyPenalizerTest(BaseBatchedPenalizerTest):
),
Step(
type=StepType.OUTPUT,
token_ids=[1, 2, 2],
token_ids=[
1,
2,
2,
], # This is the output ids of one request in three steps.
expected_tensors={
"frequency_penalties": self.tensor(
[[frequency_penalty] * self.vocab_size], dtype=torch.float32
......@@ -76,7 +80,7 @@ class BaseBatchedFrequencyPenalizerTest(BaseBatchedPenalizerTest):
],
)
def create_test_subjects(self) -> typing.List[Subject]:
def create_test_subjects(self) -> List[Subject]:
self.enabled = self._create_subject(frequency_penalty=self.frequency_penalty)
self.disabled = self._create_subject(frequency_penalty=0.0)
......
import typing
import unittest
from typing import List
import torch
......@@ -143,7 +143,7 @@ class TestBatchedMinNewTokensPenalizer(BaseBatchedPenalizerTest):
],
)
def create_test_subjects(self) -> typing.List[Subject]:
def create_test_subjects(self) -> List[Subject]:
self.enabled = self._create_subject(min_new_tokens=MIN_NEW_TOKENS)
self.disabled = self._create_subject(min_new_tokens=0.0)
......
import typing
import unittest
from typing import List
import torch
......@@ -76,7 +76,7 @@ class BaseBatchedPresencePenalizerTest(BaseBatchedPenalizerTest):
],
)
def create_test_subjects(self) -> typing.List[Subject]:
def create_test_subjects(self) -> List[Subject]:
self.enabled = self._create_subject(presence_penalty=self.presence_penalty)
self.disabled = self._create_subject(presence_penalty=0.0)
......
import typing
import unittest
from typing import List
import torch
......@@ -78,7 +78,7 @@ class TestBatchedRepetitionPenalizer(BaseBatchedPenalizerTest):
],
)
def create_test_subjects(self) -> typing.List[Subject]:
def create_test_subjects(self) -> List[Subject]:
self.enabled = self._create_subject(repetition_penalty=REPETITION_PENALTY)
self.disabled = self._create_subject(repetition_penalty=1.0)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment