server_args.py 49.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
"""The arguments of the server."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import argparse
import dataclasses
18
import json
19
import logging
20
import os
21
import random
22
23
import tempfile
from typing import List, Optional
Lianmin Zheng's avatar
Lianmin Zheng committed
24

25
from sglang.srt.hf_transformers_utils import check_gguf_file
Xihuai Wang's avatar
Xihuai Wang committed
26
from sglang.srt.reasoning_parser import ReasoningParser
27
from sglang.srt.utils import (
Vincent's avatar
Vincent committed
28
    configure_ipv6,
HAI's avatar
HAI committed
29
    get_amdgpu_memory_capacity,
30
    get_device,
31
    get_hpu_memory_capacity,
HAI's avatar
HAI committed
32
    get_nvgpu_memory_capacity,
33
    is_cuda,
34
    is_flashinfer_available,
HAI's avatar
HAI committed
35
    is_hip,
36
    is_port_available,
37
    is_remote_url,
38
    is_valid_ipv6_address,
bjmsong's avatar
bjmsong committed
39
    nullable_str,
40
)
41

42
43
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
44
45
46

@dataclasses.dataclass
class ServerArgs:
Lianmin Zheng's avatar
Lianmin Zheng committed
47
    # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
48
49
50
    model_path: str
    tokenizer_path: Optional[str] = None
    tokenizer_mode: str = "auto"
51
    skip_tokenizer_init: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
52
    load_format: str = "auto"
53
    trust_remote_code: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
54
    dtype: str = "auto"
55
    kv_cache_dtype: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
56
    quantization: Optional[str] = None
Vincent's avatar
Vincent committed
57
    quantization_param_path: Optional[str] = None
58
    context_length: Optional[int] = None
59
    device: Optional[str] = None
60
    served_model_name: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
61
    chat_template: Optional[str] = None
62
    completion_template: Optional[str] = None
63
    is_embedding: bool = False
64
    revision: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
65

66
    # Port for the HTTP server
Lianmin Zheng's avatar
Lianmin Zheng committed
67
68
69
70
    host: str = "127.0.0.1"
    port: int = 30000

    # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
71
    mem_fraction_static: Optional[float] = None
72
    max_running_requests: Optional[int] = None
73
    max_total_tokens: Optional[int] = None
74
    chunked_prefill_size: Optional[int] = None
75
    max_prefill_tokens: int = 16384
76
    schedule_policy: str = "fcfs"
77
    schedule_conservativeness: float = 1.0
78
    cpu_offload_gb: int = 0
79
    page_size: int = 1
Lianmin Zheng's avatar
Lianmin Zheng committed
80
81
82

    # Other runtime options
    tp_size: int = 1
83
    stream_interval: int = 1
84
    stream_output: bool = False
85
    random_seed: Optional[int] = None
86
    constrained_json_whitespace_pattern: Optional[str] = None
87
    watchdog_timeout: float = 300
88
    dist_timeout: Optional[int] = None  # timeout for torch.distributed
89
    download_dir: Optional[str] = None
90
    base_gpu_id: int = 0
91
    gpu_id_step: int = 1
Lianmin Zheng's avatar
Lianmin Zheng committed
92
93
94

    # Logging
    log_level: str = "info"
95
    log_level_http: Optional[str] = None
96
    log_requests: bool = False
97
    log_requests_level: int = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
98
    show_time_cost: bool = False
99
    enable_metrics: bool = False
100
    decode_log_interval: int = 40
Liangsheng Yin's avatar
Liangsheng Yin committed
101

102
    # API related
103
    api_key: Optional[str] = None
104
    file_storage_path: str = "sglang_storage"
105
    enable_cache_report: bool = False
Xihuai Wang's avatar
Xihuai Wang committed
106
    reasoning_parser: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
107

108
109
110
    # Data parallelism
    dp_size: int = 1
    load_balance_method: str = "round_robin"
111

xiaobochen's avatar
xiaobochen committed
112
113
    # Expert parallelism
    ep_size: int = 1
114

115
    # Multi-node distributed serving
116
    dist_init_addr: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
117
    nnodes: int = 1
118
    node_rank: int = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
119
120
121
122

    # Model override args in JSON
    json_model_override_args: str = "{}"

123
124
125
    # LoRA
    lora_paths: Optional[List[str]] = None
    max_loras_per_batch: int = 8
126
    lora_backend: str = "triton"
127
128

    # Kernel backend
129
130
    attention_backend: Optional[str] = None
    sampling_backend: Optional[str] = None
131
    grammar_backend: Optional[str] = None
132

133
134
    # Speculative decoding
    speculative_algorithm: Optional[str] = None
135
    speculative_draft_model_path: Optional[str] = None
136
137
138
    speculative_num_steps: Optional[int] = None
    speculative_eagle_topk: Optional[int] = None
    speculative_num_draft_tokens: Optional[int] = None
139
140
    speculative_accept_threshold_single: float = 1.0
    speculative_accept_threshold_acc: float = 1.0
141
    speculative_token_map: Optional[str] = None
142
143
144

    # Double Sparsity
    enable_double_sparsity: bool = False
Vincent's avatar
Vincent committed
145
    ds_channel_config_path: Optional[str] = None
146
147
148
149
150
    ds_heavy_channel_num: int = 32
    ds_heavy_token_num: int = 256
    ds_heavy_channel_type: str = "qk"
    ds_sparse_decode_threshold: int = 4096

151
    # Optimization/debug options
Lianmin Zheng's avatar
Lianmin Zheng committed
152
    disable_radix_cache: bool = False
153
    disable_cuda_graph: bool = False
154
    disable_cuda_graph_padding: bool = False
155
    enable_nccl_nvls: bool = False
156
    disable_outlines_disk_cache: bool = False
157
    disable_custom_all_reduce: bool = False
Ke Bao's avatar
Ke Bao committed
158
    disable_mla: bool = False
159
    disable_overlap_schedule: bool = False
160
    enable_mixed_chunk: bool = False
Ke Bao's avatar
Ke Bao committed
161
    enable_dp_attention: bool = False
xiaobochen's avatar
xiaobochen committed
162
    enable_ep_moe: bool = False
163
    enable_deepep_moe: bool = False
164
    enable_torch_compile: bool = False
165
    torch_compile_max_bs: int = 32
166
    cuda_graph_max_bs: Optional[int] = None
167
    cuda_graph_bs: Optional[List[int]] = None
168
    torchao_config: str = ""
169
    enable_nan_detection: bool = False
170
    enable_p2p_check: bool = False
171
    triton_attention_reduce_in_fp32: bool = False
172
    triton_attention_num_kv_splits: int = 8
173
    num_continuous_decode_steps: int = 1
174
    delete_ckpt_after_loading: bool = False
175
    enable_memory_saver: bool = False
176
    allow_auto_truncate: bool = False
177
    enable_custom_logit_processor: bool = False
Vincent's avatar
Vincent committed
178
    tool_call_parser: Optional[str] = None
179
    enable_hierarchical_cache: bool = False
180
    hicache_ratio: float = 2.0
181
    enable_flashinfer_mla: bool = False
lukec's avatar
lukec committed
182
    enable_flashmla: bool = False
183
    flashinfer_mla_disable_ragged: bool = False
184
185
186
187
188
189
    warmups: Optional[str] = None

    # Debug tensor dumps
    debug_tensor_dump_output_folder: Optional[str] = None
    debug_tensor_dump_input_file: Optional[str] = None
    debug_tensor_dump_inject: bool = False
190

Byron Hsu's avatar
Byron Hsu committed
191
192
193
194
    # For PD disaggregation: can be "null" (not disaggregated), "prefill" (prefill-only), or "decode" (decode-only)
    disaggregation_mode: str = "null"
    disaggregation_bootstrap_port: int = 8998

Lianmin Zheng's avatar
Lianmin Zheng committed
195
    def __post_init__(self):
196
197
198
199
200
201
202
        # Expert parallelism
        if self.enable_ep_moe:
            self.ep_size = self.tp_size
            logger.info(
                f"EP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )

203
        # Set missing default values
Lianmin Zheng's avatar
Lianmin Zheng committed
204
205
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
206

207
208
209
        if self.device is None:
            self.device = get_device()

210
211
212
        if self.served_model_name is None:
            self.served_model_name = self.model_path

213
214
215
        if self.random_seed is None:
            self.random_seed = random.randint(0, 1 << 30)

216
        if is_cuda():
217
            gpu_mem = get_nvgpu_memory_capacity()
218
219
        elif is_hip():
            gpu_mem = get_amdgpu_memory_capacity()
220
221
        elif self.device == "hpu":
            gpu_mem = get_hpu_memory_capacity()
222
223
224
        else:
            # GPU memory is not known yet or no GPU is available.
            gpu_mem = None
225
226

        # Set mem fraction static, which depends on the tensor parallelism size
Lianmin Zheng's avatar
Lianmin Zheng committed
227
        if self.mem_fraction_static is None:
228
            if self.tp_size >= 16:
229
                self.mem_fraction_static = 0.79
230
            elif self.tp_size >= 8:
231
                self.mem_fraction_static = 0.81
Lianmin Zheng's avatar
Lianmin Zheng committed
232
            elif self.tp_size >= 4:
233
                self.mem_fraction_static = 0.85
Lianmin Zheng's avatar
Lianmin Zheng committed
234
            elif self.tp_size >= 2:
235
                self.mem_fraction_static = 0.87
Ying Sheng's avatar
Ying Sheng committed
236
            else:
237
                self.mem_fraction_static = 0.88
238

239
240
        # Set chunked prefill size, which depends on the gpu memory capacity
        if self.chunked_prefill_size is None:
241
            if gpu_mem is not None and gpu_mem < 25_000:
242
243
244
                self.chunked_prefill_size = 2048
            else:
                self.chunked_prefill_size = 8192
245

Lianmin Zheng's avatar
Lianmin Zheng committed
246
247
        assert self.chunked_prefill_size % self.page_size == 0

lukec's avatar
lukec committed
248
        if self.enable_flashmla is True:
249
250
251
252
            logger.warning(
                "FlashMLA only supports a page_size of 64, change page_size to 64."
            )
            self.page_size = 64
253
254
        # Set cuda graph max batch size
        if self.cuda_graph_max_bs is None:
255
            # Based on detailed statistics, when serving TP1/TP2 models on lower-end GPUs with HBM<25G, you can either disable cuda graph or set `cuda_graph_max_bs` to a very small value to reduce the memory overhead of creating cuda graphs, with almost no impact on performance. However, when serving models with TP4 or TP8, we need to enable cuda graph to maintain high performance. In this case, we can set `cuda_graph_max_bs` to 80 (half of the default value 160) to reduce the memory overhead of creating cuda graphs. Looking at the logs from TP4 serving of qwen2-72b, a value of 80 is sufficient and can reduce the memory overhead of creating cuda graphs on lower-end GPUs compared to the original 160, avoiding OOM issues.
256
            if gpu_mem is not None and gpu_mem < 25_000:
257
258
259
260
                if self.tp_size < 4:
                    self.cuda_graph_max_bs = 8
                else:
                    self.cuda_graph_max_bs = 80
261
262
            else:
                self.cuda_graph_max_bs = 160
263

264
        # Choose kernel backends
265
266
267
268
        if self.device == "hpu":
            self.attention_backend = "torch_native"
            self.sampling_backend = "pytorch"

269
        if self.attention_backend is None:
270
271
272
            self.attention_backend = (
                "flashinfer" if is_flashinfer_available() else "triton"
            )
273
        if self.sampling_backend is None:
274
275
276
277
278
            self.sampling_backend = (
                "flashinfer" if is_flashinfer_available() else "pytorch"
            )

        if self.attention_backend == "torch_native":
279
            logger.warning(
280
281
282
                "Cuda graph is disabled because of using torch native attention backend"
            )
            self.disable_cuda_graph = True
283

284
285
286
        # Choose grammar backend
        if self.grammar_backend is None:
            self.grammar_backend = "xgrammar"
287

288
        # Data parallelism attention
Ke Bao's avatar
Ke Bao committed
289
        if self.enable_dp_attention:
290
            self.schedule_conservativeness = self.schedule_conservativeness * 0.3
Lianmin Zheng's avatar
Lianmin Zheng committed
291
292
293
294
295
            assert (
                self.dp_size > 1
            ), "Please set a dp-size > 1. You can use 1 < dp-size <= tp-size "
            assert self.tp_size % self.dp_size == 0
            self.chunked_prefill_size = self.chunked_prefill_size // self.dp_size
296
            logger.warning(
297
                f"DP attention is enabled. The chunked prefill size is adjusted to {self.chunked_prefill_size} to avoid MoE kernel issues. "
298
            )
299
300
301
302
303
304
305
306
307
308
309

        self.enable_sp_layernorm = False
        # DeepEP MoE
        if self.enable_deepep_moe:
            self.ep_size = self.tp_size
            self.enable_sp_layernorm = (
                self.dp_size < self.tp_size if self.enable_dp_attention else True
            )
            logger.info(
                f"DeepEP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
310

311
        # Speculative Decoding
312
313
314
315
        if self.speculative_algorithm == "NEXTN":
            # NEXTN shares the same implementation of EAGLE
            self.speculative_algorithm = "EAGLE"

James Liu's avatar
James Liu committed
316
317
318
319
        if (
            self.speculative_algorithm == "EAGLE"
            or self.speculative_algorithm == "EAGLE3"
        ):
320
            if self.max_running_requests is None:
321
                self.max_running_requests = 48
322
            self.disable_overlap_schedule = True
323
            logger.info(
324
                "Overlap scheduler is disabled because of using "
325
                "eagle speculative decoding."
326
            )
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

            # Auto choose parameters
            if self.speculative_num_steps is None:
                assert (
                    self.speculative_eagle_topk is None
                    and self.speculative_num_draft_tokens is None
                )
                (
                    self.speculative_num_steps,
                    self.speculative_eagle_topk,
                    self.speculative_num_draft_tokens,
                ) = auto_choose_speculative_params(self)

            if self.page_size > 1 and self.speculative_eagle_topk > 1:
                self.speculative_eagle_topk = 1
                logger.info("speculative_eagle_topk is changed to 1 when page_size > 1")

344
            # The token generated from the verify step is counted.
345
            # If sepculative_num_steps >= speculative_num_draft_tokens, the additional tokens will definitely be discarded.
346
            # assert self.speculative_num_steps < self.speculative_num_draft_tokens
347

348
349
350
351
352
353
        # GGUF
        if (
            self.load_format == "auto" or self.load_format == "gguf"
        ) and check_gguf_file(self.model_path):
            self.quantization = self.load_format = "gguf"

354
355
356
        if is_remote_url(self.model_path):
            self.load_format = "remote"

357
358
359
360
        # AMD-specific Triton attention KV splits default number
        if is_hip():
            self.triton_attention_num_kv_splits = 16

Byron Hsu's avatar
Byron Hsu committed
361
362
363
364
365
366
367
368
369
370
371
372
        # PD disaggregation
        if self.disaggregation_mode == "prefill":
            self.disable_cuda_graph = True
            logger.warning("KV cache is forced as chunk cache for decode server")
            self.disable_overlap_schedule = True
            logger.warning("Overlap scheduler is disabled for prefill server")
        elif self.disaggregation_mode == "decode":
            self.disable_radix_cache = True
            logger.warning("Cuda graph is disabled for prefill server")
            self.disable_overlap_schedule = True
            logger.warning("Overlap scheduler is disabled for decode server")

373
374
375
376
        os.environ["SGLANG_ENABLE_TORCH_COMPILE"] = (
            "1" if self.enable_torch_compile else "0"
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
377
378
    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
379
        # Model and port args
Lianmin Zheng's avatar
Lianmin Zheng committed
380
381
382
383
384
385
386
387
388
389
390
391
        parser.add_argument(
            "--model-path",
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
Yuanhan Zhang's avatar
Yuanhan Zhang committed
392
393
394
395
396
397
        parser.add_argument(
            "--host", type=str, default=ServerArgs.host, help="The host of the server."
        )
        parser.add_argument(
            "--port", type=int, default=ServerArgs.port, help="The port of the server."
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
398
399
400
401
402
403
404
405
406
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
407
408
409
410
411
        parser.add_argument(
            "--skip-tokenizer-init",
            action="store_true",
            help="If set, skip init tokenizer and pass input_ids in generate request",
        )
412
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
413
414
415
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
416
417
418
419
420
421
            choices=[
                "auto",
                "pt",
                "safetensors",
                "npcache",
                "dummy",
422
                "sharded_state",
423
424
                "gguf",
                "bitsandbytes",
425
                "layered",
426
                "remote",
427
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
428
429
430
431
432
433
434
435
436
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
437
            "which is mainly for profiling."
438
439
            '"gguf" will load the weights in the gguf format. '
            '"bitsandbytes" will load the weights using bitsandbytes '
440
441
442
443
            "quantization."
            '"layered" loads weights layer by layer so that one can quantize a '
            "layer before loading another to make the peak memory envelope "
            "smaller.",
Lianmin Zheng's avatar
Lianmin Zheng committed
444
        )
445
446
447
448
449
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
450
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
451
            "--dtype",
Cody Yu's avatar
Cody Yu committed
452
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
453
            default=ServerArgs.dtype,
Ying Sheng's avatar
Ying Sheng committed
454
455
            choices=["auto", "half", "float16", "bfloat16", "float", "float32"],
            help="Data type for model weights and activations.\n\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
456
            '* "auto" will use FP16 precision for FP32 and FP16 models, and '
Ying Sheng's avatar
Ying Sheng committed
457
            "BF16 precision for BF16 models.\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
458
459
460
461
            '* "half" for FP16. Recommended for AWQ quantization.\n'
            '* "float16" is the same as "half".\n'
            '* "bfloat16" for a balance between precision and range.\n'
            '* "float" is shorthand for FP32 precision.\n'
Ying Sheng's avatar
Ying Sheng committed
462
463
            '* "float32" for FP32 precision.',
        )
464
465
466
467
        parser.add_argument(
            "--kv-cache-dtype",
            type=str,
            default=ServerArgs.kv_cache_dtype,
bjmsong's avatar
bjmsong committed
468
469
470
            choices=["auto", "fp8_e5m2", "fp8_e4m3"],
            help='Data type for kv cache storage. "auto" will use model data type. "fp8_e5m2" and "fp8_e4m3" is supported for CUDA 11.8+.',
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
471
472
473
474
        parser.add_argument(
            "--quantization",
            type=str,
            default=ServerArgs.quantization,
Ying Sheng's avatar
Ying Sheng committed
475
476
477
478
479
480
            choices=[
                "awq",
                "fp8",
                "gptq",
                "marlin",
                "gptq_marlin",
Ying Sheng's avatar
Ying Sheng committed
481
                "awq_marlin",
Ying Sheng's avatar
Ying Sheng committed
482
                "bitsandbytes",
483
                "gguf",
484
                "modelopt",
485
                "w8a8_int8",
HandH1998's avatar
HandH1998 committed
486
                "w8a8_fp8",
Ying Sheng's avatar
Ying Sheng committed
487
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
488
489
            help="The quantization method.",
        )
490
491
492
493
494
495
496
497
498
        parser.add_argument(
            "--quantization-param-path",
            type=nullable_str,
            default=None,
            help="Path to the JSON file containing the KV cache "
            "scaling factors. This should generally be supplied, when "
            "KV cache dtype is FP8. Otherwise, KV cache scaling factors "
            "default to 1.0, which may cause accuracy issues. ",
        )
499
500
501
502
503
504
505
506
507
        parser.add_argument(
            "--context-length",
            type=int,
            default=ServerArgs.context_length,
            help="The model's maximum context length. Defaults to None (will use the value from the model's config.json instead).",
        )
        parser.add_argument(
            "--device",
            type=str,
508
509
            default=ServerArgs.device,
            help="The device to use ('cuda', 'xpu', 'hpu', 'cpu'). Defaults to auto-detection if not specified.",
510
        )
511
512
513
514
515
516
        parser.add_argument(
            "--served-model-name",
            type=str,
            default=ServerArgs.served_model_name,
            help="Override the model name returned by the v1/models endpoint in OpenAI API server.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
517
518
519
520
521
522
        parser.add_argument(
            "--chat-template",
            type=str,
            default=ServerArgs.chat_template,
            help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
        )
523
524
525
526
527
528
        parser.add_argument(
            "--completion-template",
            type=str,
            default=ServerArgs.completion_template,
            help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
        )
529
530
531
532
533
        parser.add_argument(
            "--is-embedding",
            action="store_true",
            help="Whether to use a CausalLM as an embedding model.",
        )
534
535
536
537
538
539
540
541
        parser.add_argument(
            "--revision",
            type=str,
            default=None,
            help="The specific model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
542
        # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
543
544
545
546
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
547
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
Lianmin Zheng's avatar
Lianmin Zheng committed
548
        )
549
550
551
552
553
554
        parser.add_argument(
            "--max-running-requests",
            type=int,
            default=ServerArgs.max_running_requests,
            help="The maximum number of running requests.",
        )
555
556
557
558
        parser.add_argument(
            "--max-total-tokens",
            type=int,
            default=ServerArgs.max_total_tokens,
559
560
            help="The maximum number of tokens in the memory pool. If not specified, it will be automatically calculated based on the memory usage fraction. "
            "This option is typically used for development and debugging purposes.",
561
        )
562
563
564
565
        parser.add_argument(
            "--chunked-prefill-size",
            type=int,
            default=ServerArgs.chunked_prefill_size,
566
            help="The maximum number of tokens in a chunk for the chunked prefill. Setting this to -1 means disabling chunked prefill.",
567
568
569
570
571
572
573
        )
        parser.add_argument(
            "--max-prefill-tokens",
            type=int,
            default=ServerArgs.max_prefill_tokens,
            help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
574
        parser.add_argument(
575
            "--schedule-policy",
Lianmin Zheng's avatar
Lianmin Zheng committed
576
            type=str,
577
            default=ServerArgs.schedule_policy,
Liangsheng Yin's avatar
Liangsheng Yin committed
578
            choices=["lpm", "random", "fcfs", "dfs-weight"],
579
            help="The scheduling policy of the requests.",
Lianmin Zheng's avatar
Lianmin Zheng committed
580
        )
581
582
583
584
        parser.add_argument(
            "--schedule-conservativeness",
            type=float,
            default=ServerArgs.schedule_conservativeness,
585
            help="How conservative the schedule policy is. A larger value means more conservative scheduling. Use a larger value if you see requests being retracted frequently.",
586
        )
587
588
589
590
        parser.add_argument(
            "--cpu-offload-gb",
            type=int,
            default=ServerArgs.cpu_offload_gb,
591
            help="How many GBs of RAM to reserve for CPU offloading.",
592
        )
593
594
595
596
597
598
        parser.add_argument(
            "--page-size",
            type=int,
            default=ServerArgs.page_size,
            help="The number of tokens in a page.",
        )
599

600
        # Other runtime options
Lianmin Zheng's avatar
Lianmin Zheng committed
601
        parser.add_argument(
602
            "--tensor-parallel-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
603
            "--tp-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
604
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
605
            default=ServerArgs.tp_size,
606
            help="The tensor parallelism size.",
607
        )
608
609
610
        parser.add_argument(
            "--stream-interval",
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
611
            default=ServerArgs.stream_interval,
612
            help="The interval (or buffer size) for streaming in terms of the token length. A smaller value makes streaming smoother, while a larger value makes the throughput higher",
613
        )
614
615
616
617
618
        parser.add_argument(
            "--stream-output",
            action="store_true",
            help="Whether to output as a sequence of disjoint segments.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
619
620
621
622
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
623
            help="The random seed.",
Lianmin Zheng's avatar
Lianmin Zheng committed
624
        )
625
626
627
628
629
630
        parser.add_argument(
            "--constrained-json-whitespace-pattern",
            type=str,
            default=ServerArgs.constrained_json_whitespace_pattern,
            help=r"Regex pattern for syntactic whitespaces allowed in JSON constrained output. For example, to allow the model generate consecutive whitespaces, set the pattern to [\n\t ]*",
        )
631
632
633
634
635
636
        parser.add_argument(
            "--watchdog-timeout",
            type=float,
            default=ServerArgs.watchdog_timeout,
            help="Set watchdog timeout in seconds. If a forward batch takes longer than this, the server will crash to prevent hanging.",
        )
637
638
639
640
641
642
        parser.add_argument(
            "--dist-timeout",
            type=int,
            default=ServerArgs.dist_timeout,
            help="Set timeout for torch.distributed initialization.",
        )
643
644
645
646
        parser.add_argument(
            "--download-dir",
            type=str,
            default=ServerArgs.download_dir,
Lianmin Zheng's avatar
Lianmin Zheng committed
647
            help="Model download directory for huggingface.",
648
        )
649
650
651
652
653
654
        parser.add_argument(
            "--base-gpu-id",
            type=int,
            default=ServerArgs.base_gpu_id,
            help="The base GPU ID to start allocating GPUs from. Useful when running multiple instances on the same machine.",
        )
655
656
657
658
659
660
        parser.add_argument(
            "--gpu-id-step",
            type=int,
            default=ServerArgs.gpu_id_step,
            help="The delta between consecutive GPU IDs that are used. For example, setting it to 2 will use GPU 0,2,4,...",
        )
661
662

        # Logging
Lianmin Zheng's avatar
Lianmin Zheng committed
663
664
665
666
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
667
            help="The logging level of all loggers.",
Lianmin Zheng's avatar
Lianmin Zheng committed
668
        )
669
        parser.add_argument(
670
671
672
673
            "--log-level-http",
            type=str,
            default=ServerArgs.log_level_http,
            help="The logging level of HTTP server. If not set, reuse --log-level by default.",
674
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
675
        parser.add_argument(
676
            "--log-requests",
Lianmin Zheng's avatar
Lianmin Zheng committed
677
            action="store_true",
678
679
680
681
682
683
684
685
            help="Log metadata, inputs, outputs of all requests. The verbosity is decided by --log-requests-level",
        )
        parser.add_argument(
            "--log-requests-level",
            type=int,
            default=0,
            help="0: Log metadata. 1. Log metadata and partial input/output. 2. Log every input/output.",
            choices=[0, 1, 2],
Lianmin Zheng's avatar
Lianmin Zheng committed
686
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
687
688
689
        parser.add_argument(
            "--show-time-cost",
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
690
            help="Show time cost of custom marks.",
Lianmin Zheng's avatar
Lianmin Zheng committed
691
        )
692
693
694
695
696
        parser.add_argument(
            "--enable-metrics",
            action="store_true",
            help="Enable log prometheus metrics.",
        )
697
698
699
700
        parser.add_argument(
            "--decode-log-interval",
            type=int,
            default=ServerArgs.decode_log_interval,
701
            help="The log interval of decode batch.",
702
        )
703

704
        # API related
Liangsheng Yin's avatar
Liangsheng Yin committed
705
706
707
708
        parser.add_argument(
            "--api-key",
            type=str,
            default=ServerArgs.api_key,
709
            help="Set API key of the server. It is also used in the OpenAI API compatible server.",
Liangsheng Yin's avatar
Liangsheng Yin committed
710
        )
711
        parser.add_argument(
712
            "--file-storage-path",
713
            type=str,
714
            default=ServerArgs.file_storage_path,
715
716
            help="The path of the file storage in backend.",
        )
717
718
719
720
721
        parser.add_argument(
            "--enable-cache-report",
            action="store_true",
            help="Return number of cached tokens in usage.prompt_tokens_details for each openai request.",
        )
Xihuai Wang's avatar
Xihuai Wang committed
722
723
724
725
726
727
728
        parser.add_argument(
            "--reasoning-parser",
            type=str,
            choices=list(ReasoningParser.DetectorMap.keys()),
            default=ServerArgs.reasoning_parser,
            help=f"Specify the parser for reasoning models, supported parsers are: {list(ReasoningParser.DetectorMap.keys())}.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
729

730
731
        # Data parallelism
        parser.add_argument(
732
            "--data-parallel-size",
733
734
735
            "--dp-size",
            type=int,
            default=ServerArgs.dp_size,
736
            help="The data parallelism size.",
737
738
739
740
741
        )
        parser.add_argument(
            "--load-balance-method",
            type=str,
            default=ServerArgs.load_balance_method,
742
            help="The load balancing strategy for data parallelism.",
743
744
745
746
747
            choices=[
                "round_robin",
                "shortest_queue",
            ],
        )
748

xiaobochen's avatar
xiaobochen committed
749
750
751
752
753
754
755
756
        # Expert parallelism
        parser.add_argument(
            "--expert-parallel-size",
            "--ep-size",
            type=int,
            default=ServerArgs.ep_size,
            help="The expert parallelism size.",
        )
757

758
        # Multi-node distributed serving
759
        parser.add_argument(
760
761
            "--dist-init-addr",
            "--nccl-init-addr",  # For backward compatbility. This will be removed in the future.
762
            type=str,
763
            help="The host address for initializing distributed backend (e.g., `192.168.0.2:25000`).",
764
765
        )
        parser.add_argument(
Liangsheng Yin's avatar
Liangsheng Yin committed
766
            "--nnodes", type=int, default=ServerArgs.nnodes, help="The number of nodes."
767
        )
768
769
770
        parser.add_argument(
            "--node-rank", type=int, default=ServerArgs.node_rank, help="The node rank."
        )
771

Lianmin Zheng's avatar
Lianmin Zheng committed
772
773
774
775
776
777
778
779
        # Model override args
        parser.add_argument(
            "--json-model-override-args",
            type=str,
            help="A dictionary in JSON string format used to override default model configurations.",
            default=ServerArgs.json_model_override_args,
        )

780
781
782
783
784
785
786
        # LoRA
        parser.add_argument(
            "--lora-paths",
            type=str,
            nargs="*",
            default=None,
            action=LoRAPathAction,
787
            help="The list of LoRA adapters. You can provide a list of either path in str or renamed path in the format {name}={path}.",
788
789
790
791
792
        )
        parser.add_argument(
            "--max-loras-per-batch",
            type=int,
            default=8,
793
794
795
796
797
798
799
            help="Maximum number of adapters for a running batch, include base-only request.",
        )
        parser.add_argument(
            "--lora-backend",
            type=str,
            default="triton",
            help="Choose the kernel backend for multi-LoRA serving.",
800
801
802
        )

        # Kernel backend
803
804
805
        parser.add_argument(
            "--attention-backend",
            type=str,
806
            choices=["flashinfer", "triton", "torch_native", "fa3"],
807
808
809
            default=ServerArgs.attention_backend,
            help="Choose the kernels for attention layers.",
        )
810
811
812
813
814
815
816
        parser.add_argument(
            "--sampling-backend",
            type=str,
            choices=["flashinfer", "pytorch"],
            default=ServerArgs.sampling_backend,
            help="Choose the kernels for sampling layers.",
        )
817
818
819
        parser.add_argument(
            "--grammar-backend",
            type=str,
820
            choices=["xgrammar", "outlines", "llguidance", "none"],
821
            default=ServerArgs.grammar_backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
822
            help="Choose the backend for grammar-guided decoding.",
823
        )
824
825
826
827
828
        parser.add_argument(
            "--enable-flashinfer-mla",
            action="store_true",
            help="Enable FlashInfer MLA optimization",
        )
lukec's avatar
lukec committed
829
830
831
832
833
        parser.add_argument(
            "--enable-flashmla",
            action="store_true",
            help="Enable FlashMLA decode optimization",
        )
834
835
836
837
838
        parser.add_argument(
            "--flashinfer-mla-disable-ragged",
            action="store_true",
            help="Not using ragged prefill wrapper when running flashinfer mla",
        )
839

840
841
842
843
        # Speculative decoding
        parser.add_argument(
            "--speculative-algorithm",
            type=str,
James Liu's avatar
James Liu committed
844
            choices=["EAGLE", "EAGLE3", "NEXTN"],
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
            help="Speculative algorithm.",
        )
        parser.add_argument(
            "--speculative-draft-model-path",
            type=str,
            help="The path of the draft model weights. This can be a local folder or a Hugging Face repo ID.",
        )
        parser.add_argument(
            "--speculative-num-steps",
            type=int,
            help="The number of steps sampled from draft model in Speculative Decoding.",
            default=ServerArgs.speculative_num_steps,
        )
        parser.add_argument(
            "--speculative-eagle-topk",
            type=int,
861
            help="The number of tokens sampled from the draft model in eagle2 each step.",
862
863
            default=ServerArgs.speculative_eagle_topk,
        )
864
865
866
        parser.add_argument(
            "--speculative-num-draft-tokens",
            type=int,
867
            help="The number of tokens sampled from the draft model in Speculative Decoding.",
868
869
            default=ServerArgs.speculative_num_draft_tokens,
        )
870
871
872
873
874
875
876
877
878
879
880
881
        parser.add_argument(
            "--speculative-accept-threshold-single",
            type=float,
            help="Accept a draft token if its probability in the target model is greater than this threshold.",
            default=ServerArgs.speculative_accept_threshold_single,
        )
        parser.add_argument(
            "--speculative-accept-threshold-acc",
            type=float,
            help="The accept probability of a draft token is raised from its target probability p to min(1, p / threshold_acc).",
            default=ServerArgs.speculative_accept_threshold_acc,
        )
882
883
884
885
886
887
        parser.add_argument(
            "--speculative-token-map",
            type=str,
            help="The path of the draft model's small vocab table.",
            default=ServerArgs.speculative_token_map,
        )
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925

        # Double Sparsity
        parser.add_argument(
            "--enable-double-sparsity",
            action="store_true",
            help="Enable double sparsity attention",
        )
        parser.add_argument(
            "--ds-channel-config-path",
            type=str,
            default=ServerArgs.ds_channel_config_path,
            help="The path of the double sparsity channel config",
        )
        parser.add_argument(
            "--ds-heavy-channel-num",
            type=int,
            default=ServerArgs.ds_heavy_channel_num,
            help="The number of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-token-num",
            type=int,
            default=ServerArgs.ds_heavy_token_num,
            help="The number of heavy tokens in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-channel-type",
            type=str,
            default=ServerArgs.ds_heavy_channel_type,
            help="The type of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-sparse-decode-threshold",
            type=int,
            default=ServerArgs.ds_sparse_decode_threshold,
            help="The type of heavy channels in double sparsity attention",
        )

926
        # Optimization/debug options
Liangsheng Yin's avatar
Liangsheng Yin committed
927
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
928
            "--disable-radix-cache",
Liangsheng Yin's avatar
Liangsheng Yin committed
929
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
930
            help="Disable RadixAttention for prefix caching.",
Liangsheng Yin's avatar
Liangsheng Yin committed
931
        )
932
933
934
935
936
        parser.add_argument(
            "--disable-cuda-graph",
            action="store_true",
            help="Disable cuda graph.",
        )
937
        parser.add_argument(
938
939
940
941
            "--disable-cuda-graph-padding",
            action="store_true",
            help="Disable cuda graph when padding is needed. Still uses cuda graph when padding is not needed.",
        )
942
943
944
945
946
        parser.add_argument(
            "--enable-nccl-nvls",
            action="store_true",
            help="Enable NCCL NVLS for prefill heavy requests when available.",
        )
947
        parser.add_argument(
948
            "--disable-outlines-disk-cache",
949
            action="store_true",
950
            help="Disable disk cache of outlines to avoid possible crashes related to file system or high concurrency.",
951
        )
952
953
954
955
956
        parser.add_argument(
            "--disable-custom-all-reduce",
            action="store_true",
            help="Disable the custom all-reduce kernel and fall back to NCCL.",
        )
Ke Bao's avatar
Ke Bao committed
957
958
959
        parser.add_argument(
            "--disable-mla",
            action="store_true",
Xiaoyu Zhang's avatar
Xiaoyu Zhang committed
960
            help="Disable Multi-head Latent Attention (MLA) for DeepSeek V2/V3/R1 series models.",
Ke Bao's avatar
Ke Bao committed
961
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
962
        parser.add_argument(
963
            "--disable-overlap-schedule",
Lianmin Zheng's avatar
Lianmin Zheng committed
964
            action="store_true",
965
            help="Disable the overlap scheduler, which overlaps the CPU scheduler with GPU model worker.",
Lianmin Zheng's avatar
Lianmin Zheng committed
966
        )
967
968
969
        parser.add_argument(
            "--enable-mixed-chunk",
            action="store_true",
970
            help="Enabling mixing prefill and decode in a batch when using chunked prefill.",
971
        )
Ke Bao's avatar
Ke Bao committed
972
973
974
975
976
        parser.add_argument(
            "--enable-dp-attention",
            action="store_true",
            help="Enabling data parallelism for attention and tensor parallelism for FFN. The dp size should be equal to the tp size. Currently only DeepSeek-V2 is supported.",
        )
xiaobochen's avatar
xiaobochen committed
977
978
979
980
981
        parser.add_argument(
            "--enable-ep-moe",
            action="store_true",
            help="Enabling expert parallelism for moe. The ep size is equal to the tp size.",
        )
982
983
984
        parser.add_argument(
            "--enable-torch-compile",
            action="store_true",
985
986
            help="Optimize the model with torch.compile. Experimental feature.",
        )
987
        parser.add_argument(
988
            "--torch-compile-max-bs",
989
            type=int,
990
            default=ServerArgs.torch_compile_max_bs,
991
992
            help="Set the maximum batch size when using torch compile.",
        )
993
        parser.add_argument(
994
            "--cuda-graph-max-bs",
995
            type=int,
996
            default=ServerArgs.cuda_graph_max_bs,
997
998
            help="Set the maximum batch size for cuda graph.",
        )
999
1000
1001
1002
1003
1004
        parser.add_argument(
            "--cuda-graph-bs",
            type=int,
            nargs="+",
            help="Set the list of batch sizes for cuda graph.",
        )
1005
1006
1007
1008
        parser.add_argument(
            "--torchao-config",
            type=str,
            default=ServerArgs.torchao_config,
1009
            help="Optimize the model with torchao. Experimental feature. Current choices are: int8dq, int8wo, int4wo-<group_size>, fp8wo, fp8dq-per_tensor, fp8dq-per_row",
1010
        )
1011
1012
1013
1014
1015
        parser.add_argument(
            "--enable-nan-detection",
            action="store_true",
            help="Enable the NaN detection for debugging purposes.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1016
        parser.add_argument(
1017
            "--enable-p2p-check",
Lianmin Zheng's avatar
Lianmin Zheng committed
1018
            action="store_true",
1019
            help="Enable P2P check for GPU access, otherwise the p2p access is allowed by default.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1020
        )
1021
        parser.add_argument(
1022
            "--triton-attention-reduce-in-fp32",
1023
            action="store_true",
1024
            help="Cast the intermidiate attention results to fp32 to avoid possible crashes related to fp16."
1025
            "This only affects Triton attention kernels.",
1026
        )
1027
1028
1029
1030
1031
1032
        parser.add_argument(
            "--triton-attention-num-kv-splits",
            type=int,
            default=ServerArgs.triton_attention_num_kv_splits,
            help="The number of KV splits in flash decoding Triton kernel. Larger value is better in longer context scenarios. The default value is 8.",
        )
1033
1034
1035
1036
1037
1038
1039
1040
        parser.add_argument(
            "--num-continuous-decode-steps",
            type=int,
            default=ServerArgs.num_continuous_decode_steps,
            help="Run multiple continuous decoding steps to reduce scheduling overhead. "
            "This can potentially increase throughput but may also increase time-to-first-token latency. "
            "The default value is 1, meaning only run one decoding step at a time.",
        )
1041
1042
1043
1044
1045
        parser.add_argument(
            "--delete-ckpt-after-loading",
            action="store_true",
            help="Delete the model checkpoint after loading the model.",
        )
1046
1047
1048
1049
1050
        parser.add_argument(
            "--enable-memory-saver",
            action="store_true",
            help="Allow saving memory using release_memory_occupation and resume_memory_occupation",
        )
1051
1052
1053
1054
1055
        parser.add_argument(
            "--allow-auto-truncate",
            action="store_true",
            help="Allow automatically truncating requests that exceed the maximum input length instead of returning an error.",
        )
1056
1057
1058
1059
1060
        parser.add_argument(
            "--enable-custom-logit-processor",
            action="store_true",
            help="Enable users to pass custom logit processors to the server (disabled by default for security)",
        )
YAMY's avatar
YAMY committed
1061
1062
1063
1064
1065
1066
1067
        parser.add_argument(
            "--tool-call-parser",
            type=str,
            choices=["qwen25", "mistral", "llama3"],
            default=ServerArgs.tool_call_parser,
            help="Specify the parser for handling tool-call interactions. Options include: 'qwen25', 'mistral', and 'llama3'.",
        )
1068
1069
1070
1071
1072
        parser.add_argument(
            "--enable-hierarchical-cache",
            action="store_true",
            help="Enable hierarchical cache",
        )
1073
1074
1075
1076
1077
1078
1079
        parser.add_argument(
            "--hicache-ratio",
            type=float,
            required=False,
            default=ServerArgs.hicache_ratio,
            help="The ratio of the size of host KV cache memory pool to the size of device pool.",
        )
1080
1081
1082
1083
1084
        parser.add_argument(
            "--enable-deepep-moe",
            action="store_true",
            help="Enabling DeepEP MoE implementation for EP MoE.",
        )
1085

1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
        # Server warmups
        parser.add_argument(
            "--warmups",
            type=str,
            required=False,
            help="Specify custom warmup functions (csv) to run before server starts eg. --warmups=warmup_name1,warmup_name2 "
            "will run the functions `warmup_name1` and `warmup_name2` specified in warmup.py before the server starts listening for requests",
        )

        # Debug tensor dumps
        parser.add_argument(
            "--debug-tensor-dump-output-folder",
            type=str,
            default=ServerArgs.debug_tensor_dump_output_folder,
            help="The output folder for dumping tensors.",
        )
        parser.add_argument(
            "--debug-tensor-dump-input-file",
            type=str,
            default=ServerArgs.debug_tensor_dump_input_file,
            help="The input filename for dumping tensors",
        )
        parser.add_argument(
            "--debug-tensor-dump-inject",
            type=str,
            default=ServerArgs.debug_tensor_dump_inject,
            help="Inject the outputs from jax as the input of every layer.",
        )

Byron Hsu's avatar
Byron Hsu committed
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
        # Disaggregation
        parser.add_argument(
            "--disaggregation-mode",
            type=str,
            default="null",
            choices=["null", "prefill", "decode"],
            help='Only used for PD disaggregation. "prefill" for prefill-only server, and "decode" for decode-only server. If not specified, it is not PD disaggregated',
        )
        parser.add_argument(
            "--disaggregation-bootstrap-port",
            type=int,
            default=ServerArgs.disaggregation_bootstrap_port,
            help="Bootstrap server port on the prefill server. Default is 8998.",
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1130
1131
    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
1132
1133
        args.tp_size = args.tensor_parallel_size
        args.dp_size = args.data_parallel_size
xiaobochen's avatar
xiaobochen committed
1134
        args.ep_size = args.expert_parallel_size
Lianmin Zheng's avatar
Lianmin Zheng committed
1135
1136
1137
1138
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
1139
        if is_valid_ipv6_address(self.host):
1140
1141
1142
            return f"http://[{self.host}]:{self.port}"
        else:
            return f"http://{self.host}:{self.port}"
Lianmin Zheng's avatar
Lianmin Zheng committed
1143

1144
1145
1146
1147
1148
    def check_server_args(self):
        assert (
            self.tp_size % self.nnodes == 0
        ), "tp_size must be divisible by number of nodes"
        assert not (
1149
1150
            self.dp_size > 1 and self.nnodes != 1 and not self.enable_dp_attention
        ), "multi-node data parallel is not supported unless dp attention!"
1151
1152
1153
1154
1155
1156
        assert (
            self.max_loras_per_batch > 0
            # FIXME
            and (self.lora_paths is None or self.disable_cuda_graph)
            and (self.lora_paths is None or self.disable_radix_cache)
        ), "compatibility of lora and cuda graph and radix attention is in progress"
1157
        assert self.base_gpu_id >= 0, "base_gpu_id must be non-negative"
1158
        assert self.gpu_id_step >= 1, "gpu_id_step must be positive"
1159

1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
        if isinstance(self.lora_paths, list):
            lora_paths = self.lora_paths
            self.lora_paths = {}
            for lora_path in lora_paths:
                if "=" in lora_path:
                    name, path = lora_path.split("=", 1)
                    self.lora_paths[name] = path
                else:
                    self.lora_paths[lora_path] = lora_path

Lianmin Zheng's avatar
Lianmin Zheng committed
1170

Lianmin Zheng's avatar
Lianmin Zheng committed
1171
def prepare_server_args(argv: List[str]) -> ServerArgs:
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
    """
    Prepare the server arguments from the command line arguments.

    Args:
        args: The command line arguments. Typically, it should be `sys.argv[1:]`
            to ensure compatibility with `parse_args` when no arguments are passed.

    Returns:
        The server arguments.
    """
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
Lianmin Zheng's avatar
Lianmin Zheng committed
1184
    raw_args = parser.parse_args(argv)
1185
1186
1187
1188
    server_args = ServerArgs.from_cli_args(raw_args)
    return server_args


1189
1190
1191
ZMQ_TCP_PORT_DELTA = 233


Lianmin Zheng's avatar
Lianmin Zheng committed
1192
1193
@dataclasses.dataclass
class PortArgs:
1194
1195
1196
1197
1198
1199
    # The ipc filename for tokenizer to receive inputs from detokenizer (zmq)
    tokenizer_ipc_name: str
    # The ipc filename for scheduler (rank 0) to receive inputs from tokenizer (zmq)
    scheduler_input_ipc_name: str
    # The ipc filename for detokenizer to receive inputs from scheduler (zmq)
    detokenizer_ipc_name: str
1200

1201
1202
    # The port for nccl initialization (torch.dist)
    nccl_port: int
1203

1204
1205
1206
    # The ipc filename for rpc call between Engine and Scheduler
    rpc_ipc_name: str

1207
    @staticmethod
1208
    def init_new(server_args, dp_rank: Optional[int] = None) -> "PortArgs":
1209
        port = server_args.port + random.randint(100, 1000)
1210
1211
1212
        while True:
            if is_port_available(port):
                break
TianYu GUO's avatar
TianYu GUO committed
1213
1214
1215
1216
            if port < 60000:
                port += 42
            else:
                port -= 43
1217

1218
1219
1220
1221
1222
1223
1224
        if not server_args.enable_dp_attention:
            # Normal case, use IPC within a single node
            return PortArgs(
                tokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                scheduler_input_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                detokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                nccl_port=port,
1225
                rpc_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
1226
1227
1228
1229
1230
            )
        else:
            # DP attention. Use TCP + port to handle both single-node and multi-node.
            if server_args.nnodes == 1 and server_args.dist_init_addr is None:
                dist_init_addr = ("127.0.0.1", server_args.port + ZMQ_TCP_PORT_DELTA)
Vincent's avatar
Vincent committed
1231
1232
1233
            elif server_args.dist_init_addr.startswith("["):  # ipv6 address
                port_num, host = configure_ipv6(server_args.dist_init_addr)
                dist_init_addr = (host, str(port_num))
1234
1235
            else:
                dist_init_addr = server_args.dist_init_addr.split(":")
Vincent's avatar
Vincent committed
1236

1237
1238
1239
1240
1241
1242
1243
1244
            assert (
                len(dist_init_addr) == 2
            ), "please provide --dist-init-addr as host:port of head node"

            dist_init_host, dist_init_port = dist_init_addr
            port_base = int(dist_init_port) + 1
            if dp_rank is None:
                scheduler_input_port = (
1245
                    port_base + 3
1246
                )  # TokenizerManager to DataParallelController
1247
            else:
1248
                scheduler_input_port = port_base + 3 + 1 + dp_rank
1249
1250
1251
1252
1253
1254

            return PortArgs(
                tokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base}",
                scheduler_input_ipc_name=f"tcp://{dist_init_host}:{scheduler_input_port}",
                detokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base + 1}",
                nccl_port=port,
1255
                rpc_ipc_name=f"tcp://{dist_init_host}:{port_base + 2}",
1256
            )
1257

1258
1259
1260
1261
1262
1263
1264
1265
1266
1267

class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
        setattr(namespace, self.dest, {})
        for lora_path in values:
            if "=" in lora_path:
                name, path = lora_path.split("=", 1)
                getattr(namespace, self.dest)[name] = path
            else:
                getattr(namespace, self.dest)[lora_path] = lora_path
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277


class DeprecatedAction(argparse.Action):
    def __init__(self, option_strings, dest, nargs=0, **kwargs):
        super(DeprecatedAction, self).__init__(
            option_strings, dest, nargs=nargs, **kwargs
        )

    def __call__(self, parser, namespace, values, option_string=None):
        raise ValueError(self.help)
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307


def auto_choose_speculative_params(self: ServerArgs):
    """
    Automatically choose the parameters for speculative decoding.

    You can tune them on your own models and prompts with scripts/playground/bench_speculative.py
    """
    if self.decrypted_config_file:
        config_path = self.decrypted_config_file
    else:
        config_path = os.path.join(self.model_path, "config.json")
    if not os.path.exists(config_path):
        raise ValueError(f"{config_path} is not found.")

    config = json.load(open(config_path))

    arch = config.get("architectures", ["Unknown"])[0]

    if arch in ["LlamaForCausalLM"]:
        # The default value for llama
        return (5, 4, 8)
    elif arch in ["DeepseekV3ForCausalLM", "DeepseekV2ForCausalLM"]:
        # The default value for deepseek
        return (5, 4, 8)
    elif arch in ["Grok1ForCausalLM", "Grok1VForCausalLM"]:
        return (5, 4, 8)
    else:
        # The default value for all other models
        return (5, 4, 8)