server_args.py 56.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
"""The arguments of the server."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import argparse
import dataclasses
18
import json
19
import logging
20
import os
21
import random
22
import tempfile
23
from typing import List, Literal, Optional
Lianmin Zheng's avatar
Lianmin Zheng committed
24

25
from sglang.srt.hf_transformers_utils import check_gguf_file, get_config
Xihuai Wang's avatar
Xihuai Wang committed
26
from sglang.srt.reasoning_parser import ReasoningParser
27
from sglang.srt.utils import (
Vincent's avatar
Vincent committed
28
    configure_ipv6,
29
    get_device,
Lianmin Zheng's avatar
Lianmin Zheng committed
30
    get_device_memory_capacity,
31
    is_flashinfer_available,
HAI's avatar
HAI committed
32
    is_hip,
33
    is_port_available,
34
    is_remote_url,
35
    is_valid_ipv6_address,
bjmsong's avatar
bjmsong committed
36
    nullable_str,
37
)
38

39
40
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
41
42
43

@dataclasses.dataclass
class ServerArgs:
Lianmin Zheng's avatar
Lianmin Zheng committed
44
    # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
45
46
47
    model_path: str
    tokenizer_path: Optional[str] = None
    tokenizer_mode: str = "auto"
48
    skip_tokenizer_init: bool = False
49
    enable_tokenizer_batch_encode: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
50
    load_format: str = "auto"
51
    trust_remote_code: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
52
    dtype: str = "auto"
53
    kv_cache_dtype: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
54
    quantization: Optional[str] = None
Vincent's avatar
Vincent committed
55
    quantization_param_path: Optional[str] = None
56
    context_length: Optional[int] = None
57
    device: Optional[str] = None
58
    served_model_name: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
59
    chat_template: Optional[str] = None
60
    completion_template: Optional[str] = None
61
    is_embedding: bool = False
62
    revision: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
63

64
    # Port for the HTTP server
Lianmin Zheng's avatar
Lianmin Zheng committed
65
66
67
68
    host: str = "127.0.0.1"
    port: int = 30000

    # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
69
    mem_fraction_static: Optional[float] = None
70
    max_running_requests: Optional[int] = None
71
    max_total_tokens: Optional[int] = None
72
    chunked_prefill_size: Optional[int] = None
73
    max_prefill_tokens: int = 16384
74
    schedule_policy: str = "fcfs"
75
    schedule_conservativeness: float = 1.0
76
    cpu_offload_gb: int = 0
77
    page_size: int = 1
Lianmin Zheng's avatar
Lianmin Zheng committed
78
79
80

    # Other runtime options
    tp_size: int = 1
81
82
    pp_size: int = 1
    max_micro_batch_size: Optional[int] = None
83
    stream_interval: int = 1
84
    stream_output: bool = False
85
    random_seed: Optional[int] = None
86
    constrained_json_whitespace_pattern: Optional[str] = None
87
    watchdog_timeout: float = 300
88
    dist_timeout: Optional[int] = None  # timeout for torch.distributed
89
    download_dir: Optional[str] = None
90
    base_gpu_id: int = 0
91
    gpu_id_step: int = 1
Lianmin Zheng's avatar
Lianmin Zheng committed
92
93
94

    # Logging
    log_level: str = "info"
95
    log_level_http: Optional[str] = None
96
    log_requests: bool = False
97
    log_requests_level: int = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
98
    show_time_cost: bool = False
99
    enable_metrics: bool = False
100
    decode_log_interval: int = 40
Liangsheng Yin's avatar
Liangsheng Yin committed
101

102
    # API related
103
    api_key: Optional[str] = None
104
    file_storage_path: str = "sglang_storage"
105
    enable_cache_report: bool = False
Xihuai Wang's avatar
Xihuai Wang committed
106
    reasoning_parser: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
107

108
109
110
    # Data parallelism
    dp_size: int = 1
    load_balance_method: str = "round_robin"
111

xiaobochen's avatar
xiaobochen committed
112
113
    # Expert parallelism
    ep_size: int = 1
114

115
    # Multi-node distributed serving
116
    dist_init_addr: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
117
    nnodes: int = 1
118
    node_rank: int = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
119
120
121
122

    # Model override args in JSON
    json_model_override_args: str = "{}"

123
124
125
    # LoRA
    lora_paths: Optional[List[str]] = None
    max_loras_per_batch: int = 8
126
    lora_backend: str = "triton"
127
128

    # Kernel backend
129
130
    attention_backend: Optional[str] = None
    sampling_backend: Optional[str] = None
131
    grammar_backend: Optional[str] = None
132

133
134
    # Speculative decoding
    speculative_algorithm: Optional[str] = None
135
    speculative_draft_model_path: Optional[str] = None
136
137
138
    speculative_num_steps: Optional[int] = None
    speculative_eagle_topk: Optional[int] = None
    speculative_num_draft_tokens: Optional[int] = None
139
140
    speculative_accept_threshold_single: float = 1.0
    speculative_accept_threshold_acc: float = 1.0
141
    speculative_token_map: Optional[str] = None
142
143
144

    # Double Sparsity
    enable_double_sparsity: bool = False
Vincent's avatar
Vincent committed
145
    ds_channel_config_path: Optional[str] = None
146
147
148
149
150
    ds_heavy_channel_num: int = 32
    ds_heavy_token_num: int = 256
    ds_heavy_channel_type: str = "qk"
    ds_sparse_decode_threshold: int = 4096

151
    # Optimization/debug options
Lianmin Zheng's avatar
Lianmin Zheng committed
152
    disable_radix_cache: bool = False
153
    disable_cuda_graph: bool = False
154
    disable_cuda_graph_padding: bool = False
155
    enable_nccl_nvls: bool = False
156
    disable_outlines_disk_cache: bool = False
157
    disable_custom_all_reduce: bool = False
158
    enable_multimodal: Optional[bool] = None
159
    disable_overlap_schedule: bool = False
160
    enable_mixed_chunk: bool = False
Ke Bao's avatar
Ke Bao committed
161
    enable_dp_attention: bool = False
xiaobochen's avatar
xiaobochen committed
162
    enable_ep_moe: bool = False
163
    enable_deepep_moe: bool = False
164
    deepep_mode: Optional[Literal["auto", "normal", "low_latency"]] = "auto"
165
    enable_torch_compile: bool = False
166
    torch_compile_max_bs: int = 32
167
    cuda_graph_max_bs: Optional[int] = None
168
    cuda_graph_bs: Optional[List[int]] = None
169
    torchao_config: str = ""
170
    enable_nan_detection: bool = False
171
    enable_p2p_check: bool = False
172
    triton_attention_reduce_in_fp32: bool = False
173
    triton_attention_num_kv_splits: int = 8
174
    num_continuous_decode_steps: int = 1
175
    delete_ckpt_after_loading: bool = False
176
    enable_memory_saver: bool = False
177
    allow_auto_truncate: bool = False
178
    enable_custom_logit_processor: bool = False
Vincent's avatar
Vincent committed
179
    tool_call_parser: Optional[str] = None
180
    enable_hierarchical_cache: bool = False
181
    hicache_ratio: float = 2.0
Zhiqiang Xie's avatar
Zhiqiang Xie committed
182
183
    hicache_size: int = 0
    hicache_write_policy: str = "write_through_selective"
184
    flashinfer_mla_disable_ragged: bool = False
185
    warmups: Optional[str] = None
186
    moe_dense_tp_size: Optional[int] = None
187
    n_share_experts_fusion: int = 0
188
    disable_chunked_prefix_cache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
189
    disable_fast_image_processor: bool = False
190
    mm_attention_backend: Optional[str] = None
191
192
193
194
195

    # Debug tensor dumps
    debug_tensor_dump_output_folder: Optional[str] = None
    debug_tensor_dump_input_file: Optional[str] = None
    debug_tensor_dump_inject: bool = False
196

Byron Hsu's avatar
Byron Hsu committed
197
198
199
    # For PD disaggregation: can be "null" (not disaggregated), "prefill" (prefill-only), or "decode" (decode-only)
    disaggregation_mode: str = "null"
    disaggregation_bootstrap_port: int = 8998
200
    disaggregation_transfer_backend: str = "mooncake"
201
    disaggregation_ib_device: Optional[str] = None
202
    pdlb_url: Optional[str] = None
Byron Hsu's avatar
Byron Hsu committed
203

Lianmin Zheng's avatar
Lianmin Zheng committed
204
    def __post_init__(self):
205
206
207
        # Expert parallelism
        if self.enable_ep_moe:
            self.ep_size = self.tp_size
Lianmin Zheng's avatar
Lianmin Zheng committed
208
            logger.warning(
209
210
211
                f"EP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )

212
        # Set missing default values
Lianmin Zheng's avatar
Lianmin Zheng committed
213
214
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
215

216
217
218
        if self.device is None:
            self.device = get_device()

219
220
221
        if self.served_model_name is None:
            self.served_model_name = self.model_path

222
223
224
        if self.random_seed is None:
            self.random_seed = random.randint(0, 1 << 30)

Lianmin Zheng's avatar
Lianmin Zheng committed
225
        gpu_mem = get_device_memory_capacity(self.device)
226
227

        # Set mem fraction static, which depends on the tensor parallelism size
Lianmin Zheng's avatar
Lianmin Zheng committed
228
        if self.mem_fraction_static is None:
229
230
231
232
233
234
235
236
237
238
239
240
            parallel_size = self.tp_size * self.pp_size
            if gpu_mem <= 81920:
                if parallel_size >= 16:
                    self.mem_fraction_static = 0.79
                elif parallel_size >= 8:
                    self.mem_fraction_static = 0.81
                elif parallel_size >= 4:
                    self.mem_fraction_static = 0.85
                elif parallel_size >= 2:
                    self.mem_fraction_static = 0.87
                else:
                    self.mem_fraction_static = 0.88
Ying Sheng's avatar
Ying Sheng committed
241
            else:
242
243
244
245
246
247
248
249
                self.mem_fraction_static = 0.88
            if gpu_mem > 96 * 1024:
                mem_fraction = self.mem_fraction_static
                self.mem_fraction_static = min(
                    mem_fraction + 48 * 1024 * (1 - mem_fraction) / gpu_mem,
                    (gpu_mem - 1024 * 18)
                    / gpu_mem,  # 15 GB + additional 3GB for cuda graph
                )
250

251
252
        # Set chunked prefill size, which depends on the gpu memory capacity
        if self.chunked_prefill_size is None:
253
            if gpu_mem is not None and gpu_mem < 25_000:
254
                self.chunked_prefill_size = 2048
255
256
            elif self.disaggregation_mode != "null":
                self.chunked_prefill_size = 16384
257
258
            else:
                self.chunked_prefill_size = 8192
Lianmin Zheng's avatar
Lianmin Zheng committed
259
260
        assert self.chunked_prefill_size % self.page_size == 0

261
262
263
        assert self.moe_dense_tp_size in {
            1,
            None,
Lianmin Zheng's avatar
Lianmin Zheng committed
264
        }, "moe_dense_tp_size only support 1 and None currently"
265

266
        if self.attention_backend == "flashmla":
267
268
269
270
            logger.warning(
                "FlashMLA only supports a page_size of 64, change page_size to 64."
            )
            self.page_size = 64
Lianmin Zheng's avatar
Lianmin Zheng committed
271

272
273
274
275
276
277
        if self.attention_backend == "cutlass_mla":
            logger.warning(
                "Cutlass MLA only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

278
279
        # Set cuda graph max batch size
        if self.cuda_graph_max_bs is None:
280
            # Based on detailed statistics, when serving TP1/TP2 models on lower-end GPUs with HBM<25G, you can either disable cuda graph or set `cuda_graph_max_bs` to a very small value to reduce the memory overhead of creating cuda graphs, with almost no impact on performance. However, when serving models with TP4 or TP8, we need to enable cuda graph to maintain high performance. In this case, we can set `cuda_graph_max_bs` to 80 (half of the default value 160) to reduce the memory overhead of creating cuda graphs. Looking at the logs from TP4 serving of qwen2-72b, a value of 80 is sufficient and can reduce the memory overhead of creating cuda graphs on lower-end GPUs compared to the original 160, avoiding OOM issues.
281
            if gpu_mem is not None and gpu_mem < 25_000:
282
283
284
285
                if self.tp_size < 4:
                    self.cuda_graph_max_bs = 8
                else:
                    self.cuda_graph_max_bs = 80
286

287
        # Set kernel backends for hpu device
288
289
290
291
        if self.device == "hpu":
            self.attention_backend = "torch_native"
            self.sampling_backend = "pytorch"

Lianmin Zheng's avatar
Lianmin Zheng committed
292
        # Set kernel backends
293
        if self.sampling_backend is None:
294
295
296
297
298
            self.sampling_backend = (
                "flashinfer" if is_flashinfer_available() else "pytorch"
            )

        if self.attention_backend == "torch_native":
299
            logger.warning(
300
301
302
                "Cuda graph is disabled because of using torch native attention backend"
            )
            self.disable_cuda_graph = True
303

304
305
306
        # Choose grammar backend
        if self.grammar_backend is None:
            self.grammar_backend = "xgrammar"
307

308
309
310
311
312
313
        if self.pp_size > 1:
            self.disable_overlap_schedule = True
            logger.warning(
                "Overlap scheduler is disabled because of using pipeline parallelism."
            )

314
        # Data parallelism attention
Ke Bao's avatar
Ke Bao committed
315
        if self.enable_dp_attention:
316
            self.schedule_conservativeness = self.schedule_conservativeness * 0.3
Lianmin Zheng's avatar
Lianmin Zheng committed
317
318
319
320
321
            assert (
                self.dp_size > 1
            ), "Please set a dp-size > 1. You can use 1 < dp-size <= tp-size "
            assert self.tp_size % self.dp_size == 0
            self.chunked_prefill_size = self.chunked_prefill_size // self.dp_size
322
            logger.warning(
323
                f"DP attention is enabled. The chunked prefill size is adjusted to {self.chunked_prefill_size} to avoid MoE kernel issues. "
324
            )
325
326

        # DeepEP MoE
Lianmin Zheng's avatar
Lianmin Zheng committed
327
        self.enable_sp_layernorm = False
328
        if self.enable_deepep_moe:
329
330
331
332
            if self.deepep_mode == "auto":
                assert (
                    not self.enable_dp_attention
                ), "DeepEP MoE `auto` mode is not supported with DP Attention."
333
334
335
            if self.deepep_mode == "normal":
                logger.warning("Cuda graph is disabled because deepep_mode=`normal`")
                self.disable_cuda_graph = True
336
337
338
339
            self.ep_size = self.tp_size
            self.enable_sp_layernorm = (
                self.dp_size < self.tp_size if self.enable_dp_attention else True
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
340
            logger.warning(
341
342
                f"DeepEP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
343

344
        # Speculative Decoding
345
346
347
348
        if self.speculative_algorithm == "NEXTN":
            # NEXTN shares the same implementation of EAGLE
            self.speculative_algorithm = "EAGLE"

Lianmin Zheng's avatar
Lianmin Zheng committed
349
        if self.speculative_algorithm in ("EAGLE", "EAGLE3"):
350
            if self.max_running_requests is None:
351
                self.max_running_requests = 48
352
            self.disable_overlap_schedule = True
Lianmin Zheng's avatar
Lianmin Zheng committed
353
            logger.warning(
354
                "Overlap scheduler is disabled because of using "
355
                "eagle speculative decoding."
356
            )
357

358
359
360
            model_arch = get_model_arch(self)

            # Auto set draft_model_path DeepSeek-V3/R1
361
362
363
364
365
366
367
            if model_arch == "DeepseekV3ForCausalLM":
                if self.speculative_draft_model_path is None:
                    self.speculative_draft_model_path = self.model_path
                else:
                    logger.warning(
                        "DeepSeek MTP does not require setting speculative_draft_model_path."
                    )
368

369
370
371
372
373
374
375
376
377
378
            # Auto choose parameters
            if self.speculative_num_steps is None:
                assert (
                    self.speculative_eagle_topk is None
                    and self.speculative_num_draft_tokens is None
                )
                (
                    self.speculative_num_steps,
                    self.speculative_eagle_topk,
                    self.speculative_num_draft_tokens,
379
                ) = auto_choose_speculative_params(model_arch)
380
381
382

            if self.page_size > 1 and self.speculative_eagle_topk > 1:
                self.speculative_eagle_topk = 1
Lianmin Zheng's avatar
Lianmin Zheng committed
383
                logger.warning(
384
385
386
387
388
389
390
                    "speculative_eagle_topk is adjusted to 1 when page_size > 1"
                )

            if (
                self.speculative_eagle_topk == 1
                and self.speculative_num_draft_tokens != self.speculative_num_steps + 1
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
391
                logger.warning(
392
393
394
                    "speculative_num_draft_tokens is adjusted to speculative_num_steps + 1 when speculative_eagle_topk == 1"
                )
                self.speculative_num_draft_tokens = self.speculative_num_steps + 1
395

396
            # The token generated from the verify step is counted.
397
            # If sepculative_num_steps >= speculative_num_draft_tokens, the additional tokens will definitely be discarded.
398
            # assert self.speculative_num_steps < self.speculative_num_draft_tokens
399

400
401
402
403
404
405
        # GGUF
        if (
            self.load_format == "auto" or self.load_format == "gguf"
        ) and check_gguf_file(self.model_path):
            self.quantization = self.load_format = "gguf"

406
407
408
        if is_remote_url(self.model_path):
            self.load_format = "remote"

409
410
411
412
        # AMD-specific Triton attention KV splits default number
        if is_hip():
            self.triton_attention_num_kv_splits = 16

Byron Hsu's avatar
Byron Hsu committed
413
414
415
        # PD disaggregation
        if self.disaggregation_mode == "prefill":
            self.disable_cuda_graph = True
416
            logger.warning("Cuda graph is disabled for prefill server")
Byron Hsu's avatar
Byron Hsu committed
417
418
        elif self.disaggregation_mode == "decode":
            self.disable_radix_cache = True
419
            logger.warning("KV cache is forced as chunk cache for decode server")
Byron Hsu's avatar
Byron Hsu committed
420

421
422
423
        os.environ["SGLANG_ENABLE_TORCH_COMPILE"] = (
            "1" if self.enable_torch_compile else "0"
        )
424
425
426
427
        # Set env var before grammar backends init
        os.environ["SGLANG_DISABLE_OUTLINES_DISK_CACHE"] = (
            "1" if self.disable_outlines_disk_cache else "0"
        )
428

Lianmin Zheng's avatar
Lianmin Zheng committed
429
430
    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
431
        # Model and port args
Lianmin Zheng's avatar
Lianmin Zheng committed
432
433
434
435
436
437
438
439
440
441
442
443
        parser.add_argument(
            "--model-path",
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
Yuanhan Zhang's avatar
Yuanhan Zhang committed
444
445
446
447
448
449
        parser.add_argument(
            "--host", type=str, default=ServerArgs.host, help="The host of the server."
        )
        parser.add_argument(
            "--port", type=int, default=ServerArgs.port, help="The port of the server."
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
450
451
452
453
454
455
456
457
458
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
459
460
461
        parser.add_argument(
            "--skip-tokenizer-init",
            action="store_true",
462
            help="If set, skip init tokenizer and pass input_ids in generate request.",
463
        )
464
465
466
467
468
        parser.add_argument(
            "--enable-tokenizer-batch-encode",
            action="store_true",
            help="Enable batch tokenization for improved performance when processing multiple text inputs. Do not use with image inputs, pre-tokenized input_ids, or input_embeds.",
        )
469
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
470
471
472
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
473
474
475
476
477
478
            choices=[
                "auto",
                "pt",
                "safetensors",
                "npcache",
                "dummy",
479
                "sharded_state",
480
481
                "gguf",
                "bitsandbytes",
482
                "layered",
483
                "remote",
484
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
485
486
487
488
489
490
491
492
493
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
494
            "which is mainly for profiling."
495
496
            '"gguf" will load the weights in the gguf format. '
            '"bitsandbytes" will load the weights using bitsandbytes '
497
498
499
500
            "quantization."
            '"layered" loads weights layer by layer so that one can quantize a '
            "layer before loading another to make the peak memory envelope "
            "smaller.",
Lianmin Zheng's avatar
Lianmin Zheng committed
501
        )
502
503
504
505
506
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
507
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
508
            "--dtype",
Cody Yu's avatar
Cody Yu committed
509
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
510
            default=ServerArgs.dtype,
Ying Sheng's avatar
Ying Sheng committed
511
512
            choices=["auto", "half", "float16", "bfloat16", "float", "float32"],
            help="Data type for model weights and activations.\n\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
513
            '* "auto" will use FP16 precision for FP32 and FP16 models, and '
Ying Sheng's avatar
Ying Sheng committed
514
            "BF16 precision for BF16 models.\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
515
516
517
518
            '* "half" for FP16. Recommended for AWQ quantization.\n'
            '* "float16" is the same as "half".\n'
            '* "bfloat16" for a balance between precision and range.\n'
            '* "float" is shorthand for FP32 precision.\n'
Ying Sheng's avatar
Ying Sheng committed
519
520
            '* "float32" for FP32 precision.',
        )
521
522
523
524
        parser.add_argument(
            "--kv-cache-dtype",
            type=str,
            default=ServerArgs.kv_cache_dtype,
bjmsong's avatar
bjmsong committed
525
526
527
            choices=["auto", "fp8_e5m2", "fp8_e4m3"],
            help='Data type for kv cache storage. "auto" will use model data type. "fp8_e5m2" and "fp8_e4m3" is supported for CUDA 11.8+.',
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
528
529
530
531
        parser.add_argument(
            "--quantization",
            type=str,
            default=ServerArgs.quantization,
Ying Sheng's avatar
Ying Sheng committed
532
533
534
535
536
537
            choices=[
                "awq",
                "fp8",
                "gptq",
                "marlin",
                "gptq_marlin",
Ying Sheng's avatar
Ying Sheng committed
538
                "awq_marlin",
Ying Sheng's avatar
Ying Sheng committed
539
                "bitsandbytes",
540
                "gguf",
541
                "modelopt",
542
                "modelopt_fp4",
543
                "w8a8_int8",
HandH1998's avatar
HandH1998 committed
544
                "w8a8_fp8",
AniZpZ's avatar
AniZpZ committed
545
                "moe_wna16",
Ying Sheng's avatar
Ying Sheng committed
546
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
547
548
            help="The quantization method.",
        )
549
550
551
552
553
554
555
556
557
        parser.add_argument(
            "--quantization-param-path",
            type=nullable_str,
            default=None,
            help="Path to the JSON file containing the KV cache "
            "scaling factors. This should generally be supplied, when "
            "KV cache dtype is FP8. Otherwise, KV cache scaling factors "
            "default to 1.0, which may cause accuracy issues. ",
        )
558
559
560
561
562
563
564
565
566
        parser.add_argument(
            "--context-length",
            type=int,
            default=ServerArgs.context_length,
            help="The model's maximum context length. Defaults to None (will use the value from the model's config.json instead).",
        )
        parser.add_argument(
            "--device",
            type=str,
567
            default=ServerArgs.device,
568
            help="The device to use ('cuda', 'xpu', 'hpu', 'npu', 'cpu'). Defaults to auto-detection if not specified.",
569
        )
570
571
572
573
574
575
        parser.add_argument(
            "--served-model-name",
            type=str,
            default=ServerArgs.served_model_name,
            help="Override the model name returned by the v1/models endpoint in OpenAI API server.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
576
577
578
579
580
581
        parser.add_argument(
            "--chat-template",
            type=str,
            default=ServerArgs.chat_template,
            help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
        )
582
583
584
585
586
587
        parser.add_argument(
            "--completion-template",
            type=str,
            default=ServerArgs.completion_template,
            help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
        )
588
589
590
591
592
        parser.add_argument(
            "--is-embedding",
            action="store_true",
            help="Whether to use a CausalLM as an embedding model.",
        )
593
594
595
596
597
598
599
600
        parser.add_argument(
            "--revision",
            type=str,
            default=None,
            help="The specific model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
601

602
        # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
603
604
605
606
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
607
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
Lianmin Zheng's avatar
Lianmin Zheng committed
608
        )
609
610
611
612
613
614
        parser.add_argument(
            "--max-running-requests",
            type=int,
            default=ServerArgs.max_running_requests,
            help="The maximum number of running requests.",
        )
615
616
617
618
        parser.add_argument(
            "--max-total-tokens",
            type=int,
            default=ServerArgs.max_total_tokens,
619
620
            help="The maximum number of tokens in the memory pool. If not specified, it will be automatically calculated based on the memory usage fraction. "
            "This option is typically used for development and debugging purposes.",
621
        )
622
623
624
625
        parser.add_argument(
            "--chunked-prefill-size",
            type=int,
            default=ServerArgs.chunked_prefill_size,
626
            help="The maximum number of tokens in a chunk for the chunked prefill. Setting this to -1 means disabling chunked prefill.",
627
628
629
630
631
632
633
        )
        parser.add_argument(
            "--max-prefill-tokens",
            type=int,
            default=ServerArgs.max_prefill_tokens,
            help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
634
        parser.add_argument(
635
            "--schedule-policy",
Lianmin Zheng's avatar
Lianmin Zheng committed
636
            type=str,
637
            default=ServerArgs.schedule_policy,
Liangsheng Yin's avatar
Liangsheng Yin committed
638
            choices=["lpm", "random", "fcfs", "dfs-weight"],
639
            help="The scheduling policy of the requests.",
Lianmin Zheng's avatar
Lianmin Zheng committed
640
        )
641
642
643
644
        parser.add_argument(
            "--schedule-conservativeness",
            type=float,
            default=ServerArgs.schedule_conservativeness,
645
            help="How conservative the schedule policy is. A larger value means more conservative scheduling. Use a larger value if you see requests being retracted frequently.",
646
        )
647
648
649
650
        parser.add_argument(
            "--cpu-offload-gb",
            type=int,
            default=ServerArgs.cpu_offload_gb,
651
            help="How many GBs of RAM to reserve for CPU offloading.",
652
        )
653
654
655
656
657
658
        parser.add_argument(
            "--page-size",
            type=int,
            default=ServerArgs.page_size,
            help="The number of tokens in a page.",
        )
659

660
        # Other runtime options
Lianmin Zheng's avatar
Lianmin Zheng committed
661
        parser.add_argument(
662
            "--tensor-parallel-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
663
            "--tp-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
664
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
665
            default=ServerArgs.tp_size,
666
            help="The tensor parallelism size.",
667
        )
668
669
670
671
672
673
674
675
676
677
678
679
680
        parser.add_argument(
            "--pipeline-parallel-size",
            "--pp-size",
            type=int,
            default=ServerArgs.pp_size,
            help="The pipeline parallelism size.",
        )
        parser.add_argument(
            "--max-micro-batch-size",
            type=int,
            default=ServerArgs.max_micro_batch_size,
            help="The maximum micro batch size in pipeline parallelism.",
        )
681
682
683
        parser.add_argument(
            "--stream-interval",
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
684
            default=ServerArgs.stream_interval,
685
            help="The interval (or buffer size) for streaming in terms of the token length. A smaller value makes streaming smoother, while a larger value makes the throughput higher",
686
        )
687
688
689
690
691
        parser.add_argument(
            "--stream-output",
            action="store_true",
            help="Whether to output as a sequence of disjoint segments.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
692
693
694
695
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
696
            help="The random seed.",
Lianmin Zheng's avatar
Lianmin Zheng committed
697
        )
698
699
700
701
702
703
        parser.add_argument(
            "--constrained-json-whitespace-pattern",
            type=str,
            default=ServerArgs.constrained_json_whitespace_pattern,
            help=r"Regex pattern for syntactic whitespaces allowed in JSON constrained output. For example, to allow the model generate consecutive whitespaces, set the pattern to [\n\t ]*",
        )
704
705
706
707
708
709
        parser.add_argument(
            "--watchdog-timeout",
            type=float,
            default=ServerArgs.watchdog_timeout,
            help="Set watchdog timeout in seconds. If a forward batch takes longer than this, the server will crash to prevent hanging.",
        )
710
711
712
713
714
715
        parser.add_argument(
            "--dist-timeout",
            type=int,
            default=ServerArgs.dist_timeout,
            help="Set timeout for torch.distributed initialization.",
        )
716
717
718
719
        parser.add_argument(
            "--download-dir",
            type=str,
            default=ServerArgs.download_dir,
Lianmin Zheng's avatar
Lianmin Zheng committed
720
            help="Model download directory for huggingface.",
721
        )
722
723
724
725
726
727
        parser.add_argument(
            "--base-gpu-id",
            type=int,
            default=ServerArgs.base_gpu_id,
            help="The base GPU ID to start allocating GPUs from. Useful when running multiple instances on the same machine.",
        )
728
729
730
731
732
733
        parser.add_argument(
            "--gpu-id-step",
            type=int,
            default=ServerArgs.gpu_id_step,
            help="The delta between consecutive GPU IDs that are used. For example, setting it to 2 will use GPU 0,2,4,...",
        )
734
735

        # Logging
Lianmin Zheng's avatar
Lianmin Zheng committed
736
737
738
739
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
740
            help="The logging level of all loggers.",
Lianmin Zheng's avatar
Lianmin Zheng committed
741
        )
742
        parser.add_argument(
743
744
745
746
            "--log-level-http",
            type=str,
            default=ServerArgs.log_level_http,
            help="The logging level of HTTP server. If not set, reuse --log-level by default.",
747
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
748
        parser.add_argument(
749
            "--log-requests",
Lianmin Zheng's avatar
Lianmin Zheng committed
750
            action="store_true",
751
752
753
754
755
756
757
758
            help="Log metadata, inputs, outputs of all requests. The verbosity is decided by --log-requests-level",
        )
        parser.add_argument(
            "--log-requests-level",
            type=int,
            default=0,
            help="0: Log metadata. 1. Log metadata and partial input/output. 2. Log every input/output.",
            choices=[0, 1, 2],
Lianmin Zheng's avatar
Lianmin Zheng committed
759
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
760
761
762
        parser.add_argument(
            "--show-time-cost",
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
763
            help="Show time cost of custom marks.",
Lianmin Zheng's avatar
Lianmin Zheng committed
764
        )
765
766
767
768
769
        parser.add_argument(
            "--enable-metrics",
            action="store_true",
            help="Enable log prometheus metrics.",
        )
770
771
772
773
        parser.add_argument(
            "--decode-log-interval",
            type=int,
            default=ServerArgs.decode_log_interval,
774
            help="The log interval of decode batch.",
775
        )
776

777
        # API related
Liangsheng Yin's avatar
Liangsheng Yin committed
778
779
780
781
        parser.add_argument(
            "--api-key",
            type=str,
            default=ServerArgs.api_key,
782
            help="Set API key of the server. It is also used in the OpenAI API compatible server.",
Liangsheng Yin's avatar
Liangsheng Yin committed
783
        )
784
        parser.add_argument(
785
            "--file-storage-path",
786
            type=str,
787
            default=ServerArgs.file_storage_path,
788
789
            help="The path of the file storage in backend.",
        )
790
791
792
793
794
        parser.add_argument(
            "--enable-cache-report",
            action="store_true",
            help="Return number of cached tokens in usage.prompt_tokens_details for each openai request.",
        )
Xihuai Wang's avatar
Xihuai Wang committed
795
796
797
798
799
800
801
        parser.add_argument(
            "--reasoning-parser",
            type=str,
            choices=list(ReasoningParser.DetectorMap.keys()),
            default=ServerArgs.reasoning_parser,
            help=f"Specify the parser for reasoning models, supported parsers are: {list(ReasoningParser.DetectorMap.keys())}.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
802

803
804
        # Data parallelism
        parser.add_argument(
805
            "--data-parallel-size",
806
807
808
            "--dp-size",
            type=int,
            default=ServerArgs.dp_size,
809
            help="The data parallelism size.",
810
811
812
813
814
        )
        parser.add_argument(
            "--load-balance-method",
            type=str,
            default=ServerArgs.load_balance_method,
815
            help="The load balancing strategy for data parallelism.",
816
817
818
819
820
            choices=[
                "round_robin",
                "shortest_queue",
            ],
        )
821

xiaobochen's avatar
xiaobochen committed
822
823
824
825
826
827
828
829
        # Expert parallelism
        parser.add_argument(
            "--expert-parallel-size",
            "--ep-size",
            type=int,
            default=ServerArgs.ep_size,
            help="The expert parallelism size.",
        )
830

831
        # Multi-node distributed serving
832
        parser.add_argument(
833
            "--dist-init-addr",
834
            "--nccl-init-addr",  # For backward compatibility. This will be removed in the future.
835
            type=str,
836
            help="The host address for initializing distributed backend (e.g., `192.168.0.2:25000`).",
837
838
        )
        parser.add_argument(
Liangsheng Yin's avatar
Liangsheng Yin committed
839
            "--nnodes", type=int, default=ServerArgs.nnodes, help="The number of nodes."
840
        )
841
842
843
        parser.add_argument(
            "--node-rank", type=int, default=ServerArgs.node_rank, help="The node rank."
        )
844

Lianmin Zheng's avatar
Lianmin Zheng committed
845
846
847
848
849
850
851
852
        # Model override args
        parser.add_argument(
            "--json-model-override-args",
            type=str,
            help="A dictionary in JSON string format used to override default model configurations.",
            default=ServerArgs.json_model_override_args,
        )

853
854
855
856
857
858
859
        # LoRA
        parser.add_argument(
            "--lora-paths",
            type=str,
            nargs="*",
            default=None,
            action=LoRAPathAction,
860
            help="The list of LoRA adapters. You can provide a list of either path in str or renamed path in the format {name}={path}.",
861
862
863
864
865
        )
        parser.add_argument(
            "--max-loras-per-batch",
            type=int,
            default=8,
866
867
868
869
870
871
872
            help="Maximum number of adapters for a running batch, include base-only request.",
        )
        parser.add_argument(
            "--lora-backend",
            type=str,
            default="triton",
            help="Choose the kernel backend for multi-LoRA serving.",
873
874
875
        )

        # Kernel backend
876
877
878
        parser.add_argument(
            "--attention-backend",
            type=str,
879
880
881
882
883
884
885
886
            choices=[
                "flashinfer",
                "triton",
                "torch_native",
                "fa3",
                "flashmla",
                "cutlass_mla",
            ],
887
888
889
            default=ServerArgs.attention_backend,
            help="Choose the kernels for attention layers.",
        )
890
891
892
893
894
895
896
        parser.add_argument(
            "--sampling-backend",
            type=str,
            choices=["flashinfer", "pytorch"],
            default=ServerArgs.sampling_backend,
            help="Choose the kernels for sampling layers.",
        )
897
898
899
        parser.add_argument(
            "--grammar-backend",
            type=str,
900
            choices=["xgrammar", "outlines", "llguidance", "none"],
901
            default=ServerArgs.grammar_backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
902
            help="Choose the backend for grammar-guided decoding.",
903
        )
904
905
        parser.add_argument(
            "--enable-flashinfer-mla",
906
907
            action=DeprecatedAction,
            help="--enable-flashinfer-mla is deprecated. Please use '--attention-backend flashinfer' instead.",
908
        )
lukec's avatar
lukec committed
909
910
        parser.add_argument(
            "--enable-flashmla",
911
912
            action=DeprecatedAction,
            help="--enable-flashmla is deprecated. Please use '--attention-backend flashmla' instead.",
lukec's avatar
lukec committed
913
        )
914
915
916
917
918
        parser.add_argument(
            "--flashinfer-mla-disable-ragged",
            action="store_true",
            help="Not using ragged prefill wrapper when running flashinfer mla",
        )
919

920
921
922
923
        # Speculative decoding
        parser.add_argument(
            "--speculative-algorithm",
            type=str,
James Liu's avatar
James Liu committed
924
            choices=["EAGLE", "EAGLE3", "NEXTN"],
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
            help="Speculative algorithm.",
        )
        parser.add_argument(
            "--speculative-draft-model-path",
            type=str,
            help="The path of the draft model weights. This can be a local folder or a Hugging Face repo ID.",
        )
        parser.add_argument(
            "--speculative-num-steps",
            type=int,
            help="The number of steps sampled from draft model in Speculative Decoding.",
            default=ServerArgs.speculative_num_steps,
        )
        parser.add_argument(
            "--speculative-eagle-topk",
            type=int,
941
            help="The number of tokens sampled from the draft model in eagle2 each step.",
942
943
            default=ServerArgs.speculative_eagle_topk,
        )
944
945
946
        parser.add_argument(
            "--speculative-num-draft-tokens",
            type=int,
947
            help="The number of tokens sampled from the draft model in Speculative Decoding.",
948
949
            default=ServerArgs.speculative_num_draft_tokens,
        )
950
951
952
953
954
955
956
957
958
959
960
961
        parser.add_argument(
            "--speculative-accept-threshold-single",
            type=float,
            help="Accept a draft token if its probability in the target model is greater than this threshold.",
            default=ServerArgs.speculative_accept_threshold_single,
        )
        parser.add_argument(
            "--speculative-accept-threshold-acc",
            type=float,
            help="The accept probability of a draft token is raised from its target probability p to min(1, p / threshold_acc).",
            default=ServerArgs.speculative_accept_threshold_acc,
        )
962
963
964
965
966
967
        parser.add_argument(
            "--speculative-token-map",
            type=str,
            help="The path of the draft model's small vocab table.",
            default=ServerArgs.speculative_token_map,
        )
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005

        # Double Sparsity
        parser.add_argument(
            "--enable-double-sparsity",
            action="store_true",
            help="Enable double sparsity attention",
        )
        parser.add_argument(
            "--ds-channel-config-path",
            type=str,
            default=ServerArgs.ds_channel_config_path,
            help="The path of the double sparsity channel config",
        )
        parser.add_argument(
            "--ds-heavy-channel-num",
            type=int,
            default=ServerArgs.ds_heavy_channel_num,
            help="The number of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-token-num",
            type=int,
            default=ServerArgs.ds_heavy_token_num,
            help="The number of heavy tokens in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-channel-type",
            type=str,
            default=ServerArgs.ds_heavy_channel_type,
            help="The type of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-sparse-decode-threshold",
            type=int,
            default=ServerArgs.ds_sparse_decode_threshold,
            help="The type of heavy channels in double sparsity attention",
        )

1006
        # Optimization/debug options
Liangsheng Yin's avatar
Liangsheng Yin committed
1007
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1008
            "--disable-radix-cache",
Liangsheng Yin's avatar
Liangsheng Yin committed
1009
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1010
            help="Disable RadixAttention for prefix caching.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1011
        )
1012
1013
1014
1015
1016
        parser.add_argument(
            "--disable-cuda-graph",
            action="store_true",
            help="Disable cuda graph.",
        )
1017
        parser.add_argument(
1018
1019
1020
1021
            "--disable-cuda-graph-padding",
            action="store_true",
            help="Disable cuda graph when padding is needed. Still uses cuda graph when padding is not needed.",
        )
1022
1023
1024
1025
1026
        parser.add_argument(
            "--enable-nccl-nvls",
            action="store_true",
            help="Enable NCCL NVLS for prefill heavy requests when available.",
        )
1027
        parser.add_argument(
1028
            "--disable-outlines-disk-cache",
1029
            action="store_true",
1030
            help="Disable disk cache of outlines to avoid possible crashes related to file system or high concurrency.",
1031
        )
1032
1033
1034
1035
1036
        parser.add_argument(
            "--disable-custom-all-reduce",
            action="store_true",
            help="Disable the custom all-reduce kernel and fall back to NCCL.",
        )
1037
        parser.add_argument(
1038
1039
            "--enable-multimodal",
            default=ServerArgs.enable_multimodal,
1040
            action="store_true",
1041
            help="Enable the multimodal functionality for the served model. If the model being served is not multimodal, nothing will happen",
1042
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1043
        parser.add_argument(
1044
            "--disable-overlap-schedule",
Lianmin Zheng's avatar
Lianmin Zheng committed
1045
            action="store_true",
1046
            help="Disable the overlap scheduler, which overlaps the CPU scheduler with GPU model worker.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1047
        )
1048
1049
1050
        parser.add_argument(
            "--enable-mixed-chunk",
            action="store_true",
1051
            help="Enabling mixing prefill and decode in a batch when using chunked prefill.",
1052
        )
Ke Bao's avatar
Ke Bao committed
1053
1054
1055
1056
1057
        parser.add_argument(
            "--enable-dp-attention",
            action="store_true",
            help="Enabling data parallelism for attention and tensor parallelism for FFN. The dp size should be equal to the tp size. Currently only DeepSeek-V2 is supported.",
        )
xiaobochen's avatar
xiaobochen committed
1058
1059
1060
1061
1062
        parser.add_argument(
            "--enable-ep-moe",
            action="store_true",
            help="Enabling expert parallelism for moe. The ep size is equal to the tp size.",
        )
1063
1064
1065
        parser.add_argument(
            "--enable-torch-compile",
            action="store_true",
1066
1067
            help="Optimize the model with torch.compile. Experimental feature.",
        )
1068
        parser.add_argument(
1069
            "--torch-compile-max-bs",
1070
            type=int,
1071
            default=ServerArgs.torch_compile_max_bs,
1072
1073
            help="Set the maximum batch size when using torch compile.",
        )
1074
        parser.add_argument(
1075
            "--cuda-graph-max-bs",
1076
            type=int,
1077
            default=ServerArgs.cuda_graph_max_bs,
1078
1079
            help="Set the maximum batch size for cuda graph.",
        )
1080
1081
1082
1083
1084
1085
        parser.add_argument(
            "--cuda-graph-bs",
            type=int,
            nargs="+",
            help="Set the list of batch sizes for cuda graph.",
        )
1086
1087
1088
1089
        parser.add_argument(
            "--torchao-config",
            type=str,
            default=ServerArgs.torchao_config,
1090
            help="Optimize the model with torchao. Experimental feature. Current choices are: int8dq, int8wo, int4wo-<group_size>, fp8wo, fp8dq-per_tensor, fp8dq-per_row",
1091
        )
1092
1093
1094
1095
1096
        parser.add_argument(
            "--enable-nan-detection",
            action="store_true",
            help="Enable the NaN detection for debugging purposes.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1097
        parser.add_argument(
1098
            "--enable-p2p-check",
Lianmin Zheng's avatar
Lianmin Zheng committed
1099
            action="store_true",
1100
            help="Enable P2P check for GPU access, otherwise the p2p access is allowed by default.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1101
        )
1102
        parser.add_argument(
1103
            "--triton-attention-reduce-in-fp32",
1104
            action="store_true",
1105
            help="Cast the intermediate attention results to fp32 to avoid possible crashes related to fp16."
1106
            "This only affects Triton attention kernels.",
1107
        )
1108
1109
1110
1111
1112
1113
        parser.add_argument(
            "--triton-attention-num-kv-splits",
            type=int,
            default=ServerArgs.triton_attention_num_kv_splits,
            help="The number of KV splits in flash decoding Triton kernel. Larger value is better in longer context scenarios. The default value is 8.",
        )
1114
1115
1116
1117
1118
1119
1120
1121
        parser.add_argument(
            "--num-continuous-decode-steps",
            type=int,
            default=ServerArgs.num_continuous_decode_steps,
            help="Run multiple continuous decoding steps to reduce scheduling overhead. "
            "This can potentially increase throughput but may also increase time-to-first-token latency. "
            "The default value is 1, meaning only run one decoding step at a time.",
        )
1122
1123
1124
1125
1126
        parser.add_argument(
            "--delete-ckpt-after-loading",
            action="store_true",
            help="Delete the model checkpoint after loading the model.",
        )
1127
1128
1129
1130
1131
        parser.add_argument(
            "--enable-memory-saver",
            action="store_true",
            help="Allow saving memory using release_memory_occupation and resume_memory_occupation",
        )
1132
1133
1134
1135
1136
        parser.add_argument(
            "--allow-auto-truncate",
            action="store_true",
            help="Allow automatically truncating requests that exceed the maximum input length instead of returning an error.",
        )
1137
1138
1139
1140
1141
        parser.add_argument(
            "--enable-custom-logit-processor",
            action="store_true",
            help="Enable users to pass custom logit processors to the server (disabled by default for security)",
        )
YAMY's avatar
YAMY committed
1142
1143
1144
        parser.add_argument(
            "--tool-call-parser",
            type=str,
1145
            choices=["qwen25", "mistral", "llama3", "deepseekv3", "pythonic"],
YAMY's avatar
YAMY committed
1146
            default=ServerArgs.tool_call_parser,
1147
            help="Specify the parser for handling tool-call interactions. Options include: 'qwen25', 'mistral', 'llama3', 'deepseekv3', and 'pythonic'.",
YAMY's avatar
YAMY committed
1148
        )
1149
1150
1151
1152
1153
        parser.add_argument(
            "--enable-hierarchical-cache",
            action="store_true",
            help="Enable hierarchical cache",
        )
1154
1155
1156
1157
1158
1159
        parser.add_argument(
            "--hicache-ratio",
            type=float,
            default=ServerArgs.hicache_ratio,
            help="The ratio of the size of host KV cache memory pool to the size of device pool.",
        )
Zhiqiang Xie's avatar
Zhiqiang Xie committed
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
        parser.add_argument(
            "--hicache-size",
            type=int,
            default=ServerArgs.hicache_size,
            help="The size of host KV cache memory pool in gigabytes, which will override the hicache_ratio if set.",
        )
        parser.add_argument(
            "--hicache-write-policy",
            type=str,
            choices=["write_back", "write_through", "write_through_selective"],
            default=ServerArgs.hicache_write_policy,
            help="The write policy of hierarchical cache.",
        )
1173
1174
1175
1176
1177
        parser.add_argument(
            "--enable-deepep-moe",
            action="store_true",
            help="Enabling DeepEP MoE implementation for EP MoE.",
        )
1178
1179
1180
1181
1182
1183
        parser.add_argument(
            "--moe-dense-tp-size",
            type=int,
            default=ServerArgs.moe_dense_tp_size,
            help="TP size for MoE dense MLP layers. This flag is useful when, with large TP size, there are errors caused by weights in MLP layers having dimension smaller than the min dimension GEMM supports.",
        )
1184
1185
1186
1187
        parser.add_argument(
            "--deepep-mode",
            type=str,
            choices=["normal", "low_latency", "auto"],
1188
            default="auto",
1189
1190
            help="Select the mode when enable DeepEP MoE, could be `normal`, `low_latency` or `auto`. Default is `auto`, which means `low_latency` for decode batch and `normal` for prefill batch.",
        )
1191

1192
1193
1194
        parser.add_argument(
            "--n-share-experts-fusion",
            type=int,
1195
            default=0,
1196
            help="The number of shared_experts need to be replicated to fuse with normal experts in deepseek v3/r1, "
1197
            "set it to tp_size can get best optimized performance.",
1198
        )
1199
1200
1201
1202
1203
        parser.add_argument(
            "--disable-chunked-prefix-cache",
            action="store_true",
            help="Disable chunked prefix cache feature for deepseek, which should save overhead for short sequences.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1204
1205
1206
1207
1208
        parser.add_argument(
            "--disable-fast-image-processor",
            action="store_true",
            help="Adopt base image processor instead of fast image processor.",
        )
1209

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
        # Server warmups
        parser.add_argument(
            "--warmups",
            type=str,
            required=False,
            help="Specify custom warmup functions (csv) to run before server starts eg. --warmups=warmup_name1,warmup_name2 "
            "will run the functions `warmup_name1` and `warmup_name2` specified in warmup.py before the server starts listening for requests",
        )

        # Debug tensor dumps
        parser.add_argument(
            "--debug-tensor-dump-output-folder",
            type=str,
            default=ServerArgs.debug_tensor_dump_output_folder,
            help="The output folder for dumping tensors.",
        )
        parser.add_argument(
            "--debug-tensor-dump-input-file",
            type=str,
            default=ServerArgs.debug_tensor_dump_input_file,
            help="The input filename for dumping tensors",
        )
        parser.add_argument(
            "--debug-tensor-dump-inject",
            type=str,
            default=ServerArgs.debug_tensor_dump_inject,
            help="Inject the outputs from jax as the input of every layer.",
        )

Byron Hsu's avatar
Byron Hsu committed
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
        # Disaggregation
        parser.add_argument(
            "--disaggregation-mode",
            type=str,
            default="null",
            choices=["null", "prefill", "decode"],
            help='Only used for PD disaggregation. "prefill" for prefill-only server, and "decode" for decode-only server. If not specified, it is not PD disaggregated',
        )
        parser.add_argument(
            "--disaggregation-bootstrap-port",
            type=int,
            default=ServerArgs.disaggregation_bootstrap_port,
            help="Bootstrap server port on the prefill server. Default is 8998.",
        )
1253
1254
1255
1256
        parser.add_argument(
            "--disaggregation-transfer-backend",
            type=str,
            default=ServerArgs.disaggregation_transfer_backend,
1257
            choices=["mooncake", "nixl"],
1258
1259
            help="The backend for disaggregation transfer. Default is mooncake.",
        )
1260
1261
1262
1263
        parser.add_argument(
            "--disaggregation-ib-device",
            type=str,
            default=ServerArgs.disaggregation_ib_device,
1264
1265
1266
            help="The InfiniBand devices for disaggregation transfer, accepts single device (e.g., --disaggregation-ib-device mlx5_0) "
            "or multiple comma-separated devices (e.g., --disaggregation-ib-device mlx5_0,mlx5_1). "
            "Default is None, which triggers automatic device detection when mooncake backend is enabled.",
1267
        )
1268
1269
1270
1271
1272
1273
        parser.add_argument(
            "--pdlb-url",
            type=str,
            default=None,
            help="The URL of the PD disaggregation load balancer. If set, the prefill/decode server will register with the load balancer.",
        )
Byron Hsu's avatar
Byron Hsu committed
1274

1275
1276
1277
1278
1279
1280
1281
1282
        parser.add_argument(
            "--mm-attention-backend",
            type=str,
            choices=["sdpa", "fa3", "triton_attn"],
            default=ServerArgs.mm_attention_backend,
            help="Set multimodal attention backend.",
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1283
1284
    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
1285
        args.tp_size = args.tensor_parallel_size
1286
        args.pp_size = args.pipeline_parallel_size
1287
        args.dp_size = args.data_parallel_size
xiaobochen's avatar
xiaobochen committed
1288
        args.ep_size = args.expert_parallel_size
Lianmin Zheng's avatar
Lianmin Zheng committed
1289
1290
1291
1292
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
1293
        if is_valid_ipv6_address(self.host):
1294
1295
1296
            return f"http://[{self.host}]:{self.port}"
        else:
            return f"http://{self.host}:{self.port}"
Lianmin Zheng's avatar
Lianmin Zheng committed
1297

1298
1299
    def check_server_args(self):
        assert (
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
            self.tp_size * self.pp_size
        ) % self.nnodes == 0, "tp_size must be divisible by number of nodes"

        # FIXME pp constraints
        if self.pp_size > 1:
            logger.warning(f"Turn off overlap scheule for pipeline parallelism.")
            self.disable_overlap_schedule = True
            assert (
                self.disable_overlap_schedule
                and self.speculative_algorithm is None
                and not self.enable_mixed_chunk
            ), "Pipeline parallelism is not compatible with overlap schedule, speculative decoding, mixed chunked prefill."

1313
        assert not (
1314
1315
            self.dp_size > 1 and self.nnodes != 1 and not self.enable_dp_attention
        ), "multi-node data parallel is not supported unless dp attention!"
1316
1317
1318
1319
1320
        assert (
            self.max_loras_per_batch > 0
            # FIXME
            and (self.lora_paths is None or self.disable_radix_cache)
        ), "compatibility of lora and cuda graph and radix attention is in progress"
1321
        assert self.base_gpu_id >= 0, "base_gpu_id must be non-negative"
1322
        assert self.gpu_id_step >= 1, "gpu_id_step must be positive"
1323

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
        if isinstance(self.lora_paths, list):
            lora_paths = self.lora_paths
            self.lora_paths = {}
            for lora_path in lora_paths:
                if "=" in lora_path:
                    name, path = lora_path.split("=", 1)
                    self.lora_paths[name] = path
                else:
                    self.lora_paths[lora_path] = lora_path

Lianmin Zheng's avatar
Lianmin Zheng committed
1334

Lianmin Zheng's avatar
Lianmin Zheng committed
1335
def prepare_server_args(argv: List[str]) -> ServerArgs:
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
    """
    Prepare the server arguments from the command line arguments.

    Args:
        args: The command line arguments. Typically, it should be `sys.argv[1:]`
            to ensure compatibility with `parse_args` when no arguments are passed.

    Returns:
        The server arguments.
    """
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
Lianmin Zheng's avatar
Lianmin Zheng committed
1348
    raw_args = parser.parse_args(argv)
1349
1350
1351
1352
    server_args = ServerArgs.from_cli_args(raw_args)
    return server_args


1353
1354
1355
ZMQ_TCP_PORT_DELTA = 233


Lianmin Zheng's avatar
Lianmin Zheng committed
1356
1357
@dataclasses.dataclass
class PortArgs:
1358
1359
1360
1361
1362
1363
    # The ipc filename for tokenizer to receive inputs from detokenizer (zmq)
    tokenizer_ipc_name: str
    # The ipc filename for scheduler (rank 0) to receive inputs from tokenizer (zmq)
    scheduler_input_ipc_name: str
    # The ipc filename for detokenizer to receive inputs from scheduler (zmq)
    detokenizer_ipc_name: str
1364

1365
1366
    # The port for nccl initialization (torch.dist)
    nccl_port: int
1367

1368
1369
1370
    # The ipc filename for rpc call between Engine and Scheduler
    rpc_ipc_name: str

1371
    @staticmethod
1372
    def init_new(server_args, dp_rank: Optional[int] = None) -> "PortArgs":
1373
        port = server_args.port + random.randint(100, 1000)
1374
1375
1376
        while True:
            if is_port_available(port):
                break
TianYu GUO's avatar
TianYu GUO committed
1377
1378
1379
1380
            if port < 60000:
                port += 42
            else:
                port -= 43
1381

1382
1383
1384
1385
1386
1387
1388
        if not server_args.enable_dp_attention:
            # Normal case, use IPC within a single node
            return PortArgs(
                tokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                scheduler_input_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                detokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                nccl_port=port,
1389
                rpc_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
1390
1391
1392
1393
1394
            )
        else:
            # DP attention. Use TCP + port to handle both single-node and multi-node.
            if server_args.nnodes == 1 and server_args.dist_init_addr is None:
                dist_init_addr = ("127.0.0.1", server_args.port + ZMQ_TCP_PORT_DELTA)
Vincent's avatar
Vincent committed
1395
1396
1397
            elif server_args.dist_init_addr.startswith("["):  # ipv6 address
                port_num, host = configure_ipv6(server_args.dist_init_addr)
                dist_init_addr = (host, str(port_num))
1398
1399
            else:
                dist_init_addr = server_args.dist_init_addr.split(":")
Vincent's avatar
Vincent committed
1400

1401
1402
1403
1404
1405
1406
1407
1408
            assert (
                len(dist_init_addr) == 2
            ), "please provide --dist-init-addr as host:port of head node"

            dist_init_host, dist_init_port = dist_init_addr
            port_base = int(dist_init_port) + 1
            if dp_rank is None:
                scheduler_input_port = (
1409
                    port_base + 3
1410
                )  # TokenizerManager to DataParallelController
1411
            else:
1412
                scheduler_input_port = port_base + 3 + 1 + dp_rank
1413
1414
1415
1416
1417
1418

            return PortArgs(
                tokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base}",
                scheduler_input_ipc_name=f"tcp://{dist_init_host}:{scheduler_input_port}",
                detokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base + 1}",
                nccl_port=port,
1419
                rpc_ipc_name=f"tcp://{dist_init_host}:{port_base + 2}",
1420
            )
1421

1422
1423
1424
1425
1426
1427
1428
1429
1430
1431

class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
        setattr(namespace, self.dest, {})
        for lora_path in values:
            if "=" in lora_path:
                name, path = lora_path.split("=", 1)
                getattr(namespace, self.dest)[name] = path
            else:
                getattr(namespace, self.dest)[lora_path] = lora_path
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441


class DeprecatedAction(argparse.Action):
    def __init__(self, option_strings, dest, nargs=0, **kwargs):
        super(DeprecatedAction, self).__init__(
            option_strings, dest, nargs=nargs, **kwargs
        )

    def __call__(self, parser, namespace, values, option_string=None):
        raise ValueError(self.help)
1442
1443


1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
def get_model_arch(args: ServerArgs):
    hf_config = get_config(
        args.model_path,
        trust_remote_code=args.trust_remote_code,
        revision=args.revision,
        model_override_args=json.loads(args.json_model_override_args),
    )
    return hf_config.architectures[0]


def auto_choose_speculative_params(arch: str):
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
    """
    Automatically choose the parameters for speculative decoding.

    You can tune them on your own models and prompts with scripts/playground/bench_speculative.py
    """
    if arch in ["LlamaForCausalLM"]:
        # The default value for llama
        return (5, 4, 8)
    elif arch in ["DeepseekV3ForCausalLM", "DeepseekV2ForCausalLM"]:
        # The default value for deepseek
        return (5, 4, 8)
    elif arch in ["Grok1ForCausalLM", "Grok1VForCausalLM"]:
        return (5, 4, 8)
    else:
        # The default value for all other models
        return (5, 4, 8)