"docs/en/advanced_guides/datasets/scannet.md" did not exist on "116d9f2335914cdc1b156da6d8358031a7e0bf26"
qwen2.py 23.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14

Junyang Lin's avatar
Junyang Lin committed
15
16
17
# Adapted from llama2.py
# Modify details for the adaptation of Qwen2 model.
"""Inference-only Qwen2 model compatible with HuggingFace weights."""
18
import logging
19
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
Junyang Lin's avatar
Junyang Lin committed
20
21
22
23

import torch
from torch import nn

24
from sglang.srt.distributed import (
25
    get_pp_group,
26
27
28
    get_tensor_model_parallel_rank,
    get_tensor_model_parallel_world_size,
)
29
from sglang.srt.layers.activation import SiluAndMul
30
from sglang.srt.layers.dp_attention import is_dp_attention_enabled
31
from sglang.srt.layers.layernorm import RMSNorm
32
33
34
35
36
from sglang.srt.layers.linear import (
    MergedColumnParallelLinear,
    QKVParallelLinear,
    RowParallelLinear,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
37
from sglang.srt.layers.logits_processor import LogitsProcessor
Liangsheng Yin's avatar
Liangsheng Yin committed
38
from sglang.srt.layers.pooler import Pooler, PoolingType
39
from sglang.srt.layers.quantization.base_config import QuantizationConfig
Liangsheng Yin's avatar
Liangsheng Yin committed
40
from sglang.srt.layers.radix_attention import RadixAttention
41
from sglang.srt.layers.rotary_embedding import get_rope
42
from sglang.srt.layers.utils import PPMissingLayer, get_layer_id
43
44
45
46
from sglang.srt.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
47
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
48
49
50
51
from sglang.srt.model_loader.weight_utils import (
    default_weight_loader,
    kv_cache_scales_loader,
)
fzyzcjy's avatar
fzyzcjy committed
52
from sglang.srt.server_args import get_global_server_args
53
from sglang.srt.utils import add_prefix, make_layers
Liangsheng Yin's avatar
Liangsheng Yin committed
54

55
56
Qwen2Config = None

Junyang Lin's avatar
Junyang Lin committed
57

58
59
60
logger = logging.getLogger(__name__)


Junyang Lin's avatar
Junyang Lin committed
61
62
63
64
65
66
class Qwen2MLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
67
        quant_config: Optional[QuantizationConfig] = None,
68
        prefix: str = "",
Junyang Lin's avatar
Junyang Lin committed
69
70
71
72
73
74
    ) -> None:
        super().__init__()
        self.gate_up_proj = MergedColumnParallelLinear(
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
75
            quant_config=quant_config,
76
            prefix=add_prefix("gate_up_proj", prefix),
Junyang Lin's avatar
Junyang Lin committed
77
78
        )
        self.down_proj = RowParallelLinear(
Yuanhan Zhang's avatar
Yuanhan Zhang committed
79
80
81
82
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
83
            prefix=add_prefix("down_proj", prefix),
Junyang Lin's avatar
Junyang Lin committed
84
85
86
87
88
89
90
91
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

92
    def forward(self, x):
fzyzcjy's avatar
fzyzcjy committed
93
94
95
        if get_global_server_args().rl_on_policy_target == "fsdp":
            x = x.bfloat16()

Junyang Lin's avatar
Junyang Lin committed
96
97
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
98
        x, _ = self.down_proj(x)
Junyang Lin's avatar
Junyang Lin committed
99
100
101
102
103
104
105
106
107
        return x


class Qwen2Attention(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        num_kv_heads: int,
108
        head_dim: Optional[int] = None,
Junyang Lin's avatar
Junyang Lin committed
109
110
111
112
        layer_id: int = 0,
        rope_theta: float = 1000000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 32768,
113
        quant_config: Optional[QuantizationConfig] = None,
114
        dual_chunk_attention_config: Optional[dict[str, Any]] = None,
115
        prefix: str = "",
Junyang Lin's avatar
Junyang Lin committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    ) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
133
134
135
136
        if head_dim is not None:
            self.head_dim = head_dim
        else:
            self.head_dim = hidden_size // self.total_num_heads
Junyang Lin's avatar
Junyang Lin committed
137
138
139
140
141
142
143
144
145
146
147
148
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

        self.qkv_proj = QKVParallelLinear(
            hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=True,
149
            quant_config=quant_config,
150
            prefix=add_prefix("qkv_proj", prefix),
Junyang Lin's avatar
Junyang Lin committed
151
152
153
154
155
        )
        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
156
            quant_config=quant_config,
157
            prefix=add_prefix("o_proj", prefix),
Junyang Lin's avatar
Junyang Lin committed
158
159
160
161
162
163
164
165
        )

        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
166
            dual_chunk_attention_config=dual_chunk_attention_config,
Junyang Lin's avatar
Junyang Lin committed
167
168
169
170
171
172
173
        )
        self.attn = RadixAttention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            layer_id=layer_id,
174
            quant_config=quant_config,
175
            prefix=add_prefix("attn", prefix),
Junyang Lin's avatar
Junyang Lin committed
176
177
178
179
180
181
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
182
        forward_batch: ForwardBatch,
Junyang Lin's avatar
Junyang Lin committed
183
184
185
186
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        q, k = self.rotary_emb(positions, q, k)
187
        attn_output = self.attn(q, k, v, forward_batch)
Junyang Lin's avatar
Junyang Lin committed
188
189
190
191
192
193
194
195
196
        output, _ = self.o_proj(attn_output)
        return output


class Qwen2DecoderLayer(nn.Module):
    def __init__(
        self,
        config: Qwen2Config,
        layer_id: int = 0,
197
        quant_config: Optional[QuantizationConfig] = None,
198
        prefix: str = "",
199
        alt_stream: Optional[torch.cuda.Stream] = None,
Junyang Lin's avatar
Junyang Lin committed
200
201
202
203
204
205
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        rope_theta = getattr(config, "rope_theta", 1000000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings", 32768)
206
        head_dim = getattr(config, "head_dim", None)
207
208
209
        dual_chunk_attention_config = getattr(
            config, "dual_chunk_attention_config", None
        )
Junyang Lin's avatar
Junyang Lin committed
210
211
212
213
        self.self_attn = Qwen2Attention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            num_kv_heads=config.num_key_value_heads,
214
            head_dim=head_dim,
Junyang Lin's avatar
Junyang Lin committed
215
216
217
218
            layer_id=layer_id,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
219
            quant_config=quant_config,
220
            dual_chunk_attention_config=dual_chunk_attention_config,
221
            prefix=add_prefix("self_attn", prefix),
Junyang Lin's avatar
Junyang Lin committed
222
223
224
225
226
        )
        self.mlp = Qwen2MLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
227
            quant_config=quant_config,
228
            prefix=add_prefix("mlp", prefix),
Junyang Lin's avatar
Junyang Lin committed
229
230
231
232
233
234
235
236
237
238
        )
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
239
        forward_batch: ForwardBatch,
Junyang Lin's avatar
Junyang Lin committed
240
241
242
243
244
245
246
247
248
249
250
        residual: Optional[torch.Tensor],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Self Attention
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(hidden_states, residual)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
251
            forward_batch=forward_batch,
Junyang Lin's avatar
Junyang Lin committed
252
253
254
255
        )

        # Fully Connected
        hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
256
        hidden_states = self.mlp(hidden_states)
Junyang Lin's avatar
Junyang Lin committed
257
258
259
260
261
262
263
        return hidden_states, residual


class Qwen2Model(nn.Module):
    def __init__(
        self,
        config: Qwen2Config,
264
        quant_config: Optional[QuantizationConfig] = None,
265
        prefix: str = "",
266
        decoder_layer_type: type[nn.Module] = Qwen2DecoderLayer,
267
        alt_stream: Optional[torch.cuda.Stream] = None,
Junyang Lin's avatar
Junyang Lin committed
268
269
270
271
272
    ) -> None:
        super().__init__()
        self.config = config
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
273
274
275
276
277
278
279
        self.pp_group = get_pp_group()

        if self.pp_group.is_first_rank:
            self.embed_tokens = VocabParallelEmbedding(
                config.vocab_size,
                config.hidden_size,
                quant_config=quant_config,
280
                enable_tp=not is_dp_attention_enabled(),
281
                prefix=add_prefix("embed_tokens", prefix),
fzyzcjy's avatar
fzyzcjy committed
282
283
284
285
286
                params_dtype=(
                    torch.float32
                    if get_global_server_args().rl_on_policy_target == "fsdp"
                    else None
                ),
287
288
289
290
            )
        else:
            self.embed_tokens = PPMissingLayer()

291
292
        # Use the provided decoder layer type or default to Qwen2DecoderLayer
        decoder_layer_type = decoder_layer_type or Qwen2DecoderLayer
293
        self.layers, self.start_layer, self.end_layer = make_layers(
294
            config.num_hidden_layers,
295
            lambda idx, prefix: decoder_layer_type(
296
297
298
                layer_id=idx,
                config=config,
                quant_config=quant_config,
299
                prefix=prefix,
300
                alt_stream=alt_stream,
301
            ),
302
303
            pp_rank=self.pp_group.rank_in_group,
            pp_size=self.pp_group.world_size,
304
            prefix=add_prefix("layers", prefix),
Junyang Lin's avatar
Junyang Lin committed
305
        )
306
        if self.pp_group.is_last_rank:
fzyzcjy's avatar
fzyzcjy committed
307
308
309
310
311
312
313
314
315
316
317
318
319
            norm_kwargs = (
                dict(
                    weight_dtype=torch.float32,
                    cast_x_before_out_mul=True,
                    override_orig_dtype=torch.float32,
                    fp32_residual=True,
                )
                if get_global_server_args().rl_on_policy_target == "fsdp"
                else {}
            )
            self.norm = RMSNorm(
                config.hidden_size, eps=config.rms_norm_eps, **norm_kwargs
            )
320
321
        else:
            self.norm = PPMissingLayer(return_tuple=True)
Junyang Lin's avatar
Junyang Lin committed
322

323
324
325
        # For EAGLE3 support
        self.layers_to_capture = []

Mick's avatar
Mick committed
326
    def get_input_embedding(self, input_ids: torch.Tensor) -> torch.Tensor:
327
        if hasattr(self.config, "scale_emb"):
Mick's avatar
Mick committed
328
            return self.get_input_embeddings()(input_ids) * self.config.scale_emb
329
        else:
Mick's avatar
Mick committed
330
331
332
333
            return self.get_input_embeddings()(input_ids)

    def get_input_embeddings(self) -> nn.Embedding:
        return self.embed_tokens
Mick's avatar
Mick committed
334

Junyang Lin's avatar
Junyang Lin committed
335
336
337
338
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
339
        forward_batch: ForwardBatch,
340
        input_embeds: torch.Tensor = None,
341
342
343
344
345
346
347
348
        pp_proxy_tensors: Optional[PPProxyTensors] = None,
    ) -> Union[torch.Tensor, PPProxyTensors]:
        if self.pp_group.is_first_rank:
            if input_embeds is None:
                hidden_states = self.embed_tokens(input_ids)
            else:
                hidden_states = input_embeds
            residual = None
Junyang Lin's avatar
Junyang Lin committed
349
        else:
350
351
352
353
            assert pp_proxy_tensors is not None
            hidden_states = pp_proxy_tensors["hidden_states"]
            residual = pp_proxy_tensors["residual"]

354
        aux_hidden_states = []
355
        for i in range(self.start_layer, self.end_layer):
356
357
358
359
            if i in self.layers_to_capture:
                aux_hidden_states.append(
                    hidden_states + residual if residual is not None else hidden_states
                )
Junyang Lin's avatar
Junyang Lin committed
360
361
362
363
            layer = self.layers[i]
            hidden_states, residual = layer(
                positions,
                hidden_states,
364
                forward_batch,
Junyang Lin's avatar
Junyang Lin committed
365
366
                residual,
            )
367
368
369
370
371
372
373
374
        if not self.pp_group.is_last_rank:
            return PPProxyTensors(
                {
                    "hidden_states": hidden_states,
                    "residual": residual,
                }
            )
        else:
375
376
377
378
379
            if hidden_states.shape[0] != 0:
                if residual is None:
                    hidden_states = self.norm(hidden_states)
                else:
                    hidden_states, _ = self.norm(hidden_states, residual)
380
381
382
383
384

        if len(aux_hidden_states) == 0:
            return hidden_states

        return hidden_states, aux_hidden_states
Junyang Lin's avatar
Junyang Lin committed
385

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    # If this function is called, it should always initialize KV cache scale
    # factors (or else raise an exception). Thus, handled exceptions should
    # make sure to leave KV cache scale factors in a known good (dummy) state
    def load_kv_cache_scales(self, quantization_param_path: str) -> None:
        tp_size = get_tensor_model_parallel_world_size()
        tp_rank = get_tensor_model_parallel_rank()
        for layer_idx, scaling_factor in kv_cache_scales_loader(
            quantization_param_path,
            tp_rank,
            tp_size,
            self.config.num_hidden_layers,
            self.config.__class__.model_type,
        ):
            if not isinstance(self.layers[layer_idx], nn.Identity):
                layer_self_attn = self.layers[layer_idx].self_attn
            if hasattr(layer_self_attn.attn, "k_scale"):
                layer_self_attn.attn.k_scale = scaling_factor
                layer_self_attn.attn.v_scale = scaling_factor
            else:
                raise RuntimeError(
                    "Self attention has no KV cache scaling " "factor attribute!"
                )

Junyang Lin's avatar
Junyang Lin committed
409
410

class Qwen2ForCausalLM(nn.Module):
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
    # BitandBytes specific attributes
    default_bitsandbytes_target_modules = [
        ".gate_proj.",
        ".down_proj.",
        ".up_proj.",
        ".q_proj.",
        ".k_proj.",
        ".v_proj.",
        ".o_proj.",
    ]
    bitsandbytes_stacked_params_mapping = {
        # shard_name, weight_name, index
        "q_proj": ("qkv_proj", 0),
        "k_proj": ("qkv_proj", 1),
        "v_proj": ("qkv_proj", 2),
        "gate_proj": ("gate_up_proj", 0),
        "up_proj": ("gate_up_proj", 1),
    }

Junyang Lin's avatar
Junyang Lin committed
430
431
432
    def __init__(
        self,
        config: Qwen2Config,
433
        quant_config: Optional[QuantizationConfig] = None,
434
        prefix: str = "",
Junyang Lin's avatar
Junyang Lin committed
435
436
    ) -> None:
        super().__init__()
437
        self.pp_group = get_pp_group()
Junyang Lin's avatar
Junyang Lin committed
438
        self.config = config
439
        self.quant_config = quant_config
440
441
442
        self.model = Qwen2Model(
            config, quant_config=quant_config, prefix=add_prefix("model", prefix)
        )
443
444
445
446
447
448
449
450
451
452
453
454

        # handle the lm head on different pp ranks
        if self.pp_group.is_last_rank:
            if self.pp_group.world_size == 1 and config.tie_word_embeddings:
                self.lm_head = self.model.embed_tokens
            else:
                self.lm_head = ParallelLMHead(
                    config.vocab_size,
                    config.hidden_size,
                    quant_config=quant_config,
                    prefix=add_prefix("lm_head", prefix),
                )
455
        else:
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
            # ranks other than the last rank will have a placeholder layer
            self.lm_head = PPMissingLayer()

        # perform weight tying for PP
        if self.pp_group.world_size > 1 and config.tie_word_embeddings:
            if self.pp_group.is_first_rank:
                self.pp_group.send(
                    self.model.embed_tokens.weight, dst=self.pp_group.last_rank
                )
            else:
                emb_token_weight = self.pp_group.recv(
                    size=(config.vocab_size, config.hidden_size),
                    dtype=next(self.model.parameters()).dtype,
                    src=self.pp_group.first_rank,
                )
                self.lm_head.weight.copy_(emb_token_weight)

Junyang Lin's avatar
Junyang Lin committed
473
        self.logits_processor = LogitsProcessor(config)
474
        self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
475
476
        # For EAGLE3 support
        self.capture_aux_hidden_states = False
Junyang Lin's avatar
Junyang Lin committed
477

Mick's avatar
Mick committed
478
479
    def get_input_embedding(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.model.get_input_embedding(input_ids)
Mick's avatar
Mick committed
480

Mick's avatar
Mick committed
481
    def get_input_embeddings(self) -> nn.Embedding:
482
483
        return self.model.embed_tokens

Liangsheng Yin's avatar
Liangsheng Yin committed
484
    @torch.no_grad()
Junyang Lin's avatar
Junyang Lin committed
485
486
487
488
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
489
        forward_batch: ForwardBatch,
490
        input_embeds: torch.Tensor = None,
491
        get_embedding: bool = False,
492
        pp_proxy_tensors: Optional[PPProxyTensors] = None,
Junyang Lin's avatar
Junyang Lin committed
493
    ) -> torch.Tensor:
494
495
496
497
498
499
500
        hidden_states = self.model(
            input_ids,
            positions,
            forward_batch,
            input_embeds,
            pp_proxy_tensors=pp_proxy_tensors,
        )
501
502
503
        aux_hidden_states = None
        if self.capture_aux_hidden_states:
            hidden_states, aux_hidden_states = hidden_states
504
505
506
507

        if self.pp_group.is_last_rank:
            if not get_embedding:
                return self.logits_processor(
508
509
510
511
512
                    input_ids,
                    hidden_states,
                    self.lm_head,
                    forward_batch,
                    aux_hidden_states,
513
514
515
                )
            else:
                return self.pooler(hidden_states, forward_batch)
516
        else:
517
518
            return hidden_states

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
    @torch.no_grad()
    def forward_split_prefill(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        forward_batch: ForwardBatch,
        split_interval: Tuple[int, int],  # [start, end) 0-based
        input_embeds: torch.Tensor = None,
    ):
        start, end = split_interval
        # embed
        if start == 0:
            if input_embeds is None:
                forward_batch.hidden_states = self.model.embed_tokens(input_ids)
            else:
                forward_batch.hidden_states = input_embeds
        # decoder layer
        for i in range(start, end):
            layer = self.model.layers[i]
            forward_batch.hidden_states, forward_batch.residual = layer(
                positions,
                forward_batch.hidden_states,
                forward_batch,
                forward_batch.residual,
            )

        if end == self.model.config.num_hidden_layers:
            # norm
            hidden_states, _ = self.model.norm(
                forward_batch.hidden_states, forward_batch.residual
            )
            forward_batch.hidden_states = hidden_states
            # logits process
            result = self.logits_processor(
                input_ids, forward_batch.hidden_states, self.lm_head, forward_batch
            )
        else:
            result = None

        return result

560
561
562
563
564
565
566
    @property
    def start_layer(self):
        return self.model.start_layer

    @property
    def end_layer(self):
        return self.model.end_layer
Junyang Lin's avatar
Junyang Lin committed
567

568
    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
Junyang Lin's avatar
Junyang Lin committed
569
570
571
572
573
574
575
576
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]
577

Junyang Lin's avatar
Junyang Lin committed
578
        params_dict = dict(self.named_parameters())
579
        for name, loaded_weight in weights:
580
581
582
583
584
585
586
587
588
589
590
            layer_id = get_layer_id(name)
            if (
                layer_id is not None
                and hasattr(self.model, "start_layer")
                and (
                    layer_id < self.model.start_layer
                    or layer_id >= self.model.end_layer
                )
            ):
                continue

Junyang Lin's avatar
Junyang Lin committed
591
592
593
594
595
596
            if "rotary_emb.inv_freq" in name or "projector" in name:
                continue
            if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
                # Models trained using ColossalAI may include these tensors in
                # the checkpoint. Skip them.
                continue
597
            if self.config.tie_word_embeddings and "lm_head.weight" in name:
598
599
600
601
602
603
604
605
606
                if self.pp_group.world_size > 1 and self.pp_group.is_last_rank:
                    # Handle pp weight tying here
                    # find the embed_tokens.weight in the weights
                    embed_token_weights = next(
                        filter(lambda x: x[0] == "model.embed_tokens.weight", weights)
                    )[1]
                    loaded_weight = embed_token_weights
                else:
                    continue
607
608
609
            if name.startswith("model.vision_tower") and name not in params_dict:
                continue

Junyang Lin's avatar
Junyang Lin committed
610
611
612
613
614
615
616
            for param_name, weight_name, shard_id in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
617
618
                if name not in params_dict:
                    continue
Junyang Lin's avatar
Junyang Lin committed
619
620
621
622
623
624
625
626
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
627
628
629
630
631
632
633
634
635

                if name in params_dict.keys():
                    param = params_dict[name]
                    weight_loader = getattr(
                        param, "weight_loader", default_weight_loader
                    )
                    weight_loader(param, loaded_weight)
                else:
                    logger.warning(f"Parameter {name} not found in params_dict")
Junyang Lin's avatar
Junyang Lin committed
636

Lzhang-hub's avatar
Lzhang-hub committed
637
638
639
640
641
642
643
644
645
646
647
    def get_embed_and_head(self):
        return self.model.embed_tokens.weight, self.lm_head.weight

    def set_embed_and_head(self, embed, head):
        del self.model.embed_tokens.weight
        del self.lm_head.weight
        self.model.embed_tokens.weight = embed
        self.lm_head.weight = head
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

648
649
650
    def load_kv_cache_scales(self, quantization_param_path: str) -> None:
        self.model.load_kv_cache_scales(quantization_param_path)

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
    def set_eagle3_layers_to_capture(self, layer_ids: Optional[List[int]] = None):
        if not self.pp_group.is_last_rank:
            return

        self.capture_aux_hidden_states = True
        if layer_ids is None:
            num_layers = self.config.num_hidden_layers
            self.model.layers_to_capture = [
                2,
                num_layers // 2,
                num_layers - 3,
            ]  # Specific layers for EAGLE3 support
        else:
            self.model.layers_to_capture = [val + 1 for val in layer_ids]

Lianmin Zheng's avatar
Lianmin Zheng committed
666

Junyang Lin's avatar
Junyang Lin committed
667
EntryClass = Qwen2ForCausalLM