qwen2.py 22.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14

Junyang Lin's avatar
Junyang Lin committed
15
16
17
# Adapted from llama2.py
# Modify details for the adaptation of Qwen2 model.
"""Inference-only Qwen2 model compatible with HuggingFace weights."""
18
19
import logging
from typing import Any, Dict, Iterable, Optional, Tuple, Union
Junyang Lin's avatar
Junyang Lin committed
20
21
22
23

import torch
from torch import nn

24
from sglang.srt.distributed import (
25
    get_pp_group,
26
27
28
    get_tensor_model_parallel_rank,
    get_tensor_model_parallel_world_size,
)
29
30
from sglang.srt.layers.activation import SiluAndMul
from sglang.srt.layers.layernorm import RMSNorm
31
32
33
34
35
from sglang.srt.layers.linear import (
    MergedColumnParallelLinear,
    QKVParallelLinear,
    RowParallelLinear,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
36
from sglang.srt.layers.logits_processor import LogitsProcessor
Liangsheng Yin's avatar
Liangsheng Yin committed
37
from sglang.srt.layers.pooler import Pooler, PoolingType
38
from sglang.srt.layers.quantization.base_config import QuantizationConfig
Liangsheng Yin's avatar
Liangsheng Yin committed
39
from sglang.srt.layers.radix_attention import RadixAttention
40
from sglang.srt.layers.rotary_embedding import get_rope
41
from sglang.srt.layers.utils import PPMissingLayer, get_layer_id
42
43
44
45
from sglang.srt.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
46
from sglang.srt.managers.schedule_batch import global_server_args_dict
47
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
48
49
50
51
from sglang.srt.model_loader.weight_utils import (
    default_weight_loader,
    kv_cache_scales_loader,
)
52
from sglang.srt.utils import add_prefix, make_layers
Liangsheng Yin's avatar
Liangsheng Yin committed
53

54
55
Qwen2Config = None

Junyang Lin's avatar
Junyang Lin committed
56

57
58
59
logger = logging.getLogger(__name__)


Junyang Lin's avatar
Junyang Lin committed
60
61
62
63
64
65
class Qwen2MLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
66
        quant_config: Optional[QuantizationConfig] = None,
67
        prefix: str = "",
Junyang Lin's avatar
Junyang Lin committed
68
69
70
71
72
73
    ) -> None:
        super().__init__()
        self.gate_up_proj = MergedColumnParallelLinear(
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
74
            quant_config=quant_config,
75
            prefix=add_prefix("gate_up_proj", prefix),
Junyang Lin's avatar
Junyang Lin committed
76
77
        )
        self.down_proj = RowParallelLinear(
Yuanhan Zhang's avatar
Yuanhan Zhang committed
78
79
80
81
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
82
            prefix=add_prefix("down_proj", prefix),
Junyang Lin's avatar
Junyang Lin committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


class Qwen2Attention(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        num_kv_heads: int,
104
        head_dim: Optional[int] = None,
Junyang Lin's avatar
Junyang Lin committed
105
106
107
108
        layer_id: int = 0,
        rope_theta: float = 1000000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 32768,
109
        quant_config: Optional[QuantizationConfig] = None,
110
        dual_chunk_attention_config: Optional[dict[str, Any]] = None,
111
        prefix: str = "",
Junyang Lin's avatar
Junyang Lin committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    ) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
129
130
131
132
        if head_dim is not None:
            self.head_dim = head_dim
        else:
            self.head_dim = hidden_size // self.total_num_heads
Junyang Lin's avatar
Junyang Lin committed
133
134
135
136
137
138
139
140
141
142
143
144
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

        self.qkv_proj = QKVParallelLinear(
            hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=True,
145
            quant_config=quant_config,
146
            prefix=add_prefix("qkv_proj", prefix),
Junyang Lin's avatar
Junyang Lin committed
147
148
149
150
151
        )
        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
152
            quant_config=quant_config,
153
            prefix=add_prefix("o_proj", prefix),
Junyang Lin's avatar
Junyang Lin committed
154
155
156
157
158
159
160
161
        )

        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
162
            dual_chunk_attention_config=dual_chunk_attention_config,
Junyang Lin's avatar
Junyang Lin committed
163
164
165
166
167
168
169
        )
        self.attn = RadixAttention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            layer_id=layer_id,
170
            quant_config=quant_config,
171
            prefix=add_prefix("attn", prefix),
Junyang Lin's avatar
Junyang Lin committed
172
173
174
175
176
177
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
178
        forward_batch: ForwardBatch,
Junyang Lin's avatar
Junyang Lin committed
179
180
181
182
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        q, k = self.rotary_emb(positions, q, k)
183
        attn_output = self.attn(q, k, v, forward_batch)
Junyang Lin's avatar
Junyang Lin committed
184
185
186
187
188
189
190
191
192
        output, _ = self.o_proj(attn_output)
        return output


class Qwen2DecoderLayer(nn.Module):
    def __init__(
        self,
        config: Qwen2Config,
        layer_id: int = 0,
193
        quant_config: Optional[QuantizationConfig] = None,
194
        prefix: str = "",
195
        alt_stream: Optional[torch.cuda.Stream] = None,
Junyang Lin's avatar
Junyang Lin committed
196
197
198
199
200
201
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        rope_theta = getattr(config, "rope_theta", 1000000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings", 32768)
202
        head_dim = getattr(config, "head_dim", None)
203
204
205
        dual_chunk_attention_config = getattr(
            config, "dual_chunk_attention_config", None
        )
Junyang Lin's avatar
Junyang Lin committed
206
207
208
209
        self.self_attn = Qwen2Attention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            num_kv_heads=config.num_key_value_heads,
210
            head_dim=head_dim,
Junyang Lin's avatar
Junyang Lin committed
211
212
213
214
            layer_id=layer_id,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
215
            quant_config=quant_config,
216
            dual_chunk_attention_config=dual_chunk_attention_config,
217
            prefix=add_prefix("self_attn", prefix),
Junyang Lin's avatar
Junyang Lin committed
218
219
220
221
222
        )
        self.mlp = Qwen2MLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
223
            quant_config=quant_config,
224
            prefix=add_prefix("mlp", prefix),
Junyang Lin's avatar
Junyang Lin committed
225
226
227
228
229
230
231
232
233
234
        )
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
235
        forward_batch: ForwardBatch,
Junyang Lin's avatar
Junyang Lin committed
236
237
238
239
240
241
242
243
244
245
246
        residual: Optional[torch.Tensor],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Self Attention
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(hidden_states, residual)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
247
            forward_batch=forward_batch,
Junyang Lin's avatar
Junyang Lin committed
248
249
250
251
252
253
254
255
256
257
258
259
        )

        # Fully Connected
        hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
        hidden_states = self.mlp(hidden_states)
        return hidden_states, residual


class Qwen2Model(nn.Module):
    def __init__(
        self,
        config: Qwen2Config,
260
        quant_config: Optional[QuantizationConfig] = None,
261
        prefix: str = "",
262
        decoder_layer_type: type[nn.Module] = Qwen2DecoderLayer,
263
        alt_stream: Optional[torch.cuda.Stream] = None,
Junyang Lin's avatar
Junyang Lin committed
264
265
266
267
268
    ) -> None:
        super().__init__()
        self.config = config
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
269
270
271
272
273
274
275
        self.pp_group = get_pp_group()

        if self.pp_group.is_first_rank:
            self.embed_tokens = VocabParallelEmbedding(
                config.vocab_size,
                config.hidden_size,
                quant_config=quant_config,
276
                enable_tp=not global_server_args_dict["enable_dp_attention"],
277
278
279
280
281
                prefix=add_prefix("embed_tokens", prefix),
            )
        else:
            self.embed_tokens = PPMissingLayer()

282
283
        # Use the provided decoder layer type or default to Qwen2DecoderLayer
        decoder_layer_type = decoder_layer_type or Qwen2DecoderLayer
284
        self.layers, self.start_layer, self.end_layer = make_layers(
285
            config.num_hidden_layers,
286
            lambda idx, prefix: decoder_layer_type(
287
288
289
                layer_id=idx,
                config=config,
                quant_config=quant_config,
290
                prefix=prefix,
291
                alt_stream=alt_stream,
292
            ),
293
294
            pp_rank=self.pp_group.rank_in_group,
            pp_size=self.pp_group.world_size,
295
            prefix=add_prefix("layers", prefix),
Junyang Lin's avatar
Junyang Lin committed
296
        )
297
298
299
300
        if self.pp_group.is_last_rank:
            self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        else:
            self.norm = PPMissingLayer(return_tuple=True)
Junyang Lin's avatar
Junyang Lin committed
301

302
303
304
        # For EAGLE3 support
        self.layers_to_capture = []

Mick's avatar
Mick committed
305
    def get_input_embedding(self, input_ids: torch.Tensor) -> torch.Tensor:
306
        if hasattr(self.config, "scale_emb"):
Mick's avatar
Mick committed
307
            return self.get_input_embeddings()(input_ids) * self.config.scale_emb
308
        else:
Mick's avatar
Mick committed
309
310
311
312
            return self.get_input_embeddings()(input_ids)

    def get_input_embeddings(self) -> nn.Embedding:
        return self.embed_tokens
Mick's avatar
Mick committed
313

Junyang Lin's avatar
Junyang Lin committed
314
315
316
317
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
318
        forward_batch: ForwardBatch,
319
        input_embeds: torch.Tensor = None,
320
321
322
323
324
325
326
327
        pp_proxy_tensors: Optional[PPProxyTensors] = None,
    ) -> Union[torch.Tensor, PPProxyTensors]:
        if self.pp_group.is_first_rank:
            if input_embeds is None:
                hidden_states = self.embed_tokens(input_ids)
            else:
                hidden_states = input_embeds
            residual = None
Junyang Lin's avatar
Junyang Lin committed
328
        else:
329
330
331
332
            assert pp_proxy_tensors is not None
            hidden_states = pp_proxy_tensors["hidden_states"]
            residual = pp_proxy_tensors["residual"]

333
        aux_hidden_states = []
334
        for i in range(self.start_layer, self.end_layer):
335
336
337
338
            if i in self.layers_to_capture:
                aux_hidden_states.append(
                    hidden_states + residual if residual is not None else hidden_states
                )
Junyang Lin's avatar
Junyang Lin committed
339
340
341
342
            layer = self.layers[i]
            hidden_states, residual = layer(
                positions,
                hidden_states,
343
                forward_batch,
Junyang Lin's avatar
Junyang Lin committed
344
345
                residual,
            )
346
347
348
349
350
351
352
353
        if not self.pp_group.is_last_rank:
            return PPProxyTensors(
                {
                    "hidden_states": hidden_states,
                    "residual": residual,
                }
            )
        else:
354
355
356
357
358
            if hidden_states.shape[0] != 0:
                if residual is None:
                    hidden_states = self.norm(hidden_states)
                else:
                    hidden_states, _ = self.norm(hidden_states, residual)
359
360
361
362
363

        if len(aux_hidden_states) == 0:
            return hidden_states

        return hidden_states, aux_hidden_states
Junyang Lin's avatar
Junyang Lin committed
364

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
    # If this function is called, it should always initialize KV cache scale
    # factors (or else raise an exception). Thus, handled exceptions should
    # make sure to leave KV cache scale factors in a known good (dummy) state
    def load_kv_cache_scales(self, quantization_param_path: str) -> None:
        tp_size = get_tensor_model_parallel_world_size()
        tp_rank = get_tensor_model_parallel_rank()
        for layer_idx, scaling_factor in kv_cache_scales_loader(
            quantization_param_path,
            tp_rank,
            tp_size,
            self.config.num_hidden_layers,
            self.config.__class__.model_type,
        ):
            if not isinstance(self.layers[layer_idx], nn.Identity):
                layer_self_attn = self.layers[layer_idx].self_attn
            if hasattr(layer_self_attn.attn, "k_scale"):
                layer_self_attn.attn.k_scale = scaling_factor
                layer_self_attn.attn.v_scale = scaling_factor
            else:
                raise RuntimeError(
                    "Self attention has no KV cache scaling " "factor attribute!"
                )

Junyang Lin's avatar
Junyang Lin committed
388
389

class Qwen2ForCausalLM(nn.Module):
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    # BitandBytes specific attributes
    default_bitsandbytes_target_modules = [
        ".gate_proj.",
        ".down_proj.",
        ".up_proj.",
        ".q_proj.",
        ".k_proj.",
        ".v_proj.",
        ".o_proj.",
    ]
    bitsandbytes_stacked_params_mapping = {
        # shard_name, weight_name, index
        "q_proj": ("qkv_proj", 0),
        "k_proj": ("qkv_proj", 1),
        "v_proj": ("qkv_proj", 2),
        "gate_proj": ("gate_up_proj", 0),
        "up_proj": ("gate_up_proj", 1),
    }

Junyang Lin's avatar
Junyang Lin committed
409
410
411
    def __init__(
        self,
        config: Qwen2Config,
412
        quant_config: Optional[QuantizationConfig] = None,
413
        prefix: str = "",
Junyang Lin's avatar
Junyang Lin committed
414
415
    ) -> None:
        super().__init__()
416
        self.pp_group = get_pp_group()
Junyang Lin's avatar
Junyang Lin committed
417
        self.config = config
418
        self.quant_config = quant_config
419
420
421
        self.model = Qwen2Model(
            config, quant_config=quant_config, prefix=add_prefix("model", prefix)
        )
422
423
424
425
426
427
428
429
430
431
432
433

        # handle the lm head on different pp ranks
        if self.pp_group.is_last_rank:
            if self.pp_group.world_size == 1 and config.tie_word_embeddings:
                self.lm_head = self.model.embed_tokens
            else:
                self.lm_head = ParallelLMHead(
                    config.vocab_size,
                    config.hidden_size,
                    quant_config=quant_config,
                    prefix=add_prefix("lm_head", prefix),
                )
Leng Yue's avatar
Leng Yue committed
434

435
        else:
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
            # ranks other than the last rank will have a placeholder layer
            self.lm_head = PPMissingLayer()

        # perform weight tying for PP
        if self.pp_group.world_size > 1 and config.tie_word_embeddings:
            if self.pp_group.is_first_rank:
                self.pp_group.send(
                    self.model.embed_tokens.weight, dst=self.pp_group.last_rank
                )
            else:
                emb_token_weight = self.pp_group.recv(
                    size=(config.vocab_size, config.hidden_size),
                    dtype=next(self.model.parameters()).dtype,
                    src=self.pp_group.first_rank,
                )
                self.lm_head.weight.copy_(emb_token_weight)

Junyang Lin's avatar
Junyang Lin committed
453
        self.logits_processor = LogitsProcessor(config)
454
        self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
Junyang Lin's avatar
Junyang Lin committed
455

Mick's avatar
Mick committed
456
457
    def get_input_embedding(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.model.get_input_embedding(input_ids)
Mick's avatar
Mick committed
458

Mick's avatar
Mick committed
459
    def get_input_embeddings(self) -> nn.Embedding:
460
461
        return self.model.embed_tokens

Liangsheng Yin's avatar
Liangsheng Yin committed
462
    @torch.no_grad()
Junyang Lin's avatar
Junyang Lin committed
463
464
465
466
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
467
        forward_batch: ForwardBatch,
468
        input_embeds: torch.Tensor = None,
469
        get_embedding: bool = False,
470
        pp_proxy_tensors: Optional[PPProxyTensors] = None,
Junyang Lin's avatar
Junyang Lin committed
471
    ) -> torch.Tensor:
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
        hidden_states = self.model(
            input_ids,
            positions,
            forward_batch,
            input_embeds,
            pp_proxy_tensors=pp_proxy_tensors,
        )

        if self.pp_group.is_last_rank:
            if not get_embedding:
                return self.logits_processor(
                    input_ids, hidden_states, self.lm_head, forward_batch
                )
            else:
                return self.pooler(hidden_states, forward_batch)
487
        else:
488
489
            return hidden_states

490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
    @torch.no_grad()
    def forward_split_prefill(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        forward_batch: ForwardBatch,
        split_interval: Tuple[int, int],  # [start, end) 0-based
        input_embeds: torch.Tensor = None,
    ):
        start, end = split_interval
        # embed
        if start == 0:
            if input_embeds is None:
                forward_batch.hidden_states = self.model.embed_tokens(input_ids)
            else:
                forward_batch.hidden_states = input_embeds
        # decoder layer
        for i in range(start, end):
            layer = self.model.layers[i]
            forward_batch.hidden_states, forward_batch.residual = layer(
                positions,
                forward_batch.hidden_states,
                forward_batch,
                forward_batch.residual,
            )

        if end == self.model.config.num_hidden_layers:
            # norm
            hidden_states, _ = self.model.norm(
                forward_batch.hidden_states, forward_batch.residual
            )
            forward_batch.hidden_states = hidden_states
            # logits process
            result = self.logits_processor(
                input_ids, forward_batch.hidden_states, self.lm_head, forward_batch
            )
        else:
            result = None

        return result

531
532
533
534
535
536
537
    @property
    def start_layer(self):
        return self.model.start_layer

    @property
    def end_layer(self):
        return self.model.end_layer
Junyang Lin's avatar
Junyang Lin committed
538

539
    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
Junyang Lin's avatar
Junyang Lin committed
540
541
542
543
544
545
546
547
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]
548

Junyang Lin's avatar
Junyang Lin committed
549
        params_dict = dict(self.named_parameters())
550
        for name, loaded_weight in weights:
551
552
553
554
555
556
557
558
559
560
561
            layer_id = get_layer_id(name)
            if (
                layer_id is not None
                and hasattr(self.model, "start_layer")
                and (
                    layer_id < self.model.start_layer
                    or layer_id >= self.model.end_layer
                )
            ):
                continue

Junyang Lin's avatar
Junyang Lin committed
562
563
564
565
566
567
            if "rotary_emb.inv_freq" in name or "projector" in name:
                continue
            if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
                # Models trained using ColossalAI may include these tensors in
                # the checkpoint. Skip them.
                continue
568
            if self.config.tie_word_embeddings and "lm_head.weight" in name:
569
570
571
572
573
574
575
576
577
                if self.pp_group.world_size > 1 and self.pp_group.is_last_rank:
                    # Handle pp weight tying here
                    # find the embed_tokens.weight in the weights
                    embed_token_weights = next(
                        filter(lambda x: x[0] == "model.embed_tokens.weight", weights)
                    )[1]
                    loaded_weight = embed_token_weights
                else:
                    continue
578
579
580
            if name.startswith("model.vision_tower") and name not in params_dict:
                continue

Junyang Lin's avatar
Junyang Lin committed
581
582
583
584
585
586
587
            for param_name, weight_name, shard_id in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
588
589
                if name not in params_dict:
                    continue
Junyang Lin's avatar
Junyang Lin committed
590
591
592
593
594
595
596
597
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
598
599
600
601
602
603
604
605
606

                if name in params_dict.keys():
                    param = params_dict[name]
                    weight_loader = getattr(
                        param, "weight_loader", default_weight_loader
                    )
                    weight_loader(param, loaded_weight)
                else:
                    logger.warning(f"Parameter {name} not found in params_dict")
Junyang Lin's avatar
Junyang Lin committed
607

Lzhang-hub's avatar
Lzhang-hub committed
608
609
610
611
612
613
614
615
616
617
618
    def get_embed_and_head(self):
        return self.model.embed_tokens.weight, self.lm_head.weight

    def set_embed_and_head(self, embed, head):
        del self.model.embed_tokens.weight
        del self.lm_head.weight
        self.model.embed_tokens.weight = embed
        self.lm_head.weight = head
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

619
620
621
    def load_kv_cache_scales(self, quantization_param_path: str) -> None:
        self.model.load_kv_cache_scales(quantization_param_path)

Lianmin Zheng's avatar
Lianmin Zheng committed
622

Junyang Lin's avatar
Junyang Lin committed
623
EntryClass = Qwen2ForCausalLM