qwen2.py 12 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

Junyang Lin's avatar
Junyang Lin committed
16
17
18
# Adapted from llama2.py
# Modify details for the adaptation of Qwen2 model.
"""Inference-only Qwen2 model compatible with HuggingFace weights."""
19
from typing import Any, Dict, Iterable, Optional, Tuple
Junyang Lin's avatar
Junyang Lin committed
20
21
22

import torch
from torch import nn
Yuanhan Zhang's avatar
Yuanhan Zhang committed
23
from vllm.distributed import get_tensor_model_parallel_world_size
Junyang Lin's avatar
Junyang Lin committed
24
25
26
27
28
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
29
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
Junyang Lin's avatar
Junyang Lin committed
30

31
32
from sglang.srt.layers.activation import SiluAndMul
from sglang.srt.layers.layernorm import RMSNorm
33
34
35
36
37
from sglang.srt.layers.linear import (
    MergedColumnParallelLinear,
    QKVParallelLinear,
    RowParallelLinear,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
38
from sglang.srt.layers.logits_processor import LogitsProcessor
Liangsheng Yin's avatar
Liangsheng Yin committed
39
from sglang.srt.layers.pooler import Pooler, PoolingType
40
from sglang.srt.layers.quantization.base_config import QuantizationConfig
Liangsheng Yin's avatar
Liangsheng Yin committed
41
from sglang.srt.layers.radix_attention import RadixAttention
42
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
Liangsheng Yin's avatar
Liangsheng Yin committed
43

44
45
Qwen2Config = None

Junyang Lin's avatar
Junyang Lin committed
46
47
48
49
50
51
52

class Qwen2MLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
53
        quant_config: Optional[QuantizationConfig] = None,
Junyang Lin's avatar
Junyang Lin committed
54
55
56
57
58
59
    ) -> None:
        super().__init__()
        self.gate_up_proj = MergedColumnParallelLinear(
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
60
            quant_config=quant_config,
Junyang Lin's avatar
Junyang Lin committed
61
62
        )
        self.down_proj = RowParallelLinear(
Yuanhan Zhang's avatar
Yuanhan Zhang committed
63
64
65
66
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
Junyang Lin's avatar
Junyang Lin committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


class Qwen2Attention(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        num_kv_heads: int,
        layer_id: int = 0,
        rope_theta: float = 1000000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 32768,
92
        quant_config: Optional[QuantizationConfig] = None,
Junyang Lin's avatar
Junyang Lin committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    ) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        self.head_dim = hidden_size // self.total_num_heads
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

        self.qkv_proj = QKVParallelLinear(
            hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=True,
123
            quant_config=quant_config,
Junyang Lin's avatar
Junyang Lin committed
124
125
126
127
128
        )
        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
129
            quant_config=quant_config,
Junyang Lin's avatar
Junyang Lin committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        )

        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
        )
        self.attn = RadixAttention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            layer_id=layer_id,
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
151
        forward_batch: ForwardBatch,
Junyang Lin's avatar
Junyang Lin committed
152
153
154
155
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        q, k = self.rotary_emb(positions, q, k)
156
        attn_output = self.attn(q, k, v, forward_batch)
Junyang Lin's avatar
Junyang Lin committed
157
158
159
160
161
162
163
164
165
        output, _ = self.o_proj(attn_output)
        return output


class Qwen2DecoderLayer(nn.Module):
    def __init__(
        self,
        config: Qwen2Config,
        layer_id: int = 0,
166
        quant_config: Optional[QuantizationConfig] = None,
Junyang Lin's avatar
Junyang Lin committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        rope_theta = getattr(config, "rope_theta", 1000000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings", 32768)
        self.self_attn = Qwen2Attention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            num_kv_heads=config.num_key_value_heads,
            layer_id=layer_id,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
181
            quant_config=quant_config,
Junyang Lin's avatar
Junyang Lin committed
182
183
184
185
186
        )
        self.mlp = Qwen2MLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
187
            quant_config=quant_config,
Junyang Lin's avatar
Junyang Lin committed
188
189
190
191
192
193
194
195
196
197
        )
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
198
        forward_batch: ForwardBatch,
Junyang Lin's avatar
Junyang Lin committed
199
200
201
202
203
204
205
206
207
208
209
        residual: Optional[torch.Tensor],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Self Attention
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(hidden_states, residual)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
210
            forward_batch=forward_batch,
Junyang Lin's avatar
Junyang Lin committed
211
212
213
214
215
216
217
218
219
220
221
222
        )

        # Fully Connected
        hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
        hidden_states = self.mlp(hidden_states)
        return hidden_states, residual


class Qwen2Model(nn.Module):
    def __init__(
        self,
        config: Qwen2Config,
223
        quant_config: Optional[QuantizationConfig] = None,
Junyang Lin's avatar
Junyang Lin committed
224
225
226
227
228
229
230
231
232
233
234
    ) -> None:
        super().__init__()
        self.config = config
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
        )
        self.layers = nn.ModuleList(
            [
235
                Qwen2DecoderLayer(config, i, quant_config=quant_config)
Junyang Lin's avatar
Junyang Lin committed
236
237
238
239
240
241
242
243
244
                for i in range(config.num_hidden_layers)
            ]
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
245
        forward_batch: ForwardBatch,
246
        input_embeds: torch.Tensor = None,
Junyang Lin's avatar
Junyang Lin committed
247
    ) -> torch.Tensor:
248
        if input_embeds is None:
Junyang Lin's avatar
Junyang Lin committed
249
250
            hidden_states = self.embed_tokens(input_ids)
        else:
251
            hidden_states = input_embeds
Junyang Lin's avatar
Junyang Lin committed
252
253
254
255
256
257
        residual = None
        for i in range(len(self.layers)):
            layer = self.layers[i]
            hidden_states, residual = layer(
                positions,
                hidden_states,
258
                forward_batch,
Junyang Lin's avatar
Junyang Lin committed
259
260
261
262
263
264
265
266
267
268
                residual,
            )
        hidden_states, _ = self.norm(hidden_states, residual)
        return hidden_states


class Qwen2ForCausalLM(nn.Module):
    def __init__(
        self,
        config: Qwen2Config,
269
        quant_config: Optional[QuantizationConfig] = None,
270
        cache_config=None,
Junyang Lin's avatar
Junyang Lin committed
271
272
273
    ) -> None:
        super().__init__()
        self.config = config
274
275
        self.quant_config = quant_config
        self.model = Qwen2Model(config, quant_config=quant_config)
Junyang Lin's avatar
Junyang Lin committed
276
277
        self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
        self.logits_processor = LogitsProcessor(config)
278
        self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
Junyang Lin's avatar
Junyang Lin committed
279

Liangsheng Yin's avatar
Liangsheng Yin committed
280
    @torch.no_grad()
Junyang Lin's avatar
Junyang Lin committed
281
282
283
284
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
285
        forward_batch: ForwardBatch,
286
        input_embeds: torch.Tensor = None,
287
        get_embedding: bool = False,
Junyang Lin's avatar
Junyang Lin committed
288
    ) -> torch.Tensor:
289
        hidden_states = self.model(input_ids, positions, forward_batch, input_embeds)
290
        if not get_embedding:
291
            return self.logits_processor(
292
                input_ids, hidden_states, self.lm_head.weight, forward_batch
293
294
            )
        else:
295
            return self.pooler(hidden_states, forward_batch)
Junyang Lin's avatar
Junyang Lin committed
296

297
    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
Junyang Lin's avatar
Junyang Lin committed
298
299
300
301
302
303
304
305
306
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]
        params_dict = dict(self.named_parameters())
307
        for name, loaded_weight in weights:
Junyang Lin's avatar
Junyang Lin committed
308
309
310
311
312
313
            if "rotary_emb.inv_freq" in name or "projector" in name:
                continue
            if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
                # Models trained using ColossalAI may include these tensors in
                # the checkpoint. Skip them.
                continue
314
315
316
            if name.startswith("model.vision_tower") and name not in params_dict:
                continue

Junyang Lin's avatar
Junyang Lin committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
            for param_name, weight_name, shard_id in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader", default_weight_loader)
                weight_loader(param, loaded_weight)
zhyncs's avatar
zhyncs committed
335
336
337
338
                if (
                    self.config.tie_word_embeddings
                    and name == "model.embed_tokens.weight"
                ):
ylying's avatar
ylying committed
339
                    weight_loader(params_dict["lm_head.weight"], loaded_weight)
Junyang Lin's avatar
Junyang Lin committed
340

Lianmin Zheng's avatar
Lianmin Zheng committed
341

Junyang Lin's avatar
Junyang Lin committed
342
EntryClass = Qwen2ForCausalLM