qwen2.py 12.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14

Junyang Lin's avatar
Junyang Lin committed
15
16
17
# Adapted from llama2.py
# Modify details for the adaptation of Qwen2 model.
"""Inference-only Qwen2 model compatible with HuggingFace weights."""
18

19
from typing import Any, Dict, Iterable, Optional, Tuple
Junyang Lin's avatar
Junyang Lin committed
20
21
22

import torch
from torch import nn
Yuanhan Zhang's avatar
Yuanhan Zhang committed
23
from vllm.distributed import get_tensor_model_parallel_world_size
Junyang Lin's avatar
Junyang Lin committed
24
25
from vllm.model_executor.layers.rotary_embedding import get_rope

26
27
from sglang.srt.layers.activation import SiluAndMul
from sglang.srt.layers.layernorm import RMSNorm
28
29
30
31
32
from sglang.srt.layers.linear import (
    MergedColumnParallelLinear,
    QKVParallelLinear,
    RowParallelLinear,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
33
from sglang.srt.layers.logits_processor import LogitsProcessor
Liangsheng Yin's avatar
Liangsheng Yin committed
34
from sglang.srt.layers.pooler import Pooler, PoolingType
35
from sglang.srt.layers.quantization.base_config import QuantizationConfig
Liangsheng Yin's avatar
Liangsheng Yin committed
36
from sglang.srt.layers.radix_attention import RadixAttention
37
38
39
40
from sglang.srt.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
41
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
42
from sglang.srt.model_loader.weight_utils import default_weight_loader
43
from sglang.srt.utils import make_layers
Liangsheng Yin's avatar
Liangsheng Yin committed
44

45
46
Qwen2Config = None

Junyang Lin's avatar
Junyang Lin committed
47
48
49
50
51
52
53

class Qwen2MLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
54
        quant_config: Optional[QuantizationConfig] = None,
Junyang Lin's avatar
Junyang Lin committed
55
56
57
58
59
60
    ) -> None:
        super().__init__()
        self.gate_up_proj = MergedColumnParallelLinear(
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
61
            quant_config=quant_config,
Junyang Lin's avatar
Junyang Lin committed
62
63
        )
        self.down_proj = RowParallelLinear(
Yuanhan Zhang's avatar
Yuanhan Zhang committed
64
65
66
67
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
Junyang Lin's avatar
Junyang Lin committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


class Qwen2Attention(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        num_kv_heads: int,
        layer_id: int = 0,
        rope_theta: float = 1000000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 32768,
93
        quant_config: Optional[QuantizationConfig] = None,
Junyang Lin's avatar
Junyang Lin committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    ) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        self.head_dim = hidden_size // self.total_num_heads
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

        self.qkv_proj = QKVParallelLinear(
            hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=True,
124
            quant_config=quant_config,
Junyang Lin's avatar
Junyang Lin committed
125
126
127
128
129
        )
        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
130
            quant_config=quant_config,
Junyang Lin's avatar
Junyang Lin committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
        )

        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
        )
        self.attn = RadixAttention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            layer_id=layer_id,
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
152
        forward_batch: ForwardBatch,
Junyang Lin's avatar
Junyang Lin committed
153
154
155
156
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        q, k = self.rotary_emb(positions, q, k)
157
        attn_output = self.attn(q, k, v, forward_batch)
Junyang Lin's avatar
Junyang Lin committed
158
159
160
161
162
163
164
165
166
        output, _ = self.o_proj(attn_output)
        return output


class Qwen2DecoderLayer(nn.Module):
    def __init__(
        self,
        config: Qwen2Config,
        layer_id: int = 0,
167
        quant_config: Optional[QuantizationConfig] = None,
Junyang Lin's avatar
Junyang Lin committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        rope_theta = getattr(config, "rope_theta", 1000000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings", 32768)
        self.self_attn = Qwen2Attention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            num_kv_heads=config.num_key_value_heads,
            layer_id=layer_id,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
182
            quant_config=quant_config,
Junyang Lin's avatar
Junyang Lin committed
183
184
185
186
187
        )
        self.mlp = Qwen2MLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
188
            quant_config=quant_config,
Junyang Lin's avatar
Junyang Lin committed
189
190
191
192
193
194
195
196
197
198
        )
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
199
        forward_batch: ForwardBatch,
Junyang Lin's avatar
Junyang Lin committed
200
201
202
203
204
205
206
207
208
209
210
        residual: Optional[torch.Tensor],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Self Attention
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(hidden_states, residual)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
211
            forward_batch=forward_batch,
Junyang Lin's avatar
Junyang Lin committed
212
213
214
215
216
217
218
219
220
221
222
223
        )

        # Fully Connected
        hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
        hidden_states = self.mlp(hidden_states)
        return hidden_states, residual


class Qwen2Model(nn.Module):
    def __init__(
        self,
        config: Qwen2Config,
224
        quant_config: Optional[QuantizationConfig] = None,
Junyang Lin's avatar
Junyang Lin committed
225
226
227
228
229
230
231
232
    ) -> None:
        super().__init__()
        self.config = config
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
233
            quant_config=quant_config,
Junyang Lin's avatar
Junyang Lin committed
234
        )
235
236
237
238
239
240
241
        self.layers = make_layers(
            config.num_hidden_layers,
            lambda idx, prefix: Qwen2DecoderLayer(
                layer_id=idx,
                config=config,
                quant_config=quant_config,
            ),
Junyang Lin's avatar
Junyang Lin committed
242
243
244
245
246
247
248
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
249
        forward_batch: ForwardBatch,
250
        input_embeds: torch.Tensor = None,
Junyang Lin's avatar
Junyang Lin committed
251
    ) -> torch.Tensor:
252
        if input_embeds is None:
Junyang Lin's avatar
Junyang Lin committed
253
254
            hidden_states = self.embed_tokens(input_ids)
        else:
255
            hidden_states = input_embeds
Junyang Lin's avatar
Junyang Lin committed
256
257
258
259
260
261
        residual = None
        for i in range(len(self.layers)):
            layer = self.layers[i]
            hidden_states, residual = layer(
                positions,
                hidden_states,
262
                forward_batch,
Junyang Lin's avatar
Junyang Lin committed
263
264
265
266
267
268
269
                residual,
            )
        hidden_states, _ = self.norm(hidden_states, residual)
        return hidden_states


class Qwen2ForCausalLM(nn.Module):
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

    # BitandBytes specific attributes
    default_bitsandbytes_target_modules = [
        ".gate_proj.",
        ".down_proj.",
        ".up_proj.",
        ".q_proj.",
        ".k_proj.",
        ".v_proj.",
        ".o_proj.",
    ]
    bitsandbytes_stacked_params_mapping = {
        # shard_name, weight_name, index
        "q_proj": ("qkv_proj", 0),
        "k_proj": ("qkv_proj", 1),
        "v_proj": ("qkv_proj", 2),
        "gate_proj": ("gate_up_proj", 0),
        "up_proj": ("gate_up_proj", 1),
    }

Junyang Lin's avatar
Junyang Lin committed
290
291
292
    def __init__(
        self,
        config: Qwen2Config,
293
        quant_config: Optional[QuantizationConfig] = None,
Junyang Lin's avatar
Junyang Lin committed
294
295
296
    ) -> None:
        super().__init__()
        self.config = config
297
298
        self.quant_config = quant_config
        self.model = Qwen2Model(config, quant_config=quant_config)
299
300
301
302
303
304
        if config.tie_word_embeddings:
            self.lm_head = self.model.embed_tokens
        else:
            self.lm_head = ParallelLMHead(
                config.vocab_size, config.hidden_size, quant_config=quant_config
            )
Junyang Lin's avatar
Junyang Lin committed
305
        self.logits_processor = LogitsProcessor(config)
306
        self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
Junyang Lin's avatar
Junyang Lin committed
307

Liangsheng Yin's avatar
Liangsheng Yin committed
308
    @torch.no_grad()
Junyang Lin's avatar
Junyang Lin committed
309
310
311
312
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
313
        forward_batch: ForwardBatch,
314
        input_embeds: torch.Tensor = None,
315
        get_embedding: bool = False,
Junyang Lin's avatar
Junyang Lin committed
316
    ) -> torch.Tensor:
317
        hidden_states = self.model(input_ids, positions, forward_batch, input_embeds)
318
        if not get_embedding:
319
            return self.logits_processor(
320
                input_ids, hidden_states, self.lm_head, forward_batch
321
322
            )
        else:
323
            return self.pooler(hidden_states, forward_batch)
Junyang Lin's avatar
Junyang Lin committed
324

325
    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
Junyang Lin's avatar
Junyang Lin committed
326
327
328
329
330
331
332
333
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]
334

Junyang Lin's avatar
Junyang Lin committed
335
        params_dict = dict(self.named_parameters())
336
        for name, loaded_weight in weights:
Junyang Lin's avatar
Junyang Lin committed
337
338
339
340
341
342
            if "rotary_emb.inv_freq" in name or "projector" in name:
                continue
            if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
                # Models trained using ColossalAI may include these tensors in
                # the checkpoint. Skip them.
                continue
343
344
345
            if name.startswith("model.vision_tower") and name not in params_dict:
                continue

Junyang Lin's avatar
Junyang Lin committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
            for param_name, weight_name, shard_id in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader", default_weight_loader)
                weight_loader(param, loaded_weight)

Lianmin Zheng's avatar
Lianmin Zheng committed
365

Junyang Lin's avatar
Junyang Lin committed
366
EntryClass = Qwen2ForCausalLM