qwen2.py 12.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

Junyang Lin's avatar
Junyang Lin committed
16
17
18
# Adapted from llama2.py
# Modify details for the adaptation of Qwen2 model.
"""Inference-only Qwen2 model compatible with HuggingFace weights."""
19
from typing import Any, Dict, Iterable, Optional, Tuple
Junyang Lin's avatar
Junyang Lin committed
20
21
22

import torch
from torch import nn
Lianmin Zheng's avatar
Lianmin Zheng committed
23
from vllm.config import CacheConfig
Yuanhan Zhang's avatar
Yuanhan Zhang committed
24
from vllm.distributed import get_tensor_model_parallel_world_size
Junyang Lin's avatar
Junyang Lin committed
25
26
27
28
29
from vllm.model_executor.layers.linear import (
    MergedColumnParallelLinear,
    QKVParallelLinear,
    RowParallelLinear,
)
Yuanhan Zhang's avatar
Yuanhan Zhang committed
30
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
Junyang Lin's avatar
Junyang Lin committed
31
32
33
34
35
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
36
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
Junyang Lin's avatar
Junyang Lin committed
37

38
39
from sglang.srt.layers.activation import SiluAndMul
from sglang.srt.layers.layernorm import RMSNorm
Liangsheng Yin's avatar
Liangsheng Yin committed
40
from sglang.srt.layers.logits_processor import LogitsProcessor
Liangsheng Yin's avatar
Liangsheng Yin committed
41
from sglang.srt.layers.pooler import Pooler, PoolingType
Liangsheng Yin's avatar
Liangsheng Yin committed
42
from sglang.srt.layers.radix_attention import RadixAttention
43
from sglang.srt.model_executor.forward_batch_info import InputMetadata
Liangsheng Yin's avatar
Liangsheng Yin committed
44

45
46
Qwen2Config = None

Junyang Lin's avatar
Junyang Lin committed
47
48
49
50
51
52
53

class Qwen2MLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
54
        quant_config: Optional[QuantizationConfig] = None,
Junyang Lin's avatar
Junyang Lin committed
55
56
57
58
59
60
    ) -> None:
        super().__init__()
        self.gate_up_proj = MergedColumnParallelLinear(
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
61
            quant_config=quant_config,
Junyang Lin's avatar
Junyang Lin committed
62
63
        )
        self.down_proj = RowParallelLinear(
Yuanhan Zhang's avatar
Yuanhan Zhang committed
64
65
66
67
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
Junyang Lin's avatar
Junyang Lin committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


class Qwen2Attention(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        num_kv_heads: int,
        layer_id: int = 0,
        rope_theta: float = 1000000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 32768,
93
        quant_config: Optional[QuantizationConfig] = None,
Junyang Lin's avatar
Junyang Lin committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    ) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        self.head_dim = hidden_size // self.total_num_heads
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

        self.qkv_proj = QKVParallelLinear(
            hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=True,
124
            quant_config=quant_config,
Junyang Lin's avatar
Junyang Lin committed
125
126
127
128
129
        )
        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
130
            quant_config=quant_config,
Junyang Lin's avatar
Junyang Lin committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
        )

        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
        )
        self.attn = RadixAttention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            layer_id=layer_id,
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        q, k = self.rotary_emb(positions, q, k)
        attn_output = self.attn(q, k, v, input_metadata)
        output, _ = self.o_proj(attn_output)
        return output


class Qwen2DecoderLayer(nn.Module):
    def __init__(
        self,
        config: Qwen2Config,
        layer_id: int = 0,
167
        quant_config: Optional[QuantizationConfig] = None,
Junyang Lin's avatar
Junyang Lin committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        rope_theta = getattr(config, "rope_theta", 1000000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings", 32768)
        self.self_attn = Qwen2Attention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            num_kv_heads=config.num_key_value_heads,
            layer_id=layer_id,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
182
            quant_config=quant_config,
Junyang Lin's avatar
Junyang Lin committed
183
184
185
186
187
        )
        self.mlp = Qwen2MLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
188
            quant_config=quant_config,
Junyang Lin's avatar
Junyang Lin committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
        )
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        input_metadata: InputMetadata,
        residual: Optional[torch.Tensor],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Self Attention
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(hidden_states, residual)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            input_metadata=input_metadata,
        )

        # Fully Connected
        hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
        hidden_states = self.mlp(hidden_states)
        return hidden_states, residual


class Qwen2Model(nn.Module):
    def __init__(
        self,
        config: Qwen2Config,
224
        quant_config: Optional[QuantizationConfig] = None,
Junyang Lin's avatar
Junyang Lin committed
225
226
227
228
229
230
231
232
233
234
235
    ) -> None:
        super().__init__()
        self.config = config
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
        )
        self.layers = nn.ModuleList(
            [
236
                Qwen2DecoderLayer(config, i, quant_config=quant_config)
Junyang Lin's avatar
Junyang Lin committed
237
238
239
240
241
242
243
244
245
246
                for i in range(config.num_hidden_layers)
            ]
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        input_metadata: InputMetadata,
247
        input_embeds: torch.Tensor = None,
Junyang Lin's avatar
Junyang Lin committed
248
    ) -> torch.Tensor:
249
        if input_embeds is None:
Junyang Lin's avatar
Junyang Lin committed
250
251
            hidden_states = self.embed_tokens(input_ids)
        else:
252
            hidden_states = input_embeds
Junyang Lin's avatar
Junyang Lin committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
        residual = None
        for i in range(len(self.layers)):
            layer = self.layers[i]
            hidden_states, residual = layer(
                positions,
                hidden_states,
                input_metadata,
                residual,
            )
        hidden_states, _ = self.norm(hidden_states, residual)
        return hidden_states


class Qwen2ForCausalLM(nn.Module):
    def __init__(
        self,
        config: Qwen2Config,
270
        quant_config: Optional[QuantizationConfig] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
271
        cache_config: Optional[CacheConfig] = None,
Junyang Lin's avatar
Junyang Lin committed
272
273
274
    ) -> None:
        super().__init__()
        self.config = config
275
276
        self.quant_config = quant_config
        self.model = Qwen2Model(config, quant_config=quant_config)
Junyang Lin's avatar
Junyang Lin committed
277
278
        self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
        self.logits_processor = LogitsProcessor(config)
279
        self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
Junyang Lin's avatar
Junyang Lin committed
280

Liangsheng Yin's avatar
Liangsheng Yin committed
281
    @torch.no_grad()
Junyang Lin's avatar
Junyang Lin committed
282
283
284
285
286
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        input_metadata: InputMetadata,
287
        input_embeds: torch.Tensor = None,
288
        get_embedding: bool = False,
Junyang Lin's avatar
Junyang Lin committed
289
    ) -> torch.Tensor:
290
        hidden_states = self.model(input_ids, positions, input_metadata, input_embeds)
291
        if not get_embedding:
292
            return self.logits_processor(
293
294
295
296
                input_ids, hidden_states, self.lm_head.weight, input_metadata
            )
        else:
            return self.pooler(hidden_states, input_metadata)
Junyang Lin's avatar
Junyang Lin committed
297

298
    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
Junyang Lin's avatar
Junyang Lin committed
299
300
301
302
303
304
305
306
307
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]
        params_dict = dict(self.named_parameters())
308
        for name, loaded_weight in weights:
Junyang Lin's avatar
Junyang Lin committed
309
310
311
312
313
314
            if "rotary_emb.inv_freq" in name or "projector" in name:
                continue
            if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
                # Models trained using ColossalAI may include these tensors in
                # the checkpoint. Skip them.
                continue
315
316
317
            if name.startswith("model.vision_tower") and name not in params_dict:
                continue

Junyang Lin's avatar
Junyang Lin committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
            for param_name, weight_name, shard_id in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader", default_weight_loader)
                weight_loader(param, loaded_weight)
zhyncs's avatar
zhyncs committed
336
337
338
339
                if (
                    self.config.tie_word_embeddings
                    and name == "model.embed_tokens.weight"
                ):
ylying's avatar
ylying committed
340
                    weight_loader(params_dict["lm_head.weight"], loaded_weight)
Junyang Lin's avatar
Junyang Lin committed
341

Lianmin Zheng's avatar
Lianmin Zheng committed
342

Junyang Lin's avatar
Junyang Lin committed
343
EntryClass = Qwen2ForCausalLM