"official/nlp/albert/__init__.py" did not exist on "6e3e5c38a8c22645697fc8e7cc66e11795b4dc5a"
utility.py 17.3 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
WenmuZhou's avatar
WenmuZhou committed
16
import os
WenmuZhou's avatar
WenmuZhou committed
17
import sys
LDOUBLEV's avatar
LDOUBLEV committed
18
19
import cv2
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
20
21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
WenmuZhou's avatar
WenmuZhou committed
23
from paddle import inference
LDOUBLEV's avatar
LDOUBLEV committed
24
25


26
27
def str2bool(v):
    return v.lower() in ("true", "t", "1")
LDOUBLEV's avatar
LDOUBLEV committed
28
29


30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
inference_args_list = [
    # params for prediction engine
    {
        'name': 'use_gpu',
        'type': str2bool,
        'default': True
    },
    {
        'name': 'ir_optim',
        'type': str2bool,
        'default': True
    },
    {
        'name': 'use_tensorrt',
        'type': str2bool,
        'default': False
    },
    {
        'name': 'use_fp16',
        'type': str2bool,
        'default': False
    },
    {
        'name': 'enable_mkldnn',
        'type': str2bool,
        'default': False
    },
    {
        'name': 'use_pdserving',
        'type': str2bool,
        'default': False
    },
    {
        'name': 'use_mp',
        'type': str2bool,
        'default': False
    },
    {
        'name': 'total_process_num',
        'type': int,
        'default': 1
    },
    {
        'name': 'process_id',
        'type': int,
        'default': 0
    },
    {
        'name': 'gpu_mem',
        'type': int,
        'default': 500
    },
WenmuZhou's avatar
WenmuZhou committed
82
    # params for text detector
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    {
        'name': 'image_dir',
        'type': str,
        'default': None
    },
    {
        'name': 'det_algorithm',
        'type': str,
        'default': 'DB'
    },
    {
        'name': 'det_model_dir',
        'type': str,
        'default': None
    },
    {
        'name': 'det_limit_side_len',
        'type': float,
        'default': 960
    },
    {
        'name': 'det_limit_type',
        'type': str,
        'default': 'max'
    },
WenmuZhou's avatar
WenmuZhou committed
108
    # DB parmas
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    {
        'name': 'det_db_thresh',
        'type': float,
        'default': 0.3
    },
    {
        'name': 'det_db_box_thresh',
        'type': float,
        'default': 0.5
    },
    {
        'name': 'det_db_unclip_ratio',
        'type': float,
        'default': 1.6
    },
    {
        'name': 'max_batch_size',
        'type': int,
        'default': 10
    },
    {
        'name': 'use_dilation',
        'type': str2bool,
        'default': False
    },
    {
        'name': 'det_db_score_mode',
        'type': str,
        'default': 'fast'
    },
WenmuZhou's avatar
WenmuZhou committed
139
    # EAST parmas
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    {
        'name': 'det_east_score_thresh',
        'type': float,
        'default': 0.8
    },
    {
        'name': 'det_east_cover_thresh',
        'type': float,
        'default': 0.1
    },
    {
        'name': 'det_east_nms_thresh',
        'type': float,
        'default': 0.2
    },
WenmuZhou's avatar
WenmuZhou committed
155
    # SAST parmas
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    {
        'name': 'det_sast_score_thresh',
        'type': float,
        'default': 0.5
    },
    {
        'name': 'det_sast_nms_thresh',
        'type': float,
        'default': 0.2
    },
    {
        'name': 'det_sast_polygon',
        'type': str2bool,
        'default': False
    },
WenmuZhou's avatar
WenmuZhou committed
171
    # params for text recognizer
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    {
        'name': 'rec_algorithm',
        'type': str,
        'default': 'CRNN'
    },
    {
        'name': 'rec_model_dir',
        'type': str,
        'default': None
    },
    {
        'name': 'rec_image_shape',
        'type': str,
        'default': '3, 32, 320'
    },
    {
        'name': 'rec_char_type',
        'type': str,
        'default': "ch"
    },
    {
        'name': 'rec_batch_num',
        'type': int,
        'default': 6
    },
    {
        'name': 'max_text_length',
        'type': int,
        'default': 25
    },
    {
        'name': 'rec_char_dict_path',
        'type': str,
        'default': './ppocr/utils/ppocr_keys_v1.txt'
    },
    {
        'name': 'use_space_char',
        'type': str2bool,
        'default': True
    },
    {
        'name': 'vis_font_path',
        'type': str,
        'default': './doc/fonts/simfang.ttf'
    },
    {
        'name': 'drop_score',
        'type': float,
        'default': 0.5
    },
Jethong's avatar
Jethong committed
222
    # params for e2e
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    {
        'name': 'e2e_algorithm',
        'type': str,
        'default': 'PGNet'
    },
    {
        'name': 'e2e_model_dir',
        'type': str,
        'default': None
    },
    {
        'name': 'e2e_limit_side_len',
        'type': float,
        'default': 768
    },
    {
        'name': 'e2e_limit_type',
        'type': str,
        'default': 'max'
    },
Jethong's avatar
Jethong committed
243
    # PGNet parmas
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    {
        'name': 'e2e_pgnet_score_thresh',
        'type': float,
        'default': 0.5
    },
    {
        'name': 'e2e_char_dict_path',
        'type': str,
        'default': './ppocr/utils/ic15_dict.txt'
    },
    {
        'name': 'e2e_pgnet_valid_set',
        'type': str,
        'default': 'totaltext'
    },
    {
        'name': 'e2e_pgnet_polygon',
        'type': str2bool,
        'default': True
    },
    {
        'name': 'e2e_pgnet_mode',
        'type': str,
        'default': 'fast'
    },
WenmuZhou's avatar
WenmuZhou committed
269
    # params for text classifier
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    {
        'name': 'use_angle_cls',
        'type': str2bool,
        'default': False
    },
    {
        'name': 'cls_model_dir',
        'type': str,
        'default': None
    },
    {
        'name': 'cls_image_shape',
        'type': str,
        'default': '3, 48, 192'
    },
    {
        'name': 'label_list',
        'type': list,
        'default': ['0', '180']
    },
    {
        'name': 'cls_batch_num',
        'type': int,
        'default': 6
    },
    {
        'name': 'cls_thresh',
        'type': float,
        'default': 0.9
    },
]
WenmuZhou's avatar
WenmuZhou committed
301

302

303
304
305
306
307
def parse_args():
    parser = argparse.ArgumentParser()
    for item in inference_args_list:
        parser.add_argument(
            '--' + item['name'], type=item['type'], default=item['default'])
LDOUBLEV's avatar
LDOUBLEV committed
308
309
310
    return parser.parse_args()


WenmuZhou's avatar
WenmuZhou committed
311
312
313
314
315
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
Jethong's avatar
Jethong committed
316
    elif mode == 'rec':
WenmuZhou's avatar
WenmuZhou committed
317
        model_dir = args.rec_model_dir
Jethong's avatar
Jethong committed
318
319
    else:
        model_dir = args.e2e_model_dir
WenmuZhou's avatar
WenmuZhou committed
320
321
322
323

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
WenmuZhou's avatar
WenmuZhou committed
324
325
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
WenmuZhou's avatar
WenmuZhou committed
326
327
328
329
330
331
332
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

WenmuZhou's avatar
WenmuZhou committed
333
    config = inference.Config(model_file_path, params_file_path)
WenmuZhou's avatar
WenmuZhou committed
334
335
336

    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
LDOUBLEV's avatar
LDOUBLEV committed
337
338
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
WenmuZhou's avatar
WenmuZhou committed
339
340
                precision_mode=inference.PrecisionType.Half
                if args.use_fp16 else inference.PrecisionType.Float32,
LDOUBLEV's avatar
LDOUBLEV committed
341
                max_batch_size=args.max_batch_size)
WenmuZhou's avatar
WenmuZhou committed
342
343
344
345
346
347
348
    else:
        config.disable_gpu()
        config.set_cpu_math_library_num_threads(6)
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()
LDOUBLEV's avatar
LDOUBLEV committed
349
            #  TODO LDOUBLEV: fix mkldnn bug when bach_size  > 1
350
            # config.set_mkldnn_op({'conv2d', 'depthwise_conv2d', 'pool2d', 'batch_norm'})
351
            args.rec_batch_num = 1
WenmuZhou's avatar
WenmuZhou committed
352

LDOUBLEV's avatar
LDOUBLEV committed
353
354
    # enable memory optim
    config.enable_memory_optim()
WenmuZhou's avatar
WenmuZhou committed
355
356
    config.disable_glog_info()

WenmuZhou's avatar
WenmuZhou committed
357
358
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
    config.switch_use_feed_fetch_ops(False)
WenmuZhou's avatar
WenmuZhou committed
359

WenmuZhou's avatar
WenmuZhou committed
360
361
    # create predictor
    predictor = inference.create_predictor(config)
WenmuZhou's avatar
WenmuZhou committed
362
363
    input_names = predictor.get_input_names()
    for name in input_names:
WenmuZhou's avatar
WenmuZhou committed
364
        input_tensor = predictor.get_input_handle(name)
WenmuZhou's avatar
WenmuZhou committed
365
366
367
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
WenmuZhou's avatar
WenmuZhou committed
368
        output_tensor = predictor.get_output_handle(output_name)
WenmuZhou's avatar
WenmuZhou committed
369
370
371
372
        output_tensors.append(output_tensor)
    return predictor, input_tensor, output_tensors


Jethong's avatar
Jethong committed
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


LDOUBLEV's avatar
LDOUBLEV committed
389
def draw_text_det_res(dt_boxes, img_path):
LDOUBLEV's avatar
LDOUBLEV committed
390
391
392
393
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
LDOUBLEV's avatar
LDOUBLEV committed
394
    return src_im
LDOUBLEV's avatar
LDOUBLEV committed
395
396


LDOUBLEV's avatar
LDOUBLEV committed
397
398
def resize_img(img, input_size=600):
    """
LDOUBLEV's avatar
LDOUBLEV committed
399
    resize img and limit the longest side of the image to input_size
LDOUBLEV's avatar
LDOUBLEV committed
400
401
402
403
404
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
WenmuZhou's avatar
WenmuZhou committed
405
406
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
LDOUBLEV's avatar
LDOUBLEV committed
407
408


WenmuZhou's avatar
WenmuZhou committed
409
410
411
412
413
414
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
             font_path="./doc/simfang.ttf"):
415
416
417
    """
    Visualize the results of OCR detection and recognition
    args:
LDOUBLEV's avatar
LDOUBLEV committed
418
        image(Image|array): RGB image
419
420
421
422
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
WenmuZhou's avatar
WenmuZhou committed
423
        font_path: the path of font which is used to draw text
424
425
426
    return(array):
        the visualized img
    """
LDOUBLEV's avatar
LDOUBLEV committed
427
428
    if scores is None:
        scores = [1] * len(boxes)
WenmuZhou's avatar
WenmuZhou committed
429
430
431
432
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
LDOUBLEV's avatar
LDOUBLEV committed
433
            continue
WenmuZhou's avatar
WenmuZhou committed
434
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
LDOUBLEV's avatar
LDOUBLEV committed
435
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
WenmuZhou's avatar
WenmuZhou committed
436
    if txts is not None:
LDOUBLEV's avatar
LDOUBLEV committed
437
        img = np.array(resize_img(image, input_size=600))
438
        txt_img = text_visual(
WenmuZhou's avatar
WenmuZhou committed
439
440
441
442
443
444
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
445
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
LDOUBLEV's avatar
LDOUBLEV committed
446
447
        return img
    return image
448
449


WenmuZhou's avatar
WenmuZhou committed
450
451
452
453
454
455
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
456
457
458
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
459
460

    import random
LDOUBLEV's avatar
LDOUBLEV committed
461

462
463
464
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
WenmuZhou's avatar
WenmuZhou committed
465
466
467
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
tink2123's avatar
tink2123 committed
468
469
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
470
        draw_left.polygon(box, fill=color)
tink2123's avatar
tink2123 committed
471
472
473
474
475
476
477
478
479
480
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
481
482
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
WenmuZhou's avatar
WenmuZhou committed
483
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
484
485
486
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
tink2123's avatar
tink2123 committed
487
488
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
489
490
491
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
WenmuZhou's avatar
WenmuZhou committed
492
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
tink2123's avatar
tink2123 committed
493
494
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
495
496
497
498
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
499
500
501
    return np.array(img_show)


502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


WenmuZhou's avatar
WenmuZhou committed
526
527
528
529
530
531
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
532
533
534
535
536
537
538
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
WenmuZhou's avatar
WenmuZhou committed
539
        font_path: the path of font which is used to draw text
540
541
542
543
544
545
546
547
548
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
LDOUBLEV's avatar
LDOUBLEV committed
549
550
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
551
        return blank_img, draw_txt
LDOUBLEV's avatar
LDOUBLEV committed
552

553
554
555
556
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
WenmuZhou's avatar
WenmuZhou committed
557
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
558
559
560

    gap = font_size + 5
    txt_img_list = []
LDOUBLEV's avatar
LDOUBLEV committed
561
    count, index = 1, 0
562
563
    for idx, txt in enumerate(texts):
        index += 1
LDOUBLEV's avatar
LDOUBLEV committed
564
        if scores[idx] < threshold or math.isnan(scores[idx]):
565
566
567
568
569
570
571
572
573
574
575
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
LDOUBLEV's avatar
LDOUBLEV committed
576
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
577
578
579
580
581
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
LDOUBLEV's avatar
LDOUBLEV committed
582
            count += 1
583
584
585
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
LDOUBLEV's avatar
LDOUBLEV committed
586
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
LDOUBLEV's avatar
LDOUBLEV committed
587
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
588
        # whether add new blank img or not
LDOUBLEV's avatar
LDOUBLEV committed
589
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
590
591
592
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
LDOUBLEV's avatar
LDOUBLEV committed
593
        count += 1
594
595
596
597
598
599
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
LDOUBLEV's avatar
LDOUBLEV committed
600
601


dyning's avatar
dyning committed
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


LDOUBLEV's avatar
LDOUBLEV committed
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
if __name__ == '__main__':
    test_img = "./doc/test_v2"
    predict_txt = "./doc/predict.txt"
    f = open(predict_txt, 'r')
    data = f.readlines()
    img_path, anno = data[0].strip().split('\t')
    img_name = os.path.basename(img_path)
    img_path = os.path.join(test_img, img_name)
    image = Image.open(img_path)

    data = json.loads(anno)
    boxes, txts, scores = [], [], []
    for dic in data:
        boxes.append(dic['points'])
        txts.append(dic['transcription'])
        scores.append(round(dic['scores'], 3))

WenmuZhou's avatar
WenmuZhou committed
638
    new_img = draw_ocr(image, boxes, txts, scores)
LDOUBLEV's avatar
LDOUBLEV committed
639

MissPenguin's avatar
MissPenguin committed
640
    cv2.imwrite(img_name, new_img)