predict_system.py 9.36 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
import os
import sys
WenmuZhou's avatar
WenmuZhou committed
16

17
__dir__ = os.path.dirname(os.path.abspath(__file__))
18
sys.path.append(__dir__)
19
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
20

21
22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

LDOUBLEV's avatar
LDOUBLEV committed
23
24
25
26
import cv2
import copy
import numpy as np
import time
LDOUBLEV's avatar
LDOUBLEV committed
27
from PIL import Image
WenmuZhou's avatar
WenmuZhou committed
28
29
30
import tools.infer.utility as utility
import tools.infer.predict_rec as predict_rec
import tools.infer.predict_det as predict_det
WenmuZhou's avatar
WenmuZhou committed
31
import tools.infer.predict_cls as predict_cls
WenmuZhou's avatar
WenmuZhou committed
32
33
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.utils.logging import get_logger
LDOUBLEV's avatar
LDOUBLEV committed
34
35
from tools.infer.utility import draw_ocr_box_txt, get_current_memory_mb
import tools.infer.benchmark_utils as benchmark_utils
WenmuZhou's avatar
WenmuZhou committed
36
37
logger = get_logger()

LDOUBLEV's avatar
LDOUBLEV committed
38
39
40
41
42

class TextSystem(object):
    def __init__(self, args):
        self.text_detector = predict_det.TextDetector(args)
        self.text_recognizer = predict_rec.TextRecognizer(args)
WenmuZhou's avatar
WenmuZhou committed
43
        self.use_angle_cls = args.use_angle_cls
WenmuZhou's avatar
WenmuZhou committed
44
        self.drop_score = args.drop_score
WenmuZhou's avatar
WenmuZhou committed
45
46
        if self.use_angle_cls:
            self.text_classifier = predict_cls.TextClassifier(args)
LDOUBLEV's avatar
LDOUBLEV committed
47
48

    def get_rotate_crop_image(self, img, points):
49
        '''
LDOUBLEV's avatar
LDOUBLEV committed
50
51
52
53
54
55
56
57
        img_height, img_width = img.shape[0:2]
        left = int(np.min(points[:, 0]))
        right = int(np.max(points[:, 0]))
        top = int(np.min(points[:, 1]))
        bottom = int(np.max(points[:, 1]))
        img_crop = img[top:bottom, left:right, :].copy()
        points[:, 0] = points[:, 0] - left
        points[:, 1] = points[:, 1] - top
58
        '''
LDOUBLEV's avatar
LDOUBLEV committed
59
60
61
62
63
64
65
66
67
        img_crop_width = int(
            max(
                np.linalg.norm(points[0] - points[1]),
                np.linalg.norm(points[2] - points[3])))
        img_crop_height = int(
            max(
                np.linalg.norm(points[0] - points[3]),
                np.linalg.norm(points[1] - points[2])))
        pts_std = np.float32([[0, 0], [img_crop_width, 0],
68
69
                              [img_crop_width, img_crop_height],
                              [0, img_crop_height]])
LDOUBLEV's avatar
LDOUBLEV committed
70
        M = cv2.getPerspectiveTransform(points, pts_std)
LDOUBLEV's avatar
LDOUBLEV committed
71
72
73
74
75
        dst_img = cv2.warpPerspective(
            img,
            M, (img_crop_width, img_crop_height),
            borderMode=cv2.BORDER_REPLICATE,
            flags=cv2.INTER_CUBIC)
LDOUBLEV's avatar
LDOUBLEV committed
76
77
78
79
80
81
82
83
84
        dst_img_height, dst_img_width = dst_img.shape[0:2]
        if dst_img_height * 1.0 / dst_img_width >= 1.5:
            dst_img = np.rot90(dst_img)
        return dst_img

    def print_draw_crop_rec_res(self, img_crop_list, rec_res):
        bbox_num = len(img_crop_list)
        for bno in range(bbox_num):
            cv2.imwrite("./output/img_crop_%d.jpg" % bno, img_crop_list[bno])
WenmuZhou's avatar
WenmuZhou committed
85
            logger.info(bno, rec_res[bno])
LDOUBLEV's avatar
LDOUBLEV committed
86

87
    def __call__(self, img, cls=True):
LDOUBLEV's avatar
LDOUBLEV committed
88
89
        ori_im = img.copy()
        dt_boxes, elapse = self.text_detector(img)
LDOUBLEV's avatar
LDOUBLEV committed
90

WenmuZhou's avatar
WenmuZhou committed
91
        logger.debug("dt_boxes num : {}, elapse : {}".format(
WenmuZhou's avatar
WenmuZhou committed
92
            len(dt_boxes), elapse))
LDOUBLEV's avatar
LDOUBLEV committed
93
94
95
        if dt_boxes is None:
            return None, None
        img_crop_list = []
96
97
98

        dt_boxes = sorted_boxes(dt_boxes)

LDOUBLEV's avatar
LDOUBLEV committed
99
100
101
102
        for bno in range(len(dt_boxes)):
            tmp_box = copy.deepcopy(dt_boxes[bno])
            img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
            img_crop_list.append(img_crop)
103
        if self.use_angle_cls and cls:
WenmuZhou's avatar
WenmuZhou committed
104
105
            img_crop_list, angle_list, elapse = self.text_classifier(
                img_crop_list)
WenmuZhou's avatar
WenmuZhou committed
106
            logger.debug("cls num  : {}, elapse : {}".format(
WenmuZhou's avatar
WenmuZhou committed
107
108
                len(img_crop_list), elapse))

LDOUBLEV's avatar
LDOUBLEV committed
109
        rec_res, elapse = self.text_recognizer(img_crop_list)
WenmuZhou's avatar
WenmuZhou committed
110
        logger.debug("rec_res num  : {}, elapse : {}".format(
WenmuZhou's avatar
WenmuZhou committed
111
            len(rec_res), elapse))
112
        # self.print_draw_crop_rec_res(img_crop_list, rec_res)
WenmuZhou's avatar
WenmuZhou committed
113
114
115
116
117
118
119
        filter_boxes, filter_rec_res = [], []
        for box, rec_reuslt in zip(dt_boxes, rec_res):
            text, score = rec_reuslt
            if score >= self.drop_score:
                filter_boxes.append(box)
                filter_rec_res.append(rec_reuslt)
        return filter_boxes, filter_rec_res
LDOUBLEV's avatar
LDOUBLEV committed
120
121


122
123
124
125
def sorted_boxes(dt_boxes):
    """
    Sort text boxes in order from top to bottom, left to right
    args:
tink2123's avatar
tink2123 committed
126
        dt_boxes(array):detected text boxes with shape [4, 2]
127
128
129
130
    return:
        sorted boxes(array) with shape [4, 2]
    """
    num_boxes = dt_boxes.shape[0]
131
    sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
132
133
134
    _boxes = list(sorted_boxes)

    for i in range(num_boxes - 1):
WenmuZhou's avatar
WenmuZhou committed
135
136
        if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \
                (_boxes[i + 1][0][0] < _boxes[i][0][0]):
137
138
139
140
141
142
            tmp = _boxes[i]
            _boxes[i] = _boxes[i + 1]
            _boxes[i + 1] = tmp
    return _boxes


143
def main(args):
LDOUBLEV's avatar
LDOUBLEV committed
144
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
145
    text_sys = TextSystem(args)
LDOUBLEV's avatar
LDOUBLEV committed
146
    is_visualize = True
WenmuZhou's avatar
WenmuZhou committed
147
    font_path = args.vis_font_path
WenmuZhou's avatar
WenmuZhou committed
148
    drop_score = args.drop_score
LDOUBLEV's avatar
LDOUBLEV committed
149
150
151
152
153
    total_time = 0
    cpu_mem, gpu_mem, gpu_util = 0, 0, 0
    _st = time.time()
    count = 0
    for idx, image_file in enumerate(image_file_list):
LDOUBLEV's avatar
LDOUBLEV committed
154
155
156
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
157
        if img is None:
WenmuZhou's avatar
WenmuZhou committed
158
            logger.error("error in loading image:{}".format(image_file))
LDOUBLEV's avatar
LDOUBLEV committed
159
160
161
162
            continue
        starttime = time.time()
        dt_boxes, rec_res = text_sys(img)
        elapse = time.time() - starttime
LDOUBLEV's avatar
LDOUBLEV committed
163
164
165
166
167
168
169
        total_time += elapse
        if args.benchmark and idx % 20 == 0:
            cm, gm, gu = get_current_memory_mb(0)
            cpu_mem += cm
            gpu_mem += gm
            gpu_util += gu
            count += 1
LDOUBLEV's avatar
LDOUBLEV committed
170

LDOUBLEV's avatar
LDOUBLEV committed
171
172
        logger.info(
            str(idx) + "  Predict time of %s: %.3fs" % (image_file, elapse))
WenmuZhou's avatar
WenmuZhou committed
173
174
        for text, score in rec_res:
            logger.info("{}, {:.3f}".format(text, score))
LDOUBLEV's avatar
LDOUBLEV committed
175
176
177
178
179
180
181

        if is_visualize:
            image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
            boxes = dt_boxes
            txts = [rec_res[i][0] for i in range(len(rec_res))]
            scores = [rec_res[i][1] for i in range(len(rec_res))]

WenmuZhou's avatar
WenmuZhou committed
182
183
184
185
186
187
188
            draw_img = draw_ocr_box_txt(
                image,
                boxes,
                txts,
                scores,
                drop_score=drop_score,
                font_path=font_path)
189
            draw_img_save = "./inference_results/"
LDOUBLEV's avatar
LDOUBLEV committed
190
191
            if not os.path.exists(draw_img_save):
                os.makedirs(draw_img_save)
LDOUBLEV's avatar
LDOUBLEV committed
192
193
            if flag:
                image_file = image_file[:-3] + "png"
LDOUBLEV's avatar
LDOUBLEV committed
194
195
            cv2.imwrite(
                os.path.join(draw_img_save, os.path.basename(image_file)),
dyning's avatar
dyning committed
196
                draw_img[:, :, ::-1])
WenmuZhou's avatar
WenmuZhou committed
197
            logger.info("The visualized image saved in {}".format(
198
                os.path.join(draw_img_save, os.path.basename(image_file))))
199

LDOUBLEV's avatar
LDOUBLEV committed
200
201
    logger.info("The predict total time is {}".format(time.time() - _st))
    logger.info("\nThe predict total time is {}".format(total_time))
202

LDOUBLEV's avatar
LDOUBLEV committed
203
204
205
206
207
208
209
    img_num = text_sys.text_detector.det_times.img_num
    if args.benchmark:
        mems = {
            'cpu_rss_mb': cpu_mem / count,
            'gpu_rss_mb': gpu_mem / count,
            'gpu_util': gpu_util * 100 / count
        }
littletomatodonkey's avatar
littletomatodonkey committed
210
    else:
LDOUBLEV's avatar
LDOUBLEV committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
        mems = None
    det_time_dict = text_sys.text_detector.det_times.report(average=True)
    rec_time_dict = text_sys.text_recognizer.rec_times.report(average=True)
    det_model_name = args.det_model_dir
    rec_model_name = args.rec_model_dir

    # construct det log information
    model_info = {
        'model_name': args.det_model_dir.split('/')[-1],
        'precision': args.precision
    }
    data_info = {
        'batch_size': 1,
        'shape': 'dynamic_shape',
        'data_num': det_time_dict['img_num']
    }
    perf_info = {
        'preprocess_time_s': det_time_dict['preprocess_time'],
        'inference_time_s': det_time_dict['inference_time'],
        'postprocess_time_s': det_time_dict['postprocess_time'],
        'total_time_s': det_time_dict['total_time']
    }

    benchmark_log = benchmark_utils.PaddleInferBenchmark(
        text_sys.text_detector.config, model_info, data_info, perf_info, mems,
        args.save_log_path)
    benchmark_log("Det")

    # construct rec log information
    model_info = {
        'model_name': args.rec_model_dir.split('/')[-1],
        'precision': args.precision
    }
    data_info = {
        'batch_size': args.rec_batch_num,
        'shape': 'dynamic_shape',
        'data_num': rec_time_dict['img_num']
    }
    perf_info = {
        'preprocess_time_s': rec_time_dict['preprocess_time'],
        'inference_time_s': rec_time_dict['inference_time'],
        'postprocess_time_s': rec_time_dict['postprocess_time'],
        'total_time_s': rec_time_dict['total_time']
    }
    benchmark_log = benchmark_utils.PaddleInferBenchmark(
        text_sys.text_recognizer.config, model_info, data_info, perf_info, mems,
        args.save_log_path)
    benchmark_log("Rec")


if __name__ == "__main__":
    main(utility.parse_args())