utility.py 19.7 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
WenmuZhou's avatar
WenmuZhou committed
16
import os
WenmuZhou's avatar
WenmuZhou committed
17
import sys
LDOUBLEV's avatar
LDOUBLEV committed
18
19
import cv2
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
20
21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
WenmuZhou's avatar
WenmuZhou committed
23
from paddle import inference
24
25
import time
from ppocr.utils.logging import get_logger
WenmuZhou's avatar
WenmuZhou committed
26

27
logger = get_logger()
LDOUBLEV's avatar
LDOUBLEV committed
28
29


30
31
def str2bool(v):
    return v.lower() in ("true", "t", "1")
LDOUBLEV's avatar
LDOUBLEV committed
32
33


WenmuZhou's avatar
WenmuZhou committed
34
35
def init_args():
    parser = argparse.ArgumentParser()
36
    # params for prediction engine
WenmuZhou's avatar
WenmuZhou committed
37
38
39
40
41
42
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
    parser.add_argument("--use_fp16", type=str2bool, default=False)
    parser.add_argument("--gpu_mem", type=int, default=500)

WenmuZhou's avatar
WenmuZhou committed
43
    # params for text detector
WenmuZhou's avatar
WenmuZhou committed
44
45
46
47
48
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
WenmuZhou's avatar
WenmuZhou committed
49
50
    parser.add_argument("--det_pad", type=str2bool, default=False)
    parser.add_argument("--det_pad_size", type=int, default=640)
WenmuZhou's avatar
WenmuZhou committed
51

WenmuZhou's avatar
WenmuZhou committed
52
    # DB parmas
WenmuZhou's avatar
WenmuZhou committed
53
54
55
56
57
58
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6)
    parser.add_argument("--max_batch_size", type=int, default=10)
    parser.add_argument("--use_dilation", type=bool, default=False)
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
WenmuZhou's avatar
WenmuZhou committed
59
    # EAST parmas
WenmuZhou's avatar
WenmuZhou committed
60
61
62
63
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

WenmuZhou's avatar
WenmuZhou committed
64
    # SAST parmas
WenmuZhou's avatar
WenmuZhou committed
65
66
67
68
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
    parser.add_argument("--det_sast_polygon", type=bool, default=False)

WenmuZhou's avatar
WenmuZhou committed
69
    # params for text recognizer
WenmuZhou's avatar
WenmuZhou committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
    parser.add_argument("--rec_batch_num", type=int, default=6)
    parser.add_argument("--max_text_length", type=int, default=25)
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
    parser.add_argument("--drop_score", type=float, default=0.5)

Jethong's avatar
Jethong committed
85
    # params for e2e
WenmuZhou's avatar
WenmuZhou committed
86
87
88
89
90
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

Jethong's avatar
Jethong committed
91
    # PGNet parmas
WenmuZhou's avatar
WenmuZhou committed
92
93
94
95
96
97
98
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
    parser.add_argument("--e2e_pgnet_polygon", type=bool, default=True)
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')

WenmuZhou's avatar
WenmuZhou committed
99
    # params for text classifier
WenmuZhou's avatar
WenmuZhou committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
    parser.add_argument("--cls_batch_num", type=int, default=6)
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
    parser.add_argument("--cpu_threads", type=int, default=10)
    parser.add_argument("--use_pdserving", type=str2bool, default=False)

    parser.add_argument("--use_mp", type=str2bool, default=False)
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
WenmuZhou's avatar
WenmuZhou committed
114
    parser.add_argument("--show_log", type=str2bool, default=True)
WenmuZhou's avatar
WenmuZhou committed
115
    return parser
WenmuZhou's avatar
WenmuZhou committed
116

117

118
def parse_args():
WenmuZhou's avatar
WenmuZhou committed
119
    parser = init_args()
LDOUBLEV's avatar
LDOUBLEV committed
120
121
122
    return parser.parse_args()


WenmuZhou's avatar
WenmuZhou committed
123
124
125
126
127
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
Jethong's avatar
Jethong committed
128
    elif mode == 'rec':
WenmuZhou's avatar
WenmuZhou committed
129
        model_dir = args.rec_model_dir
WenmuZhou's avatar
WenmuZhou committed
130
131
    elif mode == 'structure':
        model_dir = args.structure_model_dir
Jethong's avatar
Jethong committed
132
133
    else:
        model_dir = args.e2e_model_dir
WenmuZhou's avatar
WenmuZhou committed
134
135
136
137

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
WenmuZhou's avatar
WenmuZhou committed
138
139
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
WenmuZhou's avatar
WenmuZhou committed
140
141
142
143
144
145
146
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

WenmuZhou's avatar
WenmuZhou committed
147
    config = inference.Config(model_file_path, params_file_path)
WenmuZhou's avatar
WenmuZhou committed
148
149
150

    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
LDOUBLEV's avatar
LDOUBLEV committed
151
152
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
LDOUBLEV's avatar
LDOUBLEV committed
153
154
                precision_mode=inference.PrecisionType.Float32,
                max_batch_size=args.max_batch_size,
WenmuZhou's avatar
WenmuZhou committed
155
                min_subgraph_size=3)  # skip the minmum trt subgraph
LDOUBLEV's avatar
LDOUBLEV committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        if mode == "det" and "mobile" in model_file_path:
            min_input_shape = {
                "x": [1, 3, 50, 50],
                "conv2d_92.tmp_0": [1, 96, 20, 20],
                "conv2d_91.tmp_0": [1, 96, 10, 10],
                "nearest_interp_v2_1.tmp_0": [1, 96, 10, 10],
                "nearest_interp_v2_2.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 24, 20, 20],
                "elementwise_add_7": [1, 56, 2, 2],
                "nearest_interp_v2_0.tmp_0": [1, 96, 2, 2]
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
                "conv2d_92.tmp_0": [1, 96, 400, 400],
                "conv2d_91.tmp_0": [1, 96, 200, 200],
                "nearest_interp_v2_1.tmp_0": [1, 96, 200, 200],
                "nearest_interp_v2_2.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 24, 400, 400],
                "elementwise_add_7": [1, 56, 400, 400],
                "nearest_interp_v2_0.tmp_0": [1, 96, 400, 400]
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
                "conv2d_92.tmp_0": [1, 96, 160, 160],
                "conv2d_91.tmp_0": [1, 96, 80, 80],
                "nearest_interp_v2_1.tmp_0": [1, 96, 80, 80],
                "nearest_interp_v2_2.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_3.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 24, 160, 160],
                "elementwise_add_7": [1, 56, 40, 40],
                "nearest_interp_v2_0.tmp_0": [1, 96, 40, 40]
            }
        if mode == "det" and "server" in model_file_path:
            min_input_shape = {
                "x": [1, 3, 50, 50],
                "conv2d_59.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_2.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 24, 20, 20]
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
                "conv2d_59.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_2.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 24, 400, 400]
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
                "conv2d_59.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_2.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_3.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 24, 160, 160]
            }
        elif mode == "rec":
            min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
        elif mode == "cls":
            min_input_shape = {"x": [args.rec_batch_num, 3, 48, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
LDOUBLEV's avatar
LDOUBLEV committed
226
227
228
229
        else:
            min_input_shape = {"x": [1, 3, 10, 10]}
            max_input_shape = {"x": [1, 3, 1000, 1000]}
            opt_input_shape = {"x": [1, 3, 500, 500]}
LDOUBLEV's avatar
LDOUBLEV committed
230
231
232
        config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                          opt_input_shape)

WenmuZhou's avatar
WenmuZhou committed
233
234
    else:
        config.disable_gpu()
235
236
237
        if hasattr(args, "cpu_threads"):
            config.set_cpu_math_library_num_threads(args.cpu_threads)
        else:
WenmuZhou's avatar
WenmuZhou committed
238
239
            # default cpu threads as 10
            config.set_cpu_math_library_num_threads(10)
WenmuZhou's avatar
WenmuZhou committed
240
241
242
243
244
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()

LDOUBLEV's avatar
LDOUBLEV committed
245
246
    # enable memory optim
    config.enable_memory_optim()
WenmuZhou's avatar
WenmuZhou committed
247
248
    config.disable_glog_info()

WenmuZhou's avatar
WenmuZhou committed
249
250
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
    config.switch_use_feed_fetch_ops(False)
WenmuZhou's avatar
WenmuZhou committed
251
252
    config.switch_ir_optim(True)
    if mode == 'structure':
WenmuZhou's avatar
WenmuZhou committed
253
        config.switch_ir_optim(False)
WenmuZhou's avatar
WenmuZhou committed
254
255
    # create predictor
    predictor = inference.create_predictor(config)
WenmuZhou's avatar
WenmuZhou committed
256
257
    input_names = predictor.get_input_names()
    for name in input_names:
WenmuZhou's avatar
WenmuZhou committed
258
        input_tensor = predictor.get_input_handle(name)
WenmuZhou's avatar
WenmuZhou committed
259
260
261
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
WenmuZhou's avatar
WenmuZhou committed
262
        output_tensor = predictor.get_output_handle(output_name)
WenmuZhou's avatar
WenmuZhou committed
263
264
265
266
        output_tensors.append(output_tensor)
    return predictor, input_tensor, output_tensors


Jethong's avatar
Jethong committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


LDOUBLEV's avatar
LDOUBLEV committed
283
def draw_text_det_res(dt_boxes, img_path):
LDOUBLEV's avatar
LDOUBLEV committed
284
285
286
287
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
LDOUBLEV's avatar
LDOUBLEV committed
288
    return src_im
LDOUBLEV's avatar
LDOUBLEV committed
289
290


LDOUBLEV's avatar
LDOUBLEV committed
291
292
def resize_img(img, input_size=600):
    """
LDOUBLEV's avatar
LDOUBLEV committed
293
    resize img and limit the longest side of the image to input_size
LDOUBLEV's avatar
LDOUBLEV committed
294
295
296
297
298
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
WenmuZhou's avatar
WenmuZhou committed
299
300
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
LDOUBLEV's avatar
LDOUBLEV committed
301
302


WenmuZhou's avatar
WenmuZhou committed
303
304
305
306
307
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
LDOUBLEV's avatar
LDOUBLEV committed
308
             font_path="./doc/fonts/simfang.ttf"):
309
310
311
    """
    Visualize the results of OCR detection and recognition
    args:
LDOUBLEV's avatar
LDOUBLEV committed
312
        image(Image|array): RGB image
313
314
315
316
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
WenmuZhou's avatar
WenmuZhou committed
317
        font_path: the path of font which is used to draw text
318
319
320
    return(array):
        the visualized img
    """
LDOUBLEV's avatar
LDOUBLEV committed
321
322
    if scores is None:
        scores = [1] * len(boxes)
WenmuZhou's avatar
WenmuZhou committed
323
324
325
326
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
LDOUBLEV's avatar
LDOUBLEV committed
327
            continue
WenmuZhou's avatar
WenmuZhou committed
328
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
LDOUBLEV's avatar
LDOUBLEV committed
329
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
WenmuZhou's avatar
WenmuZhou committed
330
    if txts is not None:
LDOUBLEV's avatar
LDOUBLEV committed
331
        img = np.array(resize_img(image, input_size=600))
332
        txt_img = text_visual(
WenmuZhou's avatar
WenmuZhou committed
333
334
335
336
337
338
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
339
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
LDOUBLEV's avatar
LDOUBLEV committed
340
341
        return img
    return image
342
343


WenmuZhou's avatar
WenmuZhou committed
344
345
346
347
348
349
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
350
351
352
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
353
354

    import random
LDOUBLEV's avatar
LDOUBLEV committed
355

356
357
358
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
WenmuZhou's avatar
WenmuZhou committed
359
360
361
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
tink2123's avatar
tink2123 committed
362
363
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
364
        draw_left.polygon(box, fill=color)
tink2123's avatar
tink2123 committed
365
366
367
368
369
370
371
372
373
374
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
375
376
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
WenmuZhou's avatar
WenmuZhou committed
377
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
378
379
380
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
tink2123's avatar
tink2123 committed
381
382
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
383
384
385
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
WenmuZhou's avatar
WenmuZhou committed
386
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
tink2123's avatar
tink2123 committed
387
388
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
389
390
391
392
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
393
394
395
    return np.array(img_show)


396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


WenmuZhou's avatar
WenmuZhou committed
420
421
422
423
424
425
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
426
427
428
429
430
431
432
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
WenmuZhou's avatar
WenmuZhou committed
433
        font_path: the path of font which is used to draw text
434
435
436
437
438
439
440
441
442
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
LDOUBLEV's avatar
LDOUBLEV committed
443
444
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
445
        return blank_img, draw_txt
LDOUBLEV's avatar
LDOUBLEV committed
446

447
448
449
450
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
WenmuZhou's avatar
WenmuZhou committed
451
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
452
453
454

    gap = font_size + 5
    txt_img_list = []
LDOUBLEV's avatar
LDOUBLEV committed
455
    count, index = 1, 0
456
457
    for idx, txt in enumerate(texts):
        index += 1
LDOUBLEV's avatar
LDOUBLEV committed
458
        if scores[idx] < threshold or math.isnan(scores[idx]):
459
460
461
462
463
464
465
466
467
468
469
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
LDOUBLEV's avatar
LDOUBLEV committed
470
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
471
472
473
474
475
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
LDOUBLEV's avatar
LDOUBLEV committed
476
            count += 1
477
478
479
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
LDOUBLEV's avatar
LDOUBLEV committed
480
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
LDOUBLEV's avatar
LDOUBLEV committed
481
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
482
        # whether add new blank img or not
LDOUBLEV's avatar
LDOUBLEV committed
483
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
484
485
486
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
LDOUBLEV's avatar
LDOUBLEV committed
487
        count += 1
488
489
490
491
492
493
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
LDOUBLEV's avatar
LDOUBLEV committed
494
495


dyning's avatar
dyning committed
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


LDOUBLEV's avatar
LDOUBLEV committed
515
if __name__ == '__main__':
LDOUBLEV's avatar
LDOUBLEV committed
516
    pass