program.py 19 KB
Newer Older
MissPenguin's avatar
refine  
MissPenguin committed
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
LDOUBLEV's avatar
LDOUBLEV committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

WenmuZhou's avatar
WenmuZhou committed
19
import os
LDOUBLEV's avatar
LDOUBLEV committed
20
import sys
21
import platform
LDOUBLEV's avatar
LDOUBLEV committed
22
23
import yaml
import time
WenmuZhou's avatar
WenmuZhou committed
24
25
26
27
28
29
import shutil
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

LDOUBLEV's avatar
LDOUBLEV committed
30
31
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
dyning's avatar
dyning committed
32
33
from ppocr.utils.utility import print_dict
from ppocr.utils.logging import get_logger
LDOUBLEV's avatar
LDOUBLEV committed
34
from ppocr.utils import profiler
dyning's avatar
dyning committed
35
36
from ppocr.data import build_dataloader
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
37

dyning's avatar
dyning committed
38

LDOUBLEV's avatar
LDOUBLEV committed
39
40
41
42
43
44
45
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
LDOUBLEV's avatar
LDOUBLEV committed
46
47
48
49
50
51
52
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
            help='The option of profiler, which should be in format \"key1=value1;key2=value2;key3=value3\".'
        )
LDOUBLEV's avatar
LDOUBLEV committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


class AttrDict(dict):
    """Single level attribute dict, NOT recursive"""

    def __init__(self, **kwargs):
        super(AttrDict, self).__init__()
        super(AttrDict, self).update(kwargs)

    def __getattr__(self, key):
        if key in self:
            return self[key]
        raise AttributeError("object has no attribute '{}'".format(key))


global_config = AttrDict()

lyl120117's avatar
lyl120117 committed
87
88
default_config = {'Global': {'debug': False, }}

LDOUBLEV's avatar
LDOUBLEV committed
89
90
91
92
93
94
95
96

def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
lyl120117's avatar
lyl120117 committed
97
    merge_config(default_config)
LDOUBLEV's avatar
LDOUBLEV committed
98
99
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
WenmuZhou's avatar
WenmuZhou committed
100
    merge_config(yaml.load(open(file_path, 'rb'), Loader=yaml.Loader))
LDOUBLEV's avatar
LDOUBLEV committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    return global_config


def merge_config(config):
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
    for key, value in config.items():
        if "." not in key:
            if isinstance(value, dict) and key in global_config:
                global_config[key].update(value)
            else:
                global_config[key] = value
        else:
            sub_keys = key.split('.')
tink2123's avatar
tink2123 committed
119
120
121
122
            assert (
                sub_keys[0] in global_config
            ), "the sub_keys can only be one of global_config: {}, but get: {}, please check your running command".format(
                global_config.keys(), sub_keys[0])
LDOUBLEV's avatar
LDOUBLEV committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
            cur = global_config[sub_keys[0]]
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
WenmuZhou's avatar
WenmuZhou committed
143
        if use_gpu and not paddle.is_compiled_with_cuda():
WenmuZhou's avatar
WenmuZhou committed
144
            print(err)
LDOUBLEV's avatar
LDOUBLEV committed
145
146
147
148
149
            sys.exit(1)
    except Exception as e:
        pass


WenmuZhou's avatar
WenmuZhou committed
150
def train(config,
dyning's avatar
dyning committed
151
152
153
          train_dataloader,
          valid_dataloader,
          device,
WenmuZhou's avatar
WenmuZhou committed
154
155
156
157
158
159
160
161
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
stephon's avatar
stephon committed
162
163
          vdl_writer=None,
          scaler=None):
WenmuZhou's avatar
WenmuZhou committed
164
165
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
LDOUBLEV's avatar
LDOUBLEV committed
166
167
168
169
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
LDOUBLEV's avatar
LDOUBLEV committed
170
    profiler_options = config['profiler_options']
WenmuZhou's avatar
WenmuZhou committed
171

dyning's avatar
dyning committed
172
    global_step = 0
173
174
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
LDOUBLEV's avatar
LDOUBLEV committed
175
176
177
178
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
WenmuZhou's avatar
WenmuZhou committed
179
180
181
182
183
        if len(valid_dataloader) == 0:
            logger.info(
                'No Images in eval dataset, evaluation during training will be disabled'
            )
            start_eval_step = 1e111
LDOUBLEV's avatar
LDOUBLEV committed
184
185
186
        logger.info(
            "During the training process, after the {}th iteration, an evaluation is run every {} iterations".
            format(start_eval_step, eval_batch_step))
LDOUBLEV's avatar
LDOUBLEV committed
187
188
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
189
190
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
WenmuZhou's avatar
WenmuZhou committed
191
192
193
194
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
tink2123's avatar
tink2123 committed
195
    model_average = False
WenmuZhou's avatar
WenmuZhou committed
196
197
    model.train()

tink2123's avatar
tink2123 committed
198
    use_srn = config['Architecture']['algorithm'] == "SRN"
tink2123's avatar
tink2123 committed
199
    extra_input = config['Architecture'][
LDOUBLEV's avatar
LDOUBLEV committed
200
        'algorithm'] in ["SRN", "NRTR", "SAR", "SEED"]
201
    try:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
202
        model_type = config['Architecture']['model_type']
203
    except:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
204
        model_type = None
tink2123's avatar
tink2123 committed
205
    algorithm = config['Architecture']['algorithm']
tink2123's avatar
tink2123 committed
206

WenmuZhou's avatar
WenmuZhou committed
207
208
209
    if 'start_epoch' in best_model_dict:
        start_epoch = best_model_dict['start_epoch']
    else:
tink2123's avatar
tink2123 committed
210
        start_epoch = 1
WenmuZhou's avatar
WenmuZhou committed
211

tink2123's avatar
tink2123 committed
212
    for epoch in range(start_epoch, epoch_num + 1):
213
214
        train_dataloader = build_dataloader(
            config, 'Train', device, logger, seed=epoch)
WenmuZhou's avatar
WenmuZhou committed
215
        train_reader_cost = 0.0
WenmuZhou's avatar
WenmuZhou committed
216
217
218
        train_run_cost = 0.0
        total_samples = 0
        reader_start = time.time()
Jane-Ding's avatar
Jane-Ding committed
219
220
        max_iter = len(train_dataloader) - 1 if platform.system(
        ) == "Windows" else len(train_dataloader)
WenmuZhou's avatar
WenmuZhou committed
221
        for idx, batch in enumerate(train_dataloader):
LDOUBLEV's avatar
LDOUBLEV committed
222
            profiler.add_profiler_step(profiler_options)
WenmuZhou's avatar
WenmuZhou committed
223
            train_reader_cost += time.time() - reader_start
Jane-Ding's avatar
Jane-Ding committed
224
            if idx >= max_iter:
WenmuZhou's avatar
WenmuZhou committed
225
226
227
                break
            lr = optimizer.get_lr()
            images = batch[0]
tink2123's avatar
tink2123 committed
228
            if use_srn:
tink2123's avatar
tink2123 committed
229
                model_average = True
stephon's avatar
stephon committed
230

WenmuZhou's avatar
WenmuZhou committed
231
            train_start = time.time()
stephon's avatar
stephon committed
232
233
234
235
236
237
238
            # use amp
            if scaler:
                with paddle.amp.auto_cast():
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
                    else:
                        preds = model(images)
tink2123's avatar
tink2123 committed
239
            else:
stephon's avatar
stephon committed
240
241
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
LDOUBLEV's avatar
LDOUBLEV committed
242
243
                if model_type == "kie":
                    preds = model(batch)
stephon's avatar
stephon committed
244
245
                else:
                    preds = model(images)
WenmuZhou's avatar
WenmuZhou committed
246
247
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
stephon's avatar
stephon committed
248
249
250
251
252
253
254
255

            if scaler:
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
            else:
                avg_loss.backward()
                optimizer.step()
WenmuZhou's avatar
WenmuZhou committed
256
            optimizer.clear_grad()
WenmuZhou's avatar
WenmuZhou committed
257

WenmuZhou's avatar
WenmuZhou committed
258
259
            train_run_cost += time.time() - train_start
            total_samples += len(images)
WenmuZhou's avatar
WenmuZhou committed
260

dyning's avatar
dyning committed
261
262
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
WenmuZhou's avatar
WenmuZhou committed
263
264
265
266
267
268

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

LDOUBLEV's avatar
LDOUBLEV committed
269
            if cal_metric_during_train:  # only rec and cls need
WenmuZhou's avatar
WenmuZhou committed
270
                batch = [item.numpy() for item in batch]
LDOUBLEV's avatar
LDOUBLEV committed
271
                if model_type in ['table', 'kie']:
MissPenguin's avatar
MissPenguin committed
272
273
274
275
                    eval_class(preds, batch)
                else:
                    post_result = post_process_class(preds, batch[1])
                    eval_class(post_result, batch)
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
276
277
                metric = eval_class.get_metric()
                train_stats.update(metric)
WenmuZhou's avatar
WenmuZhou committed
278
279
280
281
282
283

            if vdl_writer is not None and dist.get_rank() == 0:
                for k, v in train_stats.get().items():
                    vdl_writer.add_scalar('TRAIN/{}'.format(k), v, global_step)
                vdl_writer.add_scalar('TRAIN/lr', lr, global_step)

284
285
286
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
WenmuZhou's avatar
WenmuZhou committed
287
                logs = train_stats.log()
WenmuZhou's avatar
WenmuZhou committed
288
                strs = 'epoch: [{}/{}], iter: {}, {}, reader_cost: {:.5f} s, batch_cost: {:.5f} s, samples: {}, ips: {:.5f}'.format(
WenmuZhou's avatar
WenmuZhou committed
289
                    epoch, epoch_num, global_step, logs, train_reader_cost /
WenmuZhou's avatar
WenmuZhou committed
290
291
292
                    print_batch_step, (train_reader_cost + train_run_cost) /
                    print_batch_step, total_samples,
                    total_samples / (train_reader_cost + train_run_cost))
WenmuZhou's avatar
WenmuZhou committed
293
                logger.info(strs)
WenmuZhou's avatar
WenmuZhou committed
294
                train_reader_cost = 0.0
WenmuZhou's avatar
WenmuZhou committed
295
296
                train_run_cost = 0.0
                total_samples = 0
WenmuZhou's avatar
WenmuZhou committed
297
298
299
            # eval
            if global_step > start_eval_step and \
                    (global_step - start_eval_step) % eval_batch_step == 0 and dist.get_rank() == 0:
tink2123's avatar
tink2123 committed
300
301
302
303
304
305
306
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
tink2123's avatar
tink2123 committed
307
308
309
310
311
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
MissPenguin's avatar
refine  
MissPenguin committed
312
                    model_type,
tink2123's avatar
tink2123 committed
313
                    extra_input=extra_input)
LDOUBLEV's avatar
LDOUBLEV committed
314
315
316
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
WenmuZhou's avatar
WenmuZhou committed
317
318
319

                # logger metric
                if vdl_writer is not None:
LDOUBLEV's avatar
LDOUBLEV committed
320
                    for k, v in cur_metric.items():
WenmuZhou's avatar
WenmuZhou committed
321
322
                        if isinstance(v, (float, int)):
                            vdl_writer.add_scalar('EVAL/{}'.format(k),
LDOUBLEV's avatar
LDOUBLEV committed
323
324
                                                  cur_metric[k], global_step)
                if cur_metric[main_indicator] >= best_model_dict[
WenmuZhou's avatar
WenmuZhou committed
325
                        main_indicator]:
LDOUBLEV's avatar
LDOUBLEV committed
326
                    best_model_dict.update(cur_metric)
WenmuZhou's avatar
WenmuZhou committed
327
328
329
330
331
332
333
334
335
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
336
337
                        epoch=epoch,
                        global_step=global_step)
LDOUBLEV's avatar
LDOUBLEV committed
338
                best_str = 'best metric, {}'.format(', '.join([
WenmuZhou's avatar
WenmuZhou committed
339
340
341
342
343
344
345
346
347
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
                if vdl_writer is not None:
                    vdl_writer.add_scalar('EVAL/best_{}'.format(main_indicator),
                                          best_model_dict[main_indicator],
                                          global_step)
            global_step += 1
tink2123's avatar
tink2123 committed
348
            optimizer.clear_grad()
WenmuZhou's avatar
WenmuZhou committed
349
            reader_start = time.time()
WenmuZhou's avatar
WenmuZhou committed
350
351
352
353
354
355
356
357
358
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
359
360
                epoch=epoch,
                global_step=global_step)
WenmuZhou's avatar
WenmuZhou committed
361
362
363
364
365
366
367
368
369
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
370
371
                epoch=epoch,
                global_step=global_step)
LDOUBLEV's avatar
LDOUBLEV committed
372
    best_str = 'best metric, {}'.format(', '.join(
WenmuZhou's avatar
WenmuZhou committed
373
374
375
376
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
    if dist.get_rank() == 0 and vdl_writer is not None:
        vdl_writer.close()
LDOUBLEV's avatar
LDOUBLEV committed
377
378
379
    return


MissPenguin's avatar
refine  
MissPenguin committed
380
381
382
383
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
LDOUBLEV's avatar
LDOUBLEV committed
384
         model_type=None,
tink2123's avatar
tink2123 committed
385
         extra_input=False):
WenmuZhou's avatar
WenmuZhou committed
386
387
388
389
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
WenmuZhou's avatar
WenmuZhou committed
390
391
392
393
394
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
395
396
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
WenmuZhou's avatar
WenmuZhou committed
397
        for idx, batch in enumerate(valid_dataloader):
398
            if idx >= max_iter:
WenmuZhou's avatar
WenmuZhou committed
399
                break
WenmuZhou's avatar
fix bug  
WenmuZhou committed
400
            images = batch[0]
WenmuZhou's avatar
WenmuZhou committed
401
            start = time.time()
tink2123's avatar
tink2123 committed
402
            if model_type == 'table' or extra_input:
MissPenguin's avatar
refine  
MissPenguin committed
403
                preds = model(images, data=batch[1:])
LDOUBLEV's avatar
LDOUBLEV committed
404
405
            if model_type == "kie":
                preds = model(batch)
xiaoting's avatar
xiaoting committed
406
            else:
LDOUBLEV's avatar
LDOUBLEV committed
407
                preds = model(images)
WenmuZhou's avatar
WenmuZhou committed
408
409
410
411
            batch = [item.numpy() for item in batch]
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
LDOUBLEV's avatar
LDOUBLEV committed
412
            if model_type in ['table', 'kie']:
MissPenguin's avatar
MissPenguin committed
413
414
415
416
                eval_class(preds, batch)
            else:
                post_result = post_process_class(preds, batch[1])
                eval_class(post_result, batch)
LDOUBLEV's avatar
LDOUBLEV committed
417

WenmuZhou's avatar
fix bug  
WenmuZhou committed
418
            pbar.update(1)
WenmuZhou's avatar
WenmuZhou committed
419
            total_frame += len(images)
LDOUBLEV's avatar
LDOUBLEV committed
420
421
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
dyning's avatar
dyning committed
422

WenmuZhou's avatar
fix bug  
WenmuZhou committed
423
    pbar.close()
WenmuZhou's avatar
WenmuZhou committed
424
    model.train()
LDOUBLEV's avatar
LDOUBLEV committed
425
426
    metric['fps'] = total_frame / total_time
    return metric
licx's avatar
licx committed
427

tink2123's avatar
tink2123 committed
428

Bin Lu's avatar
Bin Lu committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


478
def preprocess(is_train=False):
licx's avatar
licx committed
479
    FLAGS = ArgsParser().parse_args()
LDOUBLEV's avatar
LDOUBLEV committed
480
    profiler_options = FLAGS.profiler_options
licx's avatar
licx committed
481
482
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
LDOUBLEV's avatar
LDOUBLEV committed
483
484
    profile_dic = {"profiler_options": FLAGS.profiler_options}
    merge_config(profile_dic)
licx's avatar
licx committed
485

486
487
488
489
490
491
492
493
494
495
496
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
    logger = get_logger(name='root', log_file=log_file)
licx's avatar
licx committed
497
498
499
500
501

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

WenmuZhou's avatar
WenmuZhou committed
502
503
    alg = config['Architecture']['algorithm']
    assert alg in [
Jethong's avatar
Jethong committed
504
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
tink2123's avatar
tink2123 committed
505
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
LDOUBLEV's avatar
LDOUBLEV committed
506
        'SEED', 'SDMGR'
WenmuZhou's avatar
WenmuZhou committed
507
    ]
508
509
510
511
512
    windows_not_support_list = ['PSE']
    if platform.system() == "Windows" and alg in windows_not_support_list:
        logger.warning('{} is not support in Windows now'.format(
            windows_not_support_list))
        sys.exit()
licx's avatar
licx committed
513

WenmuZhou's avatar
WenmuZhou committed
514
515
    device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
    device = paddle.set_device(device)
dyning's avatar
dyning committed
516

dyning's avatar
dyning committed
517
    config['Global']['distributed'] = dist.get_world_size() != 1
518

dyning's avatar
dyning committed
519
520
    if config['Global']['use_visualdl']:
        from visualdl import LogWriter
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
521
        save_model_dir = config['Global']['save_model_dir']
dyning's avatar
dyning committed
522
523
524
525
526
527
528
529
530
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
        os.makedirs(vdl_writer_path, exist_ok=True)
        vdl_writer = LogWriter(logdir=vdl_writer_path)
    else:
        vdl_writer = None
    print_dict(config, logger)
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
    return config, device, logger, vdl_writer