rec_postprocess.py 26.7 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

WenmuZhou's avatar
WenmuZhou committed
15
16
17
import numpy as np
import paddle
from paddle.nn import functional as F
andyjpaddle's avatar
andyjpaddle committed
18
import re
WenmuZhou's avatar
WenmuZhou committed
19
20
21
22
23


class BaseRecLabelDecode(object):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
24
    def __init__(self, character_dict_path=None, use_space_char=False):
tink2123's avatar
tink2123 committed
25
26
27
        self.beg_str = "sos"
        self.end_str = "eos"

tink2123's avatar
tink2123 committed
28
29
        self.character_str = []
        if character_dict_path is None:
WenmuZhou's avatar
WenmuZhou committed
30
31
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
tink2123's avatar
tink2123 committed
32
        else:
WenmuZhou's avatar
WenmuZhou committed
33
34
35
36
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
WenmuZhou's avatar
WenmuZhou committed
37
                    self.character_str.append(line)
WenmuZhou's avatar
WenmuZhou committed
38
            if use_space_char:
WenmuZhou's avatar
WenmuZhou committed
39
                self.character_str.append(" ")
WenmuZhou's avatar
WenmuZhou committed
40
            dict_character = list(self.character_str)
tink2123's avatar
tink2123 committed
41

WenmuZhou's avatar
WenmuZhou committed
42
43
44
45
46
47
48
49
50
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def add_special_char(self, dict_character):
        return dict_character

littletomatodonkey's avatar
littletomatodonkey committed
51
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
WenmuZhou's avatar
WenmuZhou committed
52
53
54
55
56
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
            selection = np.ones(len(text_index[batch_idx]), dtype=bool)
            if is_remove_duplicate:
                selection[1:] = text_index[batch_idx][1:] != text_index[
                    batch_idx][:-1]
            for ignored_token in ignored_tokens:
                selection &= text_index[batch_idx] != ignored_token

            char_list = [
                self.character[text_id]
                for text_id in text_index[batch_idx][selection]
            ]
            if text_prob is not None:
                conf_list = text_prob[batch_idx][selection]
            else:
                conf_list = [1] * len(selection)
            if len(conf_list) == 0:
                conf_list = [0]

WenmuZhou's avatar
WenmuZhou committed
75
            text = ''.join(char_list)
zhoujun's avatar
zhoujun committed
76
            result_list.append((text, np.mean(conf_list)))
WenmuZhou's avatar
WenmuZhou committed
77
78
79
80
81
82
83
84
85
        return result_list

    def get_ignored_tokens(self):
        return [0]  # for ctc blank


class CTCLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
86
    def __init__(self, character_dict_path=None, use_space_char=False,
WenmuZhou's avatar
WenmuZhou committed
87
88
                 **kwargs):
        super(CTCLabelDecode, self).__init__(character_dict_path,
tink2123's avatar
tink2123 committed
89
                                             use_space_char)
WenmuZhou's avatar
WenmuZhou committed
90
91

    def __call__(self, preds, label=None, *args, **kwargs):
LDOUBLEV's avatar
LDOUBLEV committed
92
        if isinstance(preds, tuple) or isinstance(preds, list):
93
            preds = preds[-1]
WenmuZhou's avatar
WenmuZhou committed
94
95
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
LDOUBLEV's avatar
LDOUBLEV committed
96
        print(preds.shape)
WenmuZhou's avatar
WenmuZhou committed
97
98
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
WenmuZhou's avatar
WenmuZhou committed
99
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
WenmuZhou's avatar
WenmuZhou committed
100
101
        if label is None:
            return text
littletomatodonkey's avatar
littletomatodonkey committed
102
        label = self.decode(label)
WenmuZhou's avatar
WenmuZhou committed
103
104
105
106
107
108
109
        return text, label

    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character
        return dict_character


littletomatodonkey's avatar
littletomatodonkey committed
110
111
112
113
114
115
116
117
118
class DistillationCTCLabelDecode(CTCLabelDecode):
    """
    Convert 
    Convert between text-label and text-index
    """

    def __init__(self,
                 character_dict_path=None,
                 use_space_char=False,
littletomatodonkey's avatar
littletomatodonkey committed
119
                 model_name=["student"],
120
                 key=None,
littletomatodonkey's avatar
littletomatodonkey committed
121
                 **kwargs):
tink2123's avatar
tink2123 committed
122
123
        super(DistillationCTCLabelDecode, self).__init__(character_dict_path,
                                                         use_space_char)
littletomatodonkey's avatar
littletomatodonkey committed
124
125
        if not isinstance(model_name, list):
            model_name = [model_name]
littletomatodonkey's avatar
littletomatodonkey committed
126
        self.model_name = model_name
littletomatodonkey's avatar
littletomatodonkey committed
127

128
        self.key = key
littletomatodonkey's avatar
littletomatodonkey committed
129
130

    def __call__(self, preds, label=None, *args, **kwargs):
littletomatodonkey's avatar
littletomatodonkey committed
131
132
133
134
135
136
137
        output = dict()
        for name in self.model_name:
            pred = preds[name]
            if self.key is not None:
                pred = pred[self.key]
            output[name] = super().__call__(pred, label=label, *args, **kwargs)
        return output
littletomatodonkey's avatar
littletomatodonkey committed
138
139


Topdu's avatar
Topdu committed
140
141
142
class NRTRLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
143
    def __init__(self, character_dict_path=None, use_space_char=True, **kwargs):
Topdu's avatar
Topdu committed
144
        super(NRTRLabelDecode, self).__init__(character_dict_path,
tink2123's avatar
tink2123 committed
145
                                              use_space_char)
Topdu's avatar
Topdu committed
146
147
148

    def __call__(self, preds, label=None, *args, **kwargs):

Topdu's avatar
Topdu committed
149
150
151
152
153
154
155
156
157
158
159
160
161
        if len(preds) == 2:
            preds_id = preds[0]
            preds_prob = preds[1]
            if isinstance(preds_id, paddle.Tensor):
                preds_id = preds_id.numpy()
            if isinstance(preds_prob, paddle.Tensor):
                preds_prob = preds_prob.numpy()
            if preds_id[0][0] == 2:
                preds_idx = preds_id[:, 1:]
                preds_prob = preds_prob[:, 1:]
            else:
                preds_idx = preds_id
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
Topdu's avatar
Topdu committed
162
163
            if label is None:
                return text
andyjpaddle's avatar
andyjpaddle committed
164
            label = self.decode(label[:, 1:])
Topdu's avatar
Topdu committed
165
166
167
168
169
170
171
172
        else:
            if isinstance(preds, paddle.Tensor):
                preds = preds.numpy()
            preds_idx = preds.argmax(axis=2)
            preds_prob = preds.max(axis=2)
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
            if label is None:
                return text
andyjpaddle's avatar
andyjpaddle committed
173
            label = self.decode(label[:, 1:])
Topdu's avatar
Topdu committed
174
175
176
        return text, label

    def add_special_char(self, dict_character):
andyjpaddle's avatar
andyjpaddle committed
177
        dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
Topdu's avatar
Topdu committed
178
        return dict_character
andyjpaddle's avatar
andyjpaddle committed
179

Topdu's avatar
Topdu committed
180
181
182
183
184
185
186
187
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
andyjpaddle's avatar
andyjpaddle committed
188
                if text_index[batch_idx][idx] == 3:  # end
Topdu's avatar
Topdu committed
189
190
                    break
                try:
andyjpaddle's avatar
andyjpaddle committed
191
192
                    char_list.append(self.character[int(text_index[batch_idx][
                        idx])])
Topdu's avatar
Topdu committed
193
194
195
196
197
198
199
200
201
202
203
                except:
                    continue
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
            result_list.append((text.lower(), np.mean(conf_list)))
        return result_list


WenmuZhou's avatar
WenmuZhou committed
204
205
206
class AttnLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
207
    def __init__(self, character_dict_path=None, use_space_char=False,
WenmuZhou's avatar
WenmuZhou committed
208
209
                 **kwargs):
        super(AttnLabelDecode, self).__init__(character_dict_path,
tink2123's avatar
tink2123 committed
210
                                              use_space_char)
WenmuZhou's avatar
WenmuZhou committed
211
212

    def add_special_char(self, dict_character):
LDOUBLEV's avatar
LDOUBLEV committed
213
214
215
216
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = dict_character
        dict_character = [self.beg_str] + dict_character + [self.end_str]
WenmuZhou's avatar
WenmuZhou committed
217
218
        return dict_character

LDOUBLEV's avatar
LDOUBLEV committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        [beg_idx, end_idx] = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if int(text_index[batch_idx][idx]) == int(end_idx):
                    break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
andyjpaddle's avatar
andyjpaddle committed
238
239
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
LDOUBLEV's avatar
LDOUBLEV committed
240
241
242
243
244
245
246
247
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
            result_list.append((text, np.mean(conf_list)))
        return result_list

LDOUBLEV's avatar
LDOUBLEV committed
248
249
    def __call__(self, preds, label=None, *args, **kwargs):
        """
WenmuZhou's avatar
WenmuZhou committed
250
        text = self.decode(text)
LDOUBLEV's avatar
LDOUBLEV committed
251
252
253
254
255
256
257
258
259
260
261
        if label is None:
            return text
        else:
            label = self.decode(label, is_remove_duplicate=False)
            return text, label
        """
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()

        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
LDOUBLEV's avatar
LDOUBLEV committed
262
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
LDOUBLEV's avatar
LDOUBLEV committed
263
264
        if label is None:
            return text
LDOUBLEV's avatar
LDOUBLEV committed
265
        label = self.decode(label, is_remove_duplicate=False)
LDOUBLEV's avatar
LDOUBLEV committed
266
267
        return text, label

WenmuZhou's avatar
WenmuZhou committed
268
269
270
271
272
273
274
275
276
277
278
279
280
    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
MissPenguin's avatar
MissPenguin committed
281
        return idx
tink2123's avatar
tink2123 committed
282
283


tink2123's avatar
tink2123 committed
284
285
286
class SEEDLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
287
    def __init__(self, character_dict_path=None, use_space_char=False,
tink2123's avatar
tink2123 committed
288
289
                 **kwargs):
        super(SEEDLabelDecode, self).__init__(character_dict_path,
tink2123's avatar
tink2123 committed
290
                                              use_space_char)
tink2123's avatar
tink2123 committed
291
292

    def add_special_char(self, dict_character):
tink2123's avatar
tink2123 committed
293
        self.padding_str = "padding"
tink2123's avatar
tink2123 committed
294
        self.end_str = "eos"
tink2123's avatar
tink2123 committed
295
296
297
298
        self.unknown = "unknown"
        dict_character = dict_character + [
            self.end_str, self.padding_str, self.unknown
        ]
tink2123's avatar
tink2123 committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
        return dict_character

    def get_ignored_tokens(self):
        end_idx = self.get_beg_end_flag_idx("eos")
        return [end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "sos":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "eos":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" % beg_or_end
        return idx

    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        [end_idx] = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if int(text_index[batch_idx][idx]) == int(end_idx):
                    break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
            result_list.append((text, np.mean(conf_list)))
        return result_list

    def __call__(self, preds, label=None, *args, **kwargs):
        """
        text = self.decode(text)
        if label is None:
            return text
        else:
            label = self.decode(label, is_remove_duplicate=False)
            return text, label
        """
        preds_idx = preds["rec_pred"]
        if isinstance(preds_idx, paddle.Tensor):
            preds_idx = preds_idx.numpy()
        if "rec_pred_scores" in preds:
            preds_idx = preds["rec_pred"]
            preds_prob = preds["rec_pred_scores"]
        else:
            preds_idx = preds["rec_pred"].argmax(axis=2)
            preds_prob = preds["rec_pred"].max(axis=2)
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
        if label is None:
            return text
        label = self.decode(label, is_remove_duplicate=False)
        return text, label


tink2123's avatar
tink2123 committed
365
366
367
class SRNLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
368
    def __init__(self, character_dict_path=None, use_space_char=False,
tink2123's avatar
tink2123 committed
369
370
                 **kwargs):
        super(SRNLabelDecode, self).__init__(character_dict_path,
tink2123's avatar
tink2123 committed
371
                                             use_space_char)
372
        self.max_text_length = kwargs.get('max_text_length', 25)
tink2123's avatar
tink2123 committed
373
374
375
376
377
378
379
380
381
382
383

    def __call__(self, preds, label=None, *args, **kwargs):
        pred = preds['predict']
        char_num = len(self.character_str) + 2
        if isinstance(pred, paddle.Tensor):
            pred = pred.numpy()
        pred = np.reshape(pred, [-1, char_num])

        preds_idx = np.argmax(pred, axis=1)
        preds_prob = np.max(pred, axis=1)

384
        preds_idx = np.reshape(preds_idx, [-1, self.max_text_length])
tink2123's avatar
tink2123 committed
385

386
        preds_prob = np.reshape(preds_prob, [-1, self.max_text_length])
tink2123's avatar
tink2123 committed
387

tink2123's avatar
tink2123 committed
388
        text = self.decode(preds_idx, preds_prob)
tink2123's avatar
tink2123 committed
389
390

        if label is None:
LDOUBLEV's avatar
LDOUBLEV committed
391
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
tink2123's avatar
tink2123 committed
392
            return text
tink2123's avatar
tink2123 committed
393
        label = self.decode(label)
tink2123's avatar
tink2123 committed
394
395
        return text, label

LDOUBLEV's avatar
LDOUBLEV committed
396
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
tink2123's avatar
tink2123 committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)

        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)

            text = ''.join(char_list)
            result_list.append((text, np.mean(conf_list)))
        return result_list

    def add_special_char(self, dict_character):
        dict_character = dict_character + [self.beg_str, self.end_str]
        return dict_character

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
WenmuZhou's avatar
WenmuZhou committed
442
443
444
445
446


class TableLabelDecode(object):
    """  """

andyjpaddle's avatar
andyjpaddle committed
447
448
449
    def __init__(self, character_dict_path, **kwargs):
        list_character, list_elem = self.load_char_elem_dict(
            character_dict_path)
WenmuZhou's avatar
WenmuZhou committed
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
        list_character = self.add_special_char(list_character)
        list_elem = self.add_special_char(list_elem)
        self.dict_character = {}
        self.dict_idx_character = {}
        for i, char in enumerate(list_character):
            self.dict_idx_character[i] = char
            self.dict_character[char] = i
        self.dict_elem = {}
        self.dict_idx_elem = {}
        for i, elem in enumerate(list_elem):
            self.dict_idx_elem[i] = elem
            self.dict_elem[elem] = i

    def load_char_elem_dict(self, character_dict_path):
        list_character = []
        list_elem = []
        with open(character_dict_path, "rb") as fin:
            lines = fin.readlines()
andyjpaddle's avatar
andyjpaddle committed
468
469
            substr = lines[0].decode('utf-8').strip("\n").strip("\r\n").split(
                "\t")
WenmuZhou's avatar
WenmuZhou committed
470
471
472
            character_num = int(substr[0])
            elem_num = int(substr[1])
            for cno in range(1, 1 + character_num):
WenmuZhou's avatar
WenmuZhou committed
473
                character = lines[cno].decode('utf-8').strip("\n").strip("\r\n")
WenmuZhou's avatar
WenmuZhou committed
474
475
                list_character.append(character)
            for eno in range(1 + character_num, 1 + character_num + elem_num):
WenmuZhou's avatar
WenmuZhou committed
476
                elem = lines[eno].decode('utf-8').strip("\n").strip("\r\n")
WenmuZhou's avatar
WenmuZhou committed
477
478
479
480
481
482
483
484
485
486
487
488
                list_elem.append(elem)
        return list_character, list_elem

    def add_special_char(self, list_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        list_character = [self.beg_str] + list_character + [self.end_str]
        return list_character

    def __call__(self, preds):
        structure_probs = preds['structure_probs']
        loc_preds = preds['loc_preds']
andyjpaddle's avatar
andyjpaddle committed
489
        if isinstance(structure_probs, paddle.Tensor):
WenmuZhou's avatar
WenmuZhou committed
490
            structure_probs = structure_probs.numpy()
andyjpaddle's avatar
andyjpaddle committed
491
        if isinstance(loc_preds, paddle.Tensor):
WenmuZhou's avatar
WenmuZhou committed
492
493
494
            loc_preds = loc_preds.numpy()
        structure_idx = structure_probs.argmax(axis=2)
        structure_probs = structure_probs.max(axis=2)
andyjpaddle's avatar
andyjpaddle committed
495
496
        structure_str, structure_pos, result_score_list, result_elem_idx_list = self.decode(
            structure_idx, structure_probs, 'elem')
WenmuZhou's avatar
WenmuZhou committed
497
498
499
500
501
502
503
504
505
506
507
508
509
510
        res_html_code_list = []
        res_loc_list = []
        batch_num = len(structure_str)
        for bno in range(batch_num):
            res_loc = []
            for sno in range(len(structure_str[bno])):
                text = structure_str[bno][sno]
                if text in ['<td>', '<td']:
                    pos = structure_pos[bno][sno]
                    res_loc.append(loc_preds[bno, pos])
            res_html_code = ''.join(structure_str[bno])
            res_loc = np.array(res_loc)
            res_html_code_list.append(res_html_code)
            res_loc_list.append(res_loc)
andyjpaddle's avatar
andyjpaddle committed
511
512
513
514
515
516
517
        return {
            'res_html_code': res_html_code_list,
            'res_loc': res_loc_list,
            'res_score_list': result_score_list,
            'res_elem_idx_list': result_elem_idx_list,
            'structure_str_list': structure_str
        }
WenmuZhou's avatar
WenmuZhou committed
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581

    def decode(self, text_index, structure_probs, char_or_elem):
        """convert text-label into text-index.
        """
        if char_or_elem == "char":
            current_dict = self.dict_idx_character
        else:
            current_dict = self.dict_idx_elem
            ignored_tokens = self.get_ignored_tokens('elem')
            beg_idx, end_idx = ignored_tokens

        result_list = []
        result_pos_list = []
        result_score_list = []
        result_elem_idx_list = []
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            elem_pos_list = []
            elem_idx_list = []
            score_list = []
            for idx in range(len(text_index[batch_idx])):
                tmp_elem_idx = int(text_index[batch_idx][idx])
                if idx > 0 and tmp_elem_idx == end_idx:
                    break
                if tmp_elem_idx in ignored_tokens:
                    continue

                char_list.append(current_dict[tmp_elem_idx])
                elem_pos_list.append(idx)
                score_list.append(structure_probs[batch_idx, idx])
                elem_idx_list.append(tmp_elem_idx)
            result_list.append(char_list)
            result_pos_list.append(elem_pos_list)
            result_score_list.append(score_list)
            result_elem_idx_list.append(elem_idx_list)
        return result_list, result_pos_list, result_score_list, result_elem_idx_list

    def get_ignored_tokens(self, char_or_elem):
        beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
        end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
        if char_or_elem == "char":
            if beg_or_end == "beg":
                idx = self.dict_character[self.beg_str]
            elif beg_or_end == "end":
                idx = self.dict_character[self.end_str]
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \
                              % beg_or_end
        elif char_or_elem == "elem":
            if beg_or_end == "beg":
                idx = self.dict_elem[self.beg_str]
            elif beg_or_end == "end":
                idx = self.dict_elem[self.end_str]
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \
                              % beg_or_end
        else:
            assert False, "Unsupport type %s in char_or_elem" \
                          % char_or_elem
        return idx
andyjpaddle's avatar
andyjpaddle committed
582
583
584
585
586


class SARLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
587
    def __init__(self, character_dict_path=None, use_space_char=False,
andyjpaddle's avatar
andyjpaddle committed
588
589
                 **kwargs):
        super(SARLabelDecode, self).__init__(character_dict_path,
tink2123's avatar
tink2123 committed
590
                                             use_space_char)
andyjpaddle's avatar
andyjpaddle committed
591

andyjpaddle's avatar
andyjpaddle committed
592
        self.rm_symbol = kwargs.get('rm_symbol', False)
andyjpaddle's avatar
andyjpaddle committed
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

    def add_special_char(self, dict_character):
        beg_end_str = "<BOS/EOS>"
        unknown_str = "<UKN>"
        padding_str = "<PAD>"
        dict_character = dict_character + [unknown_str]
        self.unknown_idx = len(dict_character) - 1
        dict_character = dict_character + [beg_end_str]
        self.start_idx = len(dict_character) - 1
        self.end_idx = len(dict_character) - 1
        dict_character = dict_character + [padding_str]
        self.padding_idx = len(dict_character) - 1
        return dict_character

    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
andyjpaddle's avatar
andyjpaddle committed
611

andyjpaddle's avatar
andyjpaddle committed
612
613
614
615
616
617
618
619
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if int(text_index[batch_idx][idx]) == int(self.end_idx):
andyjpaddle's avatar
andyjpaddle committed
620
                    if text_prob is None and idx == 0:
andyjpaddle's avatar
andyjpaddle committed
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
                        continue
                    else:
                        break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
636
637
638
639
            if self.rm_symbol:
                comp = re.compile('[^A-Z^a-z^0-9^\u4e00-\u9fa5]')
                text = text.lower()
                text = comp.sub('', text)
andyjpaddle's avatar
andyjpaddle committed
640
641
642
643
644
645
646
647
            result_list.append((text, np.mean(conf_list)))
        return result_list

    def __call__(self, preds, label=None, *args, **kwargs):
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
andyjpaddle's avatar
andyjpaddle committed
648

andyjpaddle's avatar
andyjpaddle committed
649
650
651
652
653
654
655
656
657
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)

        if label is None:
            return text
        label = self.decode(label, is_remove_duplicate=False)
        return text, label

    def get_ignored_tokens(self):
        return [self.padding_idx]
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717


class PRENLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self, character_dict_path=None, use_space_char=False,
                 **kwargs):
        super(PRENLabelDecode, self).__init__(character_dict_path,
                                              use_space_char)

    def add_special_char(self, dict_character):
        padding_str = '<PAD>'  # 0 
        end_str = '<EOS>'  # 1
        unknown_str = '<UNK>'  # 2

        dict_character = [padding_str, end_str, unknown_str] + dict_character
        self.padding_idx = 0
        self.end_idx = 1
        self.unknown_idx = 2

        return dict_character

    def decode(self, text_index, text_prob=None):
        """ convert text-index into text-label. """
        result_list = []
        batch_size = len(text_index)

        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] == self.end_idx:
                    break
                if text_index[batch_idx][idx] in \
                    [self.padding_idx, self.unknown_idx]:
                    continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)

            text = ''.join(char_list)
            if len(text) > 0:
                result_list.append((text, np.mean(conf_list)))
            else:
                # here confidence of empty recog result is 1
                result_list.append(('', 1))
        return result_list

    def __call__(self, preds, label=None, *args, **kwargs):
        preds = preds.numpy()
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
        text = self.decode(preds_idx, preds_prob)
        if label is None:
            return text
        label = self.decode(label)
        return text, label