rec_postprocess.py 26 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
tink2123's avatar
tink2123 committed
15
import string
WenmuZhou's avatar
WenmuZhou committed
16
17
import paddle
from paddle.nn import functional as F
andyjpaddle's avatar
andyjpaddle committed
18
import re
WenmuZhou's avatar
WenmuZhou committed
19
20
21
22
23
24
25
26
27


class BaseRecLabelDecode(object):
    """ Convert between text-label and text-index """

    def __init__(self,
                 character_dict_path=None,
                 character_type='ch',
                 use_space_char=False):
MissPenguin's avatar
MissPenguin committed
28
        support_character_type = [
tink2123's avatar
tink2123 committed
29
            'ch', 'en', 'EN_symbol', 'french', 'german', 'japan', 'korean',
tink2123's avatar
tink2123 committed
30
31
            'it', 'xi', 'pu', 'ru', 'ar', 'ta', 'ug', 'fa', 'ur', 'rs', 'oc',
            'rsc', 'bg', 'uk', 'be', 'te', 'ka', 'chinese_cht', 'hi', 'mr',
tink2123's avatar
tink2123 committed
32
            'ne', 'EN', 'latin', 'arabic', 'cyrillic', 'devanagari'
MissPenguin's avatar
MissPenguin committed
33
        ]
WenmuZhou's avatar
WenmuZhou committed
34
        assert character_type in support_character_type, "Only {} are supported now but get {}".format(
MissPenguin's avatar
MissPenguin committed
35
            support_character_type, character_type)
WenmuZhou's avatar
WenmuZhou committed
36

tink2123's avatar
tink2123 committed
37
38
39
        self.beg_str = "sos"
        self.end_str = "eos"

WenmuZhou's avatar
WenmuZhou committed
40
41
42
        if character_type == "en":
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
tink2123's avatar
tink2123 committed
43
        elif character_type == "EN_symbol":
tink2123's avatar
tink2123 committed
44
45
46
47
            # same with ASTER setting (use 94 char).
            self.character_str = string.printable[:-6]
            dict_character = list(self.character_str)
        elif character_type in support_character_type:
WenmuZhou's avatar
WenmuZhou committed
48
            self.character_str = []
tink2123's avatar
tink2123 committed
49
50
            assert character_dict_path is not None, "character_dict_path should not be None when character_type is {}".format(
                character_type)
WenmuZhou's avatar
WenmuZhou committed
51
52
53
54
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
WenmuZhou's avatar
WenmuZhou committed
55
                    self.character_str.append(line)
WenmuZhou's avatar
WenmuZhou committed
56
            if use_space_char:
WenmuZhou's avatar
WenmuZhou committed
57
                self.character_str.append(" ")
WenmuZhou's avatar
WenmuZhou committed
58
            dict_character = list(self.character_str)
tink2123's avatar
tink2123 committed
59

WenmuZhou's avatar
WenmuZhou committed
60
61
62
63
64
65
66
67
68
69
70
71
        else:
            raise NotImplementedError
        self.character_type = character_type
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def add_special_char(self, dict_character):
        return dict_character

littletomatodonkey's avatar
littletomatodonkey committed
72
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
WenmuZhou's avatar
WenmuZhou committed
73
74
75
76
77
78
79
80
81
82
83
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if is_remove_duplicate:
84
                    # only for predict
WenmuZhou's avatar
WenmuZhou committed
85
86
87
88
89
90
91
92
93
94
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
zhoujun's avatar
zhoujun committed
95
            result_list.append((text, np.mean(conf_list)))
WenmuZhou's avatar
WenmuZhou committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        return result_list

    def get_ignored_tokens(self):
        return [0]  # for ctc blank


class CTCLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 character_dict_path=None,
                 character_type='ch',
                 use_space_char=False,
                 **kwargs):
        super(CTCLabelDecode, self).__init__(character_dict_path,
                                             character_type, use_space_char)

    def __call__(self, preds, label=None, *args, **kwargs):
WenmuZhou's avatar
WenmuZhou committed
114
115
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
WenmuZhou's avatar
WenmuZhou committed
116
117
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
WenmuZhou's avatar
WenmuZhou committed
118
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
WenmuZhou's avatar
WenmuZhou committed
119
120
        if label is None:
            return text
littletomatodonkey's avatar
littletomatodonkey committed
121
        label = self.decode(label)
WenmuZhou's avatar
WenmuZhou committed
122
123
124
125
126
127
128
        return text, label

    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character
        return dict_character


littletomatodonkey's avatar
littletomatodonkey committed
129
130
131
132
133
134
135
136
137
138
class DistillationCTCLabelDecode(CTCLabelDecode):
    """
    Convert 
    Convert between text-label and text-index
    """

    def __init__(self,
                 character_dict_path=None,
                 character_type='ch',
                 use_space_char=False,
littletomatodonkey's avatar
littletomatodonkey committed
139
                 model_name=["student"],
140
                 key=None,
littletomatodonkey's avatar
littletomatodonkey committed
141
142
143
                 **kwargs):
        super(DistillationCTCLabelDecode, self).__init__(
            character_dict_path, character_type, use_space_char)
littletomatodonkey's avatar
littletomatodonkey committed
144
145
        if not isinstance(model_name, list):
            model_name = [model_name]
littletomatodonkey's avatar
littletomatodonkey committed
146
        self.model_name = model_name
littletomatodonkey's avatar
littletomatodonkey committed
147

148
        self.key = key
littletomatodonkey's avatar
littletomatodonkey committed
149
150

    def __call__(self, preds, label=None, *args, **kwargs):
littletomatodonkey's avatar
littletomatodonkey committed
151
152
153
154
155
156
157
        output = dict()
        for name in self.model_name:
            pred = preds[name]
            if self.key is not None:
                pred = pred[self.key]
            output[name] = super().__call__(pred, label=label, *args, **kwargs)
        return output
littletomatodonkey's avatar
littletomatodonkey committed
158
159


Topdu's avatar
Topdu committed
160
161
162
163
164
165
166
167
168
class NRTRLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 character_dict_path=None,
                 character_type='EN_symbol',
                 use_space_char=True,
                 **kwargs):
        super(NRTRLabelDecode, self).__init__(character_dict_path,
andyjpaddle's avatar
andyjpaddle committed
169
                                              character_type, use_space_char)
Topdu's avatar
Topdu committed
170
171
172

    def __call__(self, preds, label=None, *args, **kwargs):

Topdu's avatar
Topdu committed
173
174
175
176
177
178
179
180
181
182
183
184
185
        if len(preds) == 2:
            preds_id = preds[0]
            preds_prob = preds[1]
            if isinstance(preds_id, paddle.Tensor):
                preds_id = preds_id.numpy()
            if isinstance(preds_prob, paddle.Tensor):
                preds_prob = preds_prob.numpy()
            if preds_id[0][0] == 2:
                preds_idx = preds_id[:, 1:]
                preds_prob = preds_prob[:, 1:]
            else:
                preds_idx = preds_id
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
Topdu's avatar
Topdu committed
186
187
            if label is None:
                return text
andyjpaddle's avatar
andyjpaddle committed
188
            label = self.decode(label[:, 1:])
Topdu's avatar
Topdu committed
189
190
191
192
193
194
195
196
        else:
            if isinstance(preds, paddle.Tensor):
                preds = preds.numpy()
            preds_idx = preds.argmax(axis=2)
            preds_prob = preds.max(axis=2)
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
            if label is None:
                return text
andyjpaddle's avatar
andyjpaddle committed
197
            label = self.decode(label[:, 1:])
Topdu's avatar
Topdu committed
198
199
200
        return text, label

    def add_special_char(self, dict_character):
andyjpaddle's avatar
andyjpaddle committed
201
        dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
Topdu's avatar
Topdu committed
202
        return dict_character
andyjpaddle's avatar
andyjpaddle committed
203

Topdu's avatar
Topdu committed
204
205
206
207
208
209
210
211
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
andyjpaddle's avatar
andyjpaddle committed
212
                if text_index[batch_idx][idx] == 3:  # end
Topdu's avatar
Topdu committed
213
214
                    break
                try:
andyjpaddle's avatar
andyjpaddle committed
215
216
                    char_list.append(self.character[int(text_index[batch_idx][
                        idx])])
Topdu's avatar
Topdu committed
217
218
219
220
221
222
223
224
225
226
227
                except:
                    continue
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
            result_list.append((text.lower(), np.mean(conf_list)))
        return result_list


WenmuZhou's avatar
WenmuZhou committed
228
229
230
231
232
233
234
235
236
237
238
239
class AttnLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 character_dict_path=None,
                 character_type='ch',
                 use_space_char=False,
                 **kwargs):
        super(AttnLabelDecode, self).__init__(character_dict_path,
                                              character_type, use_space_char)

    def add_special_char(self, dict_character):
LDOUBLEV's avatar
LDOUBLEV committed
240
241
242
243
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = dict_character
        dict_character = [self.beg_str] + dict_character + [self.end_str]
WenmuZhou's avatar
WenmuZhou committed
244
245
        return dict_character

LDOUBLEV's avatar
LDOUBLEV committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        [beg_idx, end_idx] = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if int(text_index[batch_idx][idx]) == int(end_idx):
                    break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
andyjpaddle's avatar
andyjpaddle committed
265
266
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
LDOUBLEV's avatar
LDOUBLEV committed
267
268
269
270
271
272
273
274
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
            result_list.append((text, np.mean(conf_list)))
        return result_list

LDOUBLEV's avatar
LDOUBLEV committed
275
276
    def __call__(self, preds, label=None, *args, **kwargs):
        """
WenmuZhou's avatar
WenmuZhou committed
277
        text = self.decode(text)
LDOUBLEV's avatar
LDOUBLEV committed
278
279
280
281
282
283
284
285
286
287
288
        if label is None:
            return text
        else:
            label = self.decode(label, is_remove_duplicate=False)
            return text, label
        """
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()

        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
LDOUBLEV's avatar
LDOUBLEV committed
289
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
LDOUBLEV's avatar
LDOUBLEV committed
290
291
        if label is None:
            return text
LDOUBLEV's avatar
LDOUBLEV committed
292
        label = self.decode(label, is_remove_duplicate=False)
LDOUBLEV's avatar
LDOUBLEV committed
293
294
        return text, label

WenmuZhou's avatar
WenmuZhou committed
295
296
297
298
299
300
301
302
303
304
305
306
307
    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
MissPenguin's avatar
MissPenguin committed
308
        return idx
tink2123's avatar
tink2123 committed
309
310


tink2123's avatar
tink2123 committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
class SEEDLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 character_dict_path=None,
                 character_type='ch',
                 use_space_char=False,
                 **kwargs):
        super(SEEDLabelDecode, self).__init__(character_dict_path,
                                              character_type, use_space_char)

    def add_special_char(self, dict_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = dict_character + [self.end_str]
        return dict_character

    def get_ignored_tokens(self):
        end_idx = self.get_beg_end_flag_idx("eos")
        return [end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "sos":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "eos":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" % beg_or_end
        return idx

    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        [end_idx] = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if int(text_index[batch_idx][idx]) == int(end_idx):
                    break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
            result_list.append((text, np.mean(conf_list)))
        return result_list

    def __call__(self, preds, label=None, *args, **kwargs):
        """
        text = self.decode(text)
        if label is None:
            return text
        else:
            label = self.decode(label, is_remove_duplicate=False)
            return text, label
        """
        preds_idx = preds["rec_pred"]
        if isinstance(preds_idx, paddle.Tensor):
            preds_idx = preds_idx.numpy()
        if "rec_pred_scores" in preds:
            preds_idx = preds["rec_pred"]
            preds_prob = preds["rec_pred_scores"]
        else:
            preds_idx = preds["rec_pred"].argmax(axis=2)
            preds_prob = preds["rec_pred"].max(axis=2)
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
        if label is None:
            return text
        label = self.decode(label, is_remove_duplicate=False)
        return text, label


tink2123's avatar
tink2123 committed
392
393
394
395
396
397
398
399
400
401
class SRNLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 character_dict_path=None,
                 character_type='en',
                 use_space_char=False,
                 **kwargs):
        super(SRNLabelDecode, self).__init__(character_dict_path,
                                             character_type, use_space_char)
402
        self.max_text_length = kwargs.get('max_text_length', 25)
tink2123's avatar
tink2123 committed
403
404
405
406
407
408
409
410
411
412
413

    def __call__(self, preds, label=None, *args, **kwargs):
        pred = preds['predict']
        char_num = len(self.character_str) + 2
        if isinstance(pred, paddle.Tensor):
            pred = pred.numpy()
        pred = np.reshape(pred, [-1, char_num])

        preds_idx = np.argmax(pred, axis=1)
        preds_prob = np.max(pred, axis=1)

414
        preds_idx = np.reshape(preds_idx, [-1, self.max_text_length])
tink2123's avatar
tink2123 committed
415

416
        preds_prob = np.reshape(preds_prob, [-1, self.max_text_length])
tink2123's avatar
tink2123 committed
417

tink2123's avatar
tink2123 committed
418
        text = self.decode(preds_idx, preds_prob)
tink2123's avatar
tink2123 committed
419
420

        if label is None:
LDOUBLEV's avatar
LDOUBLEV committed
421
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
tink2123's avatar
tink2123 committed
422
            return text
tink2123's avatar
tink2123 committed
423
        label = self.decode(label)
tink2123's avatar
tink2123 committed
424
425
        return text, label

LDOUBLEV's avatar
LDOUBLEV committed
426
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
tink2123's avatar
tink2123 committed
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)

        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)

            text = ''.join(char_list)
            result_list.append((text, np.mean(conf_list)))
        return result_list

    def add_special_char(self, dict_character):
        dict_character = dict_character + [self.beg_str, self.end_str]
        return dict_character

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
WenmuZhou's avatar
WenmuZhou committed
472
473
474
475
476


class TableLabelDecode(object):
    """  """

andyjpaddle's avatar
andyjpaddle committed
477
478
479
    def __init__(self, character_dict_path, **kwargs):
        list_character, list_elem = self.load_char_elem_dict(
            character_dict_path)
WenmuZhou's avatar
WenmuZhou committed
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
        list_character = self.add_special_char(list_character)
        list_elem = self.add_special_char(list_elem)
        self.dict_character = {}
        self.dict_idx_character = {}
        for i, char in enumerate(list_character):
            self.dict_idx_character[i] = char
            self.dict_character[char] = i
        self.dict_elem = {}
        self.dict_idx_elem = {}
        for i, elem in enumerate(list_elem):
            self.dict_idx_elem[i] = elem
            self.dict_elem[elem] = i

    def load_char_elem_dict(self, character_dict_path):
        list_character = []
        list_elem = []
        with open(character_dict_path, "rb") as fin:
            lines = fin.readlines()
andyjpaddle's avatar
andyjpaddle committed
498
499
            substr = lines[0].decode('utf-8').strip("\n").strip("\r\n").split(
                "\t")
WenmuZhou's avatar
WenmuZhou committed
500
501
502
            character_num = int(substr[0])
            elem_num = int(substr[1])
            for cno in range(1, 1 + character_num):
WenmuZhou's avatar
WenmuZhou committed
503
                character = lines[cno].decode('utf-8').strip("\n").strip("\r\n")
WenmuZhou's avatar
WenmuZhou committed
504
505
                list_character.append(character)
            for eno in range(1 + character_num, 1 + character_num + elem_num):
WenmuZhou's avatar
WenmuZhou committed
506
                elem = lines[eno].decode('utf-8').strip("\n").strip("\r\n")
WenmuZhou's avatar
WenmuZhou committed
507
508
509
510
511
512
513
514
515
516
517
518
                list_elem.append(elem)
        return list_character, list_elem

    def add_special_char(self, list_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        list_character = [self.beg_str] + list_character + [self.end_str]
        return list_character

    def __call__(self, preds):
        structure_probs = preds['structure_probs']
        loc_preds = preds['loc_preds']
andyjpaddle's avatar
andyjpaddle committed
519
        if isinstance(structure_probs, paddle.Tensor):
WenmuZhou's avatar
WenmuZhou committed
520
            structure_probs = structure_probs.numpy()
andyjpaddle's avatar
andyjpaddle committed
521
        if isinstance(loc_preds, paddle.Tensor):
WenmuZhou's avatar
WenmuZhou committed
522
523
524
            loc_preds = loc_preds.numpy()
        structure_idx = structure_probs.argmax(axis=2)
        structure_probs = structure_probs.max(axis=2)
andyjpaddle's avatar
andyjpaddle committed
525
526
        structure_str, structure_pos, result_score_list, result_elem_idx_list = self.decode(
            structure_idx, structure_probs, 'elem')
WenmuZhou's avatar
WenmuZhou committed
527
528
529
530
531
532
533
534
535
536
537
538
539
540
        res_html_code_list = []
        res_loc_list = []
        batch_num = len(structure_str)
        for bno in range(batch_num):
            res_loc = []
            for sno in range(len(structure_str[bno])):
                text = structure_str[bno][sno]
                if text in ['<td>', '<td']:
                    pos = structure_pos[bno][sno]
                    res_loc.append(loc_preds[bno, pos])
            res_html_code = ''.join(structure_str[bno])
            res_loc = np.array(res_loc)
            res_html_code_list.append(res_html_code)
            res_loc_list.append(res_loc)
andyjpaddle's avatar
andyjpaddle committed
541
542
543
544
545
546
547
        return {
            'res_html_code': res_html_code_list,
            'res_loc': res_loc_list,
            'res_score_list': result_score_list,
            'res_elem_idx_list': result_elem_idx_list,
            'structure_str_list': structure_str
        }
WenmuZhou's avatar
WenmuZhou committed
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611

    def decode(self, text_index, structure_probs, char_or_elem):
        """convert text-label into text-index.
        """
        if char_or_elem == "char":
            current_dict = self.dict_idx_character
        else:
            current_dict = self.dict_idx_elem
            ignored_tokens = self.get_ignored_tokens('elem')
            beg_idx, end_idx = ignored_tokens

        result_list = []
        result_pos_list = []
        result_score_list = []
        result_elem_idx_list = []
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            elem_pos_list = []
            elem_idx_list = []
            score_list = []
            for idx in range(len(text_index[batch_idx])):
                tmp_elem_idx = int(text_index[batch_idx][idx])
                if idx > 0 and tmp_elem_idx == end_idx:
                    break
                if tmp_elem_idx in ignored_tokens:
                    continue

                char_list.append(current_dict[tmp_elem_idx])
                elem_pos_list.append(idx)
                score_list.append(structure_probs[batch_idx, idx])
                elem_idx_list.append(tmp_elem_idx)
            result_list.append(char_list)
            result_pos_list.append(elem_pos_list)
            result_score_list.append(score_list)
            result_elem_idx_list.append(elem_idx_list)
        return result_list, result_pos_list, result_score_list, result_elem_idx_list

    def get_ignored_tokens(self, char_or_elem):
        beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
        end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
        if char_or_elem == "char":
            if beg_or_end == "beg":
                idx = self.dict_character[self.beg_str]
            elif beg_or_end == "end":
                idx = self.dict_character[self.end_str]
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \
                              % beg_or_end
        elif char_or_elem == "elem":
            if beg_or_end == "beg":
                idx = self.dict_elem[self.beg_str]
            elif beg_or_end == "end":
                idx = self.dict_elem[self.end_str]
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \
                              % beg_or_end
        else:
            assert False, "Unsupport type %s in char_or_elem" \
                          % char_or_elem
        return idx
andyjpaddle's avatar
andyjpaddle committed
612
613
614
615
616
617
618
619
620
621
622


class SARLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 character_dict_path=None,
                 character_type='ch',
                 use_space_char=False,
                 **kwargs):
        super(SARLabelDecode, self).__init__(character_dict_path,
andyjpaddle's avatar
andyjpaddle committed
623
624
                                             character_type, use_space_char)

andyjpaddle's avatar
andyjpaddle committed
625
        self.rm_symbol = kwargs.get('rm_symbol', False)
andyjpaddle's avatar
andyjpaddle committed
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

    def add_special_char(self, dict_character):
        beg_end_str = "<BOS/EOS>"
        unknown_str = "<UKN>"
        padding_str = "<PAD>"
        dict_character = dict_character + [unknown_str]
        self.unknown_idx = len(dict_character) - 1
        dict_character = dict_character + [beg_end_str]
        self.start_idx = len(dict_character) - 1
        self.end_idx = len(dict_character) - 1
        dict_character = dict_character + [padding_str]
        self.padding_idx = len(dict_character) - 1
        return dict_character

    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
andyjpaddle's avatar
andyjpaddle committed
644

andyjpaddle's avatar
andyjpaddle committed
645
646
647
648
649
650
651
652
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if int(text_index[batch_idx][idx]) == int(self.end_idx):
andyjpaddle's avatar
andyjpaddle committed
653
                    if text_prob is None and idx == 0:
andyjpaddle's avatar
andyjpaddle committed
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
                        continue
                    else:
                        break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
669
670
671
672
            if self.rm_symbol:
                comp = re.compile('[^A-Z^a-z^0-9^\u4e00-\u9fa5]')
                text = text.lower()
                text = comp.sub('', text)
andyjpaddle's avatar
andyjpaddle committed
673
674
675
676
677
678
679
680
            result_list.append((text, np.mean(conf_list)))
        return result_list

    def __call__(self, preds, label=None, *args, **kwargs):
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
andyjpaddle's avatar
andyjpaddle committed
681

andyjpaddle's avatar
andyjpaddle committed
682
683
684
685
686
687
688
689
690
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)

        if label is None:
            return text
        label = self.decode(label, is_remove_duplicate=False)
        return text, label

    def get_ignored_tokens(self):
        return [self.padding_idx]