rec_postprocess.py 10.4 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
tink2123's avatar
tink2123 committed
15
import string
WenmuZhou's avatar
WenmuZhou committed
16
17
18
19
20
21
22
23
24
25
26
import paddle
from paddle.nn import functional as F


class BaseRecLabelDecode(object):
    """ Convert between text-label and text-index """

    def __init__(self,
                 character_dict_path=None,
                 character_type='ch',
                 use_space_char=False):
MissPenguin's avatar
MissPenguin committed
27
        support_character_type = [
tink2123's avatar
tink2123 committed
28
            'ch', 'en', 'EN_symbol', 'french', 'german', 'japan', 'korean',
tink2123's avatar
tink2123 committed
29
30
            'it', 'xi', 'pu', 'ru', 'ar', 'ta', 'ug', 'fa', 'ur', 'rs', 'oc',
            'rsc', 'bg', 'uk', 'be', 'te', 'ka', 'chinese_cht', 'hi', 'mr',
tink2123's avatar
tink2123 committed
31
            'ne', 'EN'
MissPenguin's avatar
MissPenguin committed
32
        ]
WenmuZhou's avatar
WenmuZhou committed
33
        assert character_type in support_character_type, "Only {} are supported now but get {}".format(
MissPenguin's avatar
MissPenguin committed
34
            support_character_type, character_type)
WenmuZhou's avatar
WenmuZhou committed
35

tink2123's avatar
tink2123 committed
36
37
38
        self.beg_str = "sos"
        self.end_str = "eos"

WenmuZhou's avatar
WenmuZhou committed
39
40
41
        if character_type == "en":
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
tink2123's avatar
tink2123 committed
42
        elif character_type == "EN_symbol":
tink2123's avatar
tink2123 committed
43
44
45
46
            # same with ASTER setting (use 94 char).
            self.character_str = string.printable[:-6]
            dict_character = list(self.character_str)
        elif character_type in support_character_type:
WenmuZhou's avatar
WenmuZhou committed
47
            self.character_str = ""
tink2123's avatar
tink2123 committed
48
49
            assert character_dict_path is not None, "character_dict_path should not be None when character_type is {}".format(
                character_type)
WenmuZhou's avatar
WenmuZhou committed
50
51
52
53
54
55
56
57
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
                    self.character_str += line
            if use_space_char:
                self.character_str += " "
            dict_character = list(self.character_str)
tink2123's avatar
tink2123 committed
58

WenmuZhou's avatar
WenmuZhou committed
59
60
61
62
63
64
65
66
67
68
69
70
        else:
            raise NotImplementedError
        self.character_type = character_type
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def add_special_char(self, dict_character):
        return dict_character

littletomatodonkey's avatar
littletomatodonkey committed
71
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
WenmuZhou's avatar
WenmuZhou committed
72
73
74
75
76
77
78
79
80
81
82
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if is_remove_duplicate:
83
                    # only for predict
WenmuZhou's avatar
WenmuZhou committed
84
85
86
87
88
89
90
91
92
93
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
zhoujun's avatar
zhoujun committed
94
            result_list.append((text, np.mean(conf_list)))
WenmuZhou's avatar
WenmuZhou committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        return result_list

    def get_ignored_tokens(self):
        return [0]  # for ctc blank


class CTCLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 character_dict_path=None,
                 character_type='ch',
                 use_space_char=False,
                 **kwargs):
        super(CTCLabelDecode, self).__init__(character_dict_path,
                                             character_type, use_space_char)

    def __call__(self, preds, label=None, *args, **kwargs):
WenmuZhou's avatar
WenmuZhou committed
113
114
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
WenmuZhou's avatar
WenmuZhou committed
115
116
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
WenmuZhou's avatar
WenmuZhou committed
117
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
WenmuZhou's avatar
WenmuZhou committed
118
119
        if label is None:
            return text
littletomatodonkey's avatar
littletomatodonkey committed
120
        label = self.decode(label)
WenmuZhou's avatar
WenmuZhou committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
        return text, label

    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character
        return dict_character


class AttnLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 character_dict_path=None,
                 character_type='ch',
                 use_space_char=False,
                 **kwargs):
        super(AttnLabelDecode, self).__init__(character_dict_path,
                                              character_type, use_space_char)

    def add_special_char(self, dict_character):
LDOUBLEV's avatar
LDOUBLEV committed
140
141
142
143
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = dict_character
        dict_character = [self.beg_str] + dict_character + [self.end_str]
WenmuZhou's avatar
WenmuZhou committed
144
145
        return dict_character

LDOUBLEV's avatar
LDOUBLEV committed
146
147
    def __call__(self, preds, label=None, *args, **kwargs):
        """
WenmuZhou's avatar
WenmuZhou committed
148
        text = self.decode(text)
LDOUBLEV's avatar
LDOUBLEV committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
        if label is None:
            return text
        else:
            label = self.decode(label, is_remove_duplicate=False)
            return text, label
        """
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()

        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
        if label is None:
            return text
        label = self.decode(label, is_remove_duplicate=True)
        return text, label

    def encoder(self, labels, labels_length):
        """
        used to encoder labels readed from LMDB dataset, forexample:
        [35, 25, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] encode to
        'you': [0, 35,25,31, 37, 0, ...] 'sos'you'eos'
        """
        if isinstance(labels, paddle.Tensor):
            labels = labels.numpy()
        batch_max_length = labels.shape[
            1] + 2  # add start token 'sos' and end token 'eos'
        new_labels = np.zeros(
            [labels.shape[0], batch_max_length]).astype(np.int64)
        for i in range(labels.shape[0]):
            new_labels[i, 1:1 + labels_length[i]] = labels[i, :labels_length[
                i]]  # new_labels[i, 0] = 'sos' token
            new_labels[i, labels_length[i] + 1] = len(
                self.character) - 1  # add end charactor 'eos' token
        return new_labels
WenmuZhou's avatar
WenmuZhou committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
MissPenguin's avatar
MissPenguin committed
198
        return idx
tink2123's avatar
tink2123 committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225


class SRNLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 character_dict_path=None,
                 character_type='en',
                 use_space_char=False,
                 **kwargs):
        super(SRNLabelDecode, self).__init__(character_dict_path,
                                             character_type, use_space_char)

    def __call__(self, preds, label=None, *args, **kwargs):
        pred = preds['predict']
        char_num = len(self.character_str) + 2
        if isinstance(pred, paddle.Tensor):
            pred = pred.numpy()
        pred = np.reshape(pred, [-1, char_num])

        preds_idx = np.argmax(pred, axis=1)
        preds_prob = np.max(pred, axis=1)

        preds_idx = np.reshape(preds_idx, [-1, 25])

        preds_prob = np.reshape(preds_prob, [-1, 25])

tink2123's avatar
tink2123 committed
226
        text = self.decode(preds_idx, preds_prob)
tink2123's avatar
tink2123 committed
227
228

        if label is None:
tink2123's avatar
tink2123 committed
229
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
tink2123's avatar
tink2123 committed
230
            return text
tink2123's avatar
tink2123 committed
231
        label = self.decode(label)
tink2123's avatar
tink2123 committed
232
233
        return text, label

tink2123's avatar
tink2123 committed
234
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
tink2123's avatar
tink2123 committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)

        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)

            text = ''.join(char_list)
            result_list.append((text, np.mean(conf_list)))
        return result_list

    def add_special_char(self, dict_character):
        dict_character = dict_character + [self.beg_str, self.end_str]
        return dict_character

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx