rec_postprocess.py 17.6 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
tink2123's avatar
tink2123 committed
15
import string
WenmuZhou's avatar
WenmuZhou committed
16
17
18
19
20
21
22
23
24
25
26
import paddle
from paddle.nn import functional as F


class BaseRecLabelDecode(object):
    """ Convert between text-label and text-index """

    def __init__(self,
                 character_dict_path=None,
                 character_type='ch',
                 use_space_char=False):
MissPenguin's avatar
MissPenguin committed
27
        support_character_type = [
tink2123's avatar
tink2123 committed
28
            'ch', 'en', 'EN_symbol', 'french', 'german', 'japan', 'korean',
tink2123's avatar
tink2123 committed
29
30
            'it', 'xi', 'pu', 'ru', 'ar', 'ta', 'ug', 'fa', 'ur', 'rs', 'oc',
            'rsc', 'bg', 'uk', 'be', 'te', 'ka', 'chinese_cht', 'hi', 'mr',
tink2123's avatar
tink2123 committed
31
            'ne', 'EN', 'latin', 'arabic', 'cyrillic', 'devanagari'
MissPenguin's avatar
MissPenguin committed
32
        ]
WenmuZhou's avatar
WenmuZhou committed
33
        assert character_type in support_character_type, "Only {} are supported now but get {}".format(
MissPenguin's avatar
MissPenguin committed
34
            support_character_type, character_type)
WenmuZhou's avatar
WenmuZhou committed
35

tink2123's avatar
tink2123 committed
36
37
38
        self.beg_str = "sos"
        self.end_str = "eos"

WenmuZhou's avatar
WenmuZhou committed
39
40
41
        if character_type == "en":
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
tink2123's avatar
tink2123 committed
42
        elif character_type == "EN_symbol":
tink2123's avatar
tink2123 committed
43
44
45
46
            # same with ASTER setting (use 94 char).
            self.character_str = string.printable[:-6]
            dict_character = list(self.character_str)
        elif character_type in support_character_type:
WenmuZhou's avatar
WenmuZhou committed
47
            self.character_str = []
tink2123's avatar
tink2123 committed
48
49
            assert character_dict_path is not None, "character_dict_path should not be None when character_type is {}".format(
                character_type)
WenmuZhou's avatar
WenmuZhou committed
50
51
52
53
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
WenmuZhou's avatar
WenmuZhou committed
54
                    self.character_str.append(line)
WenmuZhou's avatar
WenmuZhou committed
55
            if use_space_char:
WenmuZhou's avatar
WenmuZhou committed
56
                self.character_str.append(" ")
WenmuZhou's avatar
WenmuZhou committed
57
            dict_character = list(self.character_str)
tink2123's avatar
tink2123 committed
58

WenmuZhou's avatar
WenmuZhou committed
59
60
61
62
63
64
65
66
67
68
69
70
        else:
            raise NotImplementedError
        self.character_type = character_type
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def add_special_char(self, dict_character):
        return dict_character

littletomatodonkey's avatar
littletomatodonkey committed
71
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
WenmuZhou's avatar
WenmuZhou committed
72
73
74
75
76
77
78
79
80
81
82
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if is_remove_duplicate:
83
                    # only for predict
WenmuZhou's avatar
WenmuZhou committed
84
85
86
87
88
89
90
91
92
93
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
zhoujun's avatar
zhoujun committed
94
            result_list.append((text, np.mean(conf_list)))
WenmuZhou's avatar
WenmuZhou committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        return result_list

    def get_ignored_tokens(self):
        return [0]  # for ctc blank


class CTCLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 character_dict_path=None,
                 character_type='ch',
                 use_space_char=False,
                 **kwargs):
        super(CTCLabelDecode, self).__init__(character_dict_path,
                                             character_type, use_space_char)

    def __call__(self, preds, label=None, *args, **kwargs):
WenmuZhou's avatar
WenmuZhou committed
113
114
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
WenmuZhou's avatar
WenmuZhou committed
115
116
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
WenmuZhou's avatar
WenmuZhou committed
117
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
WenmuZhou's avatar
WenmuZhou committed
118
119
        if label is None:
            return text
littletomatodonkey's avatar
littletomatodonkey committed
120
        label = self.decode(label)
WenmuZhou's avatar
WenmuZhou committed
121
122
123
124
125
126
127
        return text, label

    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character
        return dict_character


littletomatodonkey's avatar
littletomatodonkey committed
128
129
130
131
132
133
134
135
136
137
class DistillationCTCLabelDecode(CTCLabelDecode):
    """
    Convert 
    Convert between text-label and text-index
    """

    def __init__(self,
                 character_dict_path=None,
                 character_type='ch',
                 use_space_char=False,
littletomatodonkey's avatar
littletomatodonkey committed
138
                 model_name=["student"],
139
                 key=None,
littletomatodonkey's avatar
littletomatodonkey committed
140
141
142
                 **kwargs):
        super(DistillationCTCLabelDecode, self).__init__(
            character_dict_path, character_type, use_space_char)
littletomatodonkey's avatar
littletomatodonkey committed
143
144
        if not isinstance(model_name, list):
            model_name = [model_name]
littletomatodonkey's avatar
littletomatodonkey committed
145
        self.model_name = model_name
littletomatodonkey's avatar
littletomatodonkey committed
146

147
        self.key = key
littletomatodonkey's avatar
littletomatodonkey committed
148
149

    def __call__(self, preds, label=None, *args, **kwargs):
littletomatodonkey's avatar
littletomatodonkey committed
150
151
152
153
154
155
156
        output = dict()
        for name in self.model_name:
            pred = preds[name]
            if self.key is not None:
                pred = pred[self.key]
            output[name] = super().__call__(pred, label=label, *args, **kwargs)
        return output
littletomatodonkey's avatar
littletomatodonkey committed
157
158


WenmuZhou's avatar
WenmuZhou committed
159
160
161
162
163
164
165
166
167
168
169
170
class AttnLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 character_dict_path=None,
                 character_type='ch',
                 use_space_char=False,
                 **kwargs):
        super(AttnLabelDecode, self).__init__(character_dict_path,
                                              character_type, use_space_char)

    def add_special_char(self, dict_character):
LDOUBLEV's avatar
LDOUBLEV committed
171
172
        self.beg_str = "sos"
        self.end_str = "eos"
tink2123's avatar
tink2123 committed
173
        self.unkonwn = "UNKNOWN"
LDOUBLEV's avatar
LDOUBLEV committed
174
        dict_character = dict_character
tink2123's avatar
tink2123 committed
175
176
        dict_character = [self.beg_str] + dict_character + [self.end_str
                                                            ] + [self.unkonwn]
WenmuZhou's avatar
WenmuZhou committed
177
178
        return dict_character

LDOUBLEV's avatar
LDOUBLEV committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        [beg_idx, end_idx] = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if int(text_index[batch_idx][idx]) == int(end_idx):
                    break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
            result_list.append((text, np.mean(conf_list)))
        return result_list

LDOUBLEV's avatar
LDOUBLEV committed
208
209
    def __call__(self, preds, label=None, *args, **kwargs):
        """
WenmuZhou's avatar
WenmuZhou committed
210
        text = self.decode(text)
LDOUBLEV's avatar
LDOUBLEV committed
211
212
213
214
215
216
        if label is None:
            return text
        else:
            label = self.decode(label, is_remove_duplicate=False)
            return text, label
        """
tink2123's avatar
tink2123 committed
217
        preds = preds["rec_pred"]
LDOUBLEV's avatar
LDOUBLEV committed
218
219
220
221
222
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()

        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
LDOUBLEV's avatar
LDOUBLEV committed
223
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
LDOUBLEV's avatar
LDOUBLEV committed
224
225
        if label is None:
            return text
LDOUBLEV's avatar
LDOUBLEV committed
226
        label = self.decode(label, is_remove_duplicate=False)
LDOUBLEV's avatar
LDOUBLEV committed
227
228
        return text, label

WenmuZhou's avatar
WenmuZhou committed
229
230
231
232
233
234
235
236
237
238
239
240
241
    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
MissPenguin's avatar
MissPenguin committed
242
        return idx
tink2123's avatar
tink2123 committed
243
244
245
246
247
248
249
250
251
252
253
254


class SRNLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 character_dict_path=None,
                 character_type='en',
                 use_space_char=False,
                 **kwargs):
        super(SRNLabelDecode, self).__init__(character_dict_path,
                                             character_type, use_space_char)
255
        self.max_text_length = kwargs.get('max_text_length', 25)
tink2123's avatar
tink2123 committed
256
257
258
259
260
261
262
263
264
265
266

    def __call__(self, preds, label=None, *args, **kwargs):
        pred = preds['predict']
        char_num = len(self.character_str) + 2
        if isinstance(pred, paddle.Tensor):
            pred = pred.numpy()
        pred = np.reshape(pred, [-1, char_num])

        preds_idx = np.argmax(pred, axis=1)
        preds_prob = np.max(pred, axis=1)

267
        preds_idx = np.reshape(preds_idx, [-1, self.max_text_length])
tink2123's avatar
tink2123 committed
268

269
        preds_prob = np.reshape(preds_prob, [-1, self.max_text_length])
tink2123's avatar
tink2123 committed
270

tink2123's avatar
tink2123 committed
271
        text = self.decode(preds_idx, preds_prob)
tink2123's avatar
tink2123 committed
272
273

        if label is None:
LDOUBLEV's avatar
LDOUBLEV committed
274
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
tink2123's avatar
tink2123 committed
275
            return text
tink2123's avatar
tink2123 committed
276
        label = self.decode(label)
tink2123's avatar
tink2123 committed
277
278
        return text, label

LDOUBLEV's avatar
LDOUBLEV committed
279
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
tink2123's avatar
tink2123 committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)

        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)

            text = ''.join(char_list)
            result_list.append((text, np.mean(conf_list)))
        return result_list

    def add_special_char(self, dict_character):
        dict_character = dict_character + [self.beg_str, self.end_str]
        return dict_character

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
WenmuZhou's avatar
WenmuZhou committed
325
326
327
328
329


class TableLabelDecode(object):
    """  """

tink2123's avatar
tink2123 committed
330
331
332
    def __init__(self, character_dict_path, **kwargs):
        list_character, list_elem = self.load_char_elem_dict(
            character_dict_path)
WenmuZhou's avatar
WenmuZhou committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
        list_character = self.add_special_char(list_character)
        list_elem = self.add_special_char(list_elem)
        self.dict_character = {}
        self.dict_idx_character = {}
        for i, char in enumerate(list_character):
            self.dict_idx_character[i] = char
            self.dict_character[char] = i
        self.dict_elem = {}
        self.dict_idx_elem = {}
        for i, elem in enumerate(list_elem):
            self.dict_idx_elem[i] = elem
            self.dict_elem[elem] = i

    def load_char_elem_dict(self, character_dict_path):
        list_character = []
        list_elem = []
        with open(character_dict_path, "rb") as fin:
            lines = fin.readlines()
            substr = lines[0].decode('utf-8').strip("\n").split("\t")
            character_num = int(substr[0])
            elem_num = int(substr[1])
            for cno in range(1, 1 + character_num):
                character = lines[cno].decode('utf-8').strip("\n")
                list_character.append(character)
            for eno in range(1 + character_num, 1 + character_num + elem_num):
                elem = lines[eno].decode('utf-8').strip("\n")
                list_elem.append(elem)
        return list_character, list_elem

    def add_special_char(self, list_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        list_character = [self.beg_str] + list_character + [self.end_str]
        return list_character

    def __call__(self, preds):
        structure_probs = preds['structure_probs']
        loc_preds = preds['loc_preds']
tink2123's avatar
tink2123 committed
371
        if isinstance(structure_probs, paddle.Tensor):
WenmuZhou's avatar
WenmuZhou committed
372
            structure_probs = structure_probs.numpy()
tink2123's avatar
tink2123 committed
373
        if isinstance(loc_preds, paddle.Tensor):
WenmuZhou's avatar
WenmuZhou committed
374
375
376
            loc_preds = loc_preds.numpy()
        structure_idx = structure_probs.argmax(axis=2)
        structure_probs = structure_probs.max(axis=2)
tink2123's avatar
tink2123 committed
377
378
        structure_str, structure_pos, result_score_list, result_elem_idx_list = self.decode(
            structure_idx, structure_probs, 'elem')
WenmuZhou's avatar
WenmuZhou committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
        res_html_code_list = []
        res_loc_list = []
        batch_num = len(structure_str)
        for bno in range(batch_num):
            res_loc = []
            for sno in range(len(structure_str[bno])):
                text = structure_str[bno][sno]
                if text in ['<td>', '<td']:
                    pos = structure_pos[bno][sno]
                    res_loc.append(loc_preds[bno, pos])
            res_html_code = ''.join(structure_str[bno])
            res_loc = np.array(res_loc)
            res_html_code_list.append(res_html_code)
            res_loc_list.append(res_loc)
tink2123's avatar
tink2123 committed
393
394
395
396
397
398
399
        return {
            'res_html_code': res_html_code_list,
            'res_loc': res_loc_list,
            'res_score_list': result_score_list,
            'res_elem_idx_list': result_elem_idx_list,
            'structure_str_list': structure_str
        }
WenmuZhou's avatar
WenmuZhou committed
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

    def decode(self, text_index, structure_probs, char_or_elem):
        """convert text-label into text-index.
        """
        if char_or_elem == "char":
            current_dict = self.dict_idx_character
        else:
            current_dict = self.dict_idx_elem
            ignored_tokens = self.get_ignored_tokens('elem')
            beg_idx, end_idx = ignored_tokens

        result_list = []
        result_pos_list = []
        result_score_list = []
        result_elem_idx_list = []
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            elem_pos_list = []
            elem_idx_list = []
            score_list = []
            for idx in range(len(text_index[batch_idx])):
                tmp_elem_idx = int(text_index[batch_idx][idx])
                if idx > 0 and tmp_elem_idx == end_idx:
                    break
                if tmp_elem_idx in ignored_tokens:
                    continue

                char_list.append(current_dict[tmp_elem_idx])
                elem_pos_list.append(idx)
                score_list.append(structure_probs[batch_idx, idx])
                elem_idx_list.append(tmp_elem_idx)
            result_list.append(char_list)
            result_pos_list.append(elem_pos_list)
            result_score_list.append(score_list)
            result_elem_idx_list.append(elem_idx_list)
        return result_list, result_pos_list, result_score_list, result_elem_idx_list

    def get_ignored_tokens(self, char_or_elem):
        beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
        end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
        if char_or_elem == "char":
            if beg_or_end == "beg":
                idx = self.dict_character[self.beg_str]
            elif beg_or_end == "end":
                idx = self.dict_character[self.end_str]
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \
                              % beg_or_end
        elif char_or_elem == "elem":
            if beg_or_end == "beg":
                idx = self.dict_elem[self.beg_str]
            elif beg_or_end == "end":
                idx = self.dict_elem[self.end_str]
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \
                              % beg_or_end
        else:
            assert False, "Unsupport type %s in char_or_elem" \
                          % char_or_elem
        return idx