rec_postprocess.py 24.5 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
tink2123's avatar
tink2123 committed
15
import string
WenmuZhou's avatar
WenmuZhou committed
16
17
import paddle
from paddle.nn import functional as F
andyjpaddle's avatar
andyjpaddle committed
18
import re
WenmuZhou's avatar
WenmuZhou committed
19
20
21
22
23


class BaseRecLabelDecode(object):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
24
    def __init__(self, character_dict_path=None, use_space_char=False):
tink2123's avatar
tink2123 committed
25
26
27
        self.beg_str = "sos"
        self.end_str = "eos"

tink2123's avatar
tink2123 committed
28
29
        self.character_str = []
        if character_dict_path is None:
WenmuZhou's avatar
WenmuZhou committed
30
31
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
tink2123's avatar
tink2123 committed
32
        else:
WenmuZhou's avatar
WenmuZhou committed
33
34
35
36
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
WenmuZhou's avatar
WenmuZhou committed
37
                    self.character_str.append(line)
WenmuZhou's avatar
WenmuZhou committed
38
            if use_space_char:
WenmuZhou's avatar
WenmuZhou committed
39
                self.character_str.append(" ")
WenmuZhou's avatar
WenmuZhou committed
40
            dict_character = list(self.character_str)
tink2123's avatar
tink2123 committed
41

WenmuZhou's avatar
WenmuZhou committed
42
43
44
45
46
47
48
49
50
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def add_special_char(self, dict_character):
        return dict_character

littletomatodonkey's avatar
littletomatodonkey committed
51
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
WenmuZhou's avatar
WenmuZhou committed
52
53
54
55
56
57
58
59
60
61
62
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if is_remove_duplicate:
63
                    # only for predict
WenmuZhou's avatar
WenmuZhou committed
64
65
66
67
68
69
70
71
72
73
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
zhoujun's avatar
zhoujun committed
74
            result_list.append((text, np.mean(conf_list)))
WenmuZhou's avatar
WenmuZhou committed
75
76
77
78
79
80
81
82
83
        return result_list

    def get_ignored_tokens(self):
        return [0]  # for ctc blank


class CTCLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
84
    def __init__(self, character_dict_path=None, use_space_char=False,
WenmuZhou's avatar
WenmuZhou committed
85
86
                 **kwargs):
        super(CTCLabelDecode, self).__init__(character_dict_path,
tink2123's avatar
tink2123 committed
87
                                             use_space_char)
WenmuZhou's avatar
WenmuZhou committed
88
89

    def __call__(self, preds, label=None, *args, **kwargs):
90
91
        if isinstance(preds, tuple):
            preds = preds[-1]
WenmuZhou's avatar
WenmuZhou committed
92
93
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
WenmuZhou's avatar
WenmuZhou committed
94
95
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
WenmuZhou's avatar
WenmuZhou committed
96
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
WenmuZhou's avatar
WenmuZhou committed
97
98
        if label is None:
            return text
littletomatodonkey's avatar
littletomatodonkey committed
99
        label = self.decode(label)
WenmuZhou's avatar
WenmuZhou committed
100
101
102
103
104
105
106
        return text, label

    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character
        return dict_character


littletomatodonkey's avatar
littletomatodonkey committed
107
108
109
110
111
112
113
114
115
class DistillationCTCLabelDecode(CTCLabelDecode):
    """
    Convert 
    Convert between text-label and text-index
    """

    def __init__(self,
                 character_dict_path=None,
                 use_space_char=False,
littletomatodonkey's avatar
littletomatodonkey committed
116
                 model_name=["student"],
117
                 key=None,
littletomatodonkey's avatar
littletomatodonkey committed
118
                 **kwargs):
tink2123's avatar
tink2123 committed
119
120
        super(DistillationCTCLabelDecode, self).__init__(character_dict_path,
                                                         use_space_char)
littletomatodonkey's avatar
littletomatodonkey committed
121
122
        if not isinstance(model_name, list):
            model_name = [model_name]
littletomatodonkey's avatar
littletomatodonkey committed
123
        self.model_name = model_name
littletomatodonkey's avatar
littletomatodonkey committed
124

125
        self.key = key
littletomatodonkey's avatar
littletomatodonkey committed
126
127

    def __call__(self, preds, label=None, *args, **kwargs):
littletomatodonkey's avatar
littletomatodonkey committed
128
129
130
131
132
133
134
        output = dict()
        for name in self.model_name:
            pred = preds[name]
            if self.key is not None:
                pred = pred[self.key]
            output[name] = super().__call__(pred, label=label, *args, **kwargs)
        return output
littletomatodonkey's avatar
littletomatodonkey committed
135
136


Topdu's avatar
Topdu committed
137
138
139
class NRTRLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
140
    def __init__(self, character_dict_path=None, use_space_char=True, **kwargs):
Topdu's avatar
Topdu committed
141
        super(NRTRLabelDecode, self).__init__(character_dict_path,
tink2123's avatar
tink2123 committed
142
                                              use_space_char)
Topdu's avatar
Topdu committed
143
144
145

    def __call__(self, preds, label=None, *args, **kwargs):

Topdu's avatar
Topdu committed
146
147
148
149
150
151
152
153
154
155
156
157
158
        if len(preds) == 2:
            preds_id = preds[0]
            preds_prob = preds[1]
            if isinstance(preds_id, paddle.Tensor):
                preds_id = preds_id.numpy()
            if isinstance(preds_prob, paddle.Tensor):
                preds_prob = preds_prob.numpy()
            if preds_id[0][0] == 2:
                preds_idx = preds_id[:, 1:]
                preds_prob = preds_prob[:, 1:]
            else:
                preds_idx = preds_id
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
Topdu's avatar
Topdu committed
159
160
            if label is None:
                return text
andyjpaddle's avatar
andyjpaddle committed
161
            label = self.decode(label[:, 1:])
Topdu's avatar
Topdu committed
162
163
164
165
166
167
168
169
        else:
            if isinstance(preds, paddle.Tensor):
                preds = preds.numpy()
            preds_idx = preds.argmax(axis=2)
            preds_prob = preds.max(axis=2)
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
            if label is None:
                return text
andyjpaddle's avatar
andyjpaddle committed
170
            label = self.decode(label[:, 1:])
Topdu's avatar
Topdu committed
171
172
173
        return text, label

    def add_special_char(self, dict_character):
andyjpaddle's avatar
andyjpaddle committed
174
        dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
Topdu's avatar
Topdu committed
175
        return dict_character
andyjpaddle's avatar
andyjpaddle committed
176

Topdu's avatar
Topdu committed
177
178
179
180
181
182
183
184
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
andyjpaddle's avatar
andyjpaddle committed
185
                if text_index[batch_idx][idx] == 3:  # end
Topdu's avatar
Topdu committed
186
187
                    break
                try:
andyjpaddle's avatar
andyjpaddle committed
188
189
                    char_list.append(self.character[int(text_index[batch_idx][
                        idx])])
Topdu's avatar
Topdu committed
190
191
192
193
194
195
196
197
198
199
200
                except:
                    continue
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
            result_list.append((text.lower(), np.mean(conf_list)))
        return result_list


WenmuZhou's avatar
WenmuZhou committed
201
202
203
class AttnLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
204
    def __init__(self, character_dict_path=None, use_space_char=False,
WenmuZhou's avatar
WenmuZhou committed
205
206
                 **kwargs):
        super(AttnLabelDecode, self).__init__(character_dict_path,
tink2123's avatar
tink2123 committed
207
                                              use_space_char)
WenmuZhou's avatar
WenmuZhou committed
208
209

    def add_special_char(self, dict_character):
LDOUBLEV's avatar
LDOUBLEV committed
210
211
212
213
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = dict_character
        dict_character = [self.beg_str] + dict_character + [self.end_str]
WenmuZhou's avatar
WenmuZhou committed
214
215
        return dict_character

LDOUBLEV's avatar
LDOUBLEV committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        [beg_idx, end_idx] = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if int(text_index[batch_idx][idx]) == int(end_idx):
                    break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
andyjpaddle's avatar
andyjpaddle committed
235
236
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
LDOUBLEV's avatar
LDOUBLEV committed
237
238
239
240
241
242
243
244
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
            result_list.append((text, np.mean(conf_list)))
        return result_list

LDOUBLEV's avatar
LDOUBLEV committed
245
246
    def __call__(self, preds, label=None, *args, **kwargs):
        """
WenmuZhou's avatar
WenmuZhou committed
247
        text = self.decode(text)
LDOUBLEV's avatar
LDOUBLEV committed
248
249
250
251
252
253
254
255
256
257
258
        if label is None:
            return text
        else:
            label = self.decode(label, is_remove_duplicate=False)
            return text, label
        """
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()

        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
LDOUBLEV's avatar
LDOUBLEV committed
259
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
LDOUBLEV's avatar
LDOUBLEV committed
260
261
        if label is None:
            return text
LDOUBLEV's avatar
LDOUBLEV committed
262
        label = self.decode(label, is_remove_duplicate=False)
LDOUBLEV's avatar
LDOUBLEV committed
263
264
        return text, label

WenmuZhou's avatar
WenmuZhou committed
265
266
267
268
269
270
271
272
273
274
275
276
277
    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
MissPenguin's avatar
MissPenguin committed
278
        return idx
tink2123's avatar
tink2123 committed
279
280


tink2123's avatar
tink2123 committed
281
282
283
class SEEDLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
284
    def __init__(self, character_dict_path=None, use_space_char=False,
tink2123's avatar
tink2123 committed
285
286
                 **kwargs):
        super(SEEDLabelDecode, self).__init__(character_dict_path,
tink2123's avatar
tink2123 committed
287
                                              use_space_char)
tink2123's avatar
tink2123 committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

    def add_special_char(self, dict_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = dict_character + [self.end_str]
        return dict_character

    def get_ignored_tokens(self):
        end_idx = self.get_beg_end_flag_idx("eos")
        return [end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "sos":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "eos":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" % beg_or_end
        return idx

    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        [end_idx] = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if int(text_index[batch_idx][idx]) == int(end_idx):
                    break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
            result_list.append((text, np.mean(conf_list)))
        return result_list

    def __call__(self, preds, label=None, *args, **kwargs):
        """
        text = self.decode(text)
        if label is None:
            return text
        else:
            label = self.decode(label, is_remove_duplicate=False)
            return text, label
        """
        preds_idx = preds["rec_pred"]
        if isinstance(preds_idx, paddle.Tensor):
            preds_idx = preds_idx.numpy()
        if "rec_pred_scores" in preds:
            preds_idx = preds["rec_pred"]
            preds_prob = preds["rec_pred_scores"]
        else:
            preds_idx = preds["rec_pred"].argmax(axis=2)
            preds_prob = preds["rec_pred"].max(axis=2)
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
        if label is None:
            return text
        label = self.decode(label, is_remove_duplicate=False)
        return text, label


tink2123's avatar
tink2123 committed
359
360
361
class SRNLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
362
    def __init__(self, character_dict_path=None, use_space_char=False,
tink2123's avatar
tink2123 committed
363
364
                 **kwargs):
        super(SRNLabelDecode, self).__init__(character_dict_path,
tink2123's avatar
tink2123 committed
365
                                             use_space_char)
366
        self.max_text_length = kwargs.get('max_text_length', 25)
tink2123's avatar
tink2123 committed
367
368
369
370
371
372
373
374
375
376
377

    def __call__(self, preds, label=None, *args, **kwargs):
        pred = preds['predict']
        char_num = len(self.character_str) + 2
        if isinstance(pred, paddle.Tensor):
            pred = pred.numpy()
        pred = np.reshape(pred, [-1, char_num])

        preds_idx = np.argmax(pred, axis=1)
        preds_prob = np.max(pred, axis=1)

378
        preds_idx = np.reshape(preds_idx, [-1, self.max_text_length])
tink2123's avatar
tink2123 committed
379

380
        preds_prob = np.reshape(preds_prob, [-1, self.max_text_length])
tink2123's avatar
tink2123 committed
381

tink2123's avatar
tink2123 committed
382
        text = self.decode(preds_idx, preds_prob)
tink2123's avatar
tink2123 committed
383
384

        if label is None:
LDOUBLEV's avatar
LDOUBLEV committed
385
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
tink2123's avatar
tink2123 committed
386
            return text
tink2123's avatar
tink2123 committed
387
        label = self.decode(label)
tink2123's avatar
tink2123 committed
388
389
        return text, label

LDOUBLEV's avatar
LDOUBLEV committed
390
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
tink2123's avatar
tink2123 committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)

        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)

            text = ''.join(char_list)
            result_list.append((text, np.mean(conf_list)))
        return result_list

    def add_special_char(self, dict_character):
        dict_character = dict_character + [self.beg_str, self.end_str]
        return dict_character

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
WenmuZhou's avatar
WenmuZhou committed
436
437
438
439
440


class TableLabelDecode(object):
    """  """

andyjpaddle's avatar
andyjpaddle committed
441
442
443
    def __init__(self, character_dict_path, **kwargs):
        list_character, list_elem = self.load_char_elem_dict(
            character_dict_path)
WenmuZhou's avatar
WenmuZhou committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
        list_character = self.add_special_char(list_character)
        list_elem = self.add_special_char(list_elem)
        self.dict_character = {}
        self.dict_idx_character = {}
        for i, char in enumerate(list_character):
            self.dict_idx_character[i] = char
            self.dict_character[char] = i
        self.dict_elem = {}
        self.dict_idx_elem = {}
        for i, elem in enumerate(list_elem):
            self.dict_idx_elem[i] = elem
            self.dict_elem[elem] = i

    def load_char_elem_dict(self, character_dict_path):
        list_character = []
        list_elem = []
        with open(character_dict_path, "rb") as fin:
            lines = fin.readlines()
andyjpaddle's avatar
andyjpaddle committed
462
463
            substr = lines[0].decode('utf-8').strip("\n").strip("\r\n").split(
                "\t")
WenmuZhou's avatar
WenmuZhou committed
464
465
466
            character_num = int(substr[0])
            elem_num = int(substr[1])
            for cno in range(1, 1 + character_num):
WenmuZhou's avatar
WenmuZhou committed
467
                character = lines[cno].decode('utf-8').strip("\n").strip("\r\n")
WenmuZhou's avatar
WenmuZhou committed
468
469
                list_character.append(character)
            for eno in range(1 + character_num, 1 + character_num + elem_num):
WenmuZhou's avatar
WenmuZhou committed
470
                elem = lines[eno].decode('utf-8').strip("\n").strip("\r\n")
WenmuZhou's avatar
WenmuZhou committed
471
472
473
474
475
476
477
478
479
480
481
482
                list_elem.append(elem)
        return list_character, list_elem

    def add_special_char(self, list_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        list_character = [self.beg_str] + list_character + [self.end_str]
        return list_character

    def __call__(self, preds):
        structure_probs = preds['structure_probs']
        loc_preds = preds['loc_preds']
andyjpaddle's avatar
andyjpaddle committed
483
        if isinstance(structure_probs, paddle.Tensor):
WenmuZhou's avatar
WenmuZhou committed
484
            structure_probs = structure_probs.numpy()
andyjpaddle's avatar
andyjpaddle committed
485
        if isinstance(loc_preds, paddle.Tensor):
WenmuZhou's avatar
WenmuZhou committed
486
487
488
            loc_preds = loc_preds.numpy()
        structure_idx = structure_probs.argmax(axis=2)
        structure_probs = structure_probs.max(axis=2)
andyjpaddle's avatar
andyjpaddle committed
489
490
        structure_str, structure_pos, result_score_list, result_elem_idx_list = self.decode(
            structure_idx, structure_probs, 'elem')
WenmuZhou's avatar
WenmuZhou committed
491
492
493
494
495
496
497
498
499
500
501
502
503
504
        res_html_code_list = []
        res_loc_list = []
        batch_num = len(structure_str)
        for bno in range(batch_num):
            res_loc = []
            for sno in range(len(structure_str[bno])):
                text = structure_str[bno][sno]
                if text in ['<td>', '<td']:
                    pos = structure_pos[bno][sno]
                    res_loc.append(loc_preds[bno, pos])
            res_html_code = ''.join(structure_str[bno])
            res_loc = np.array(res_loc)
            res_html_code_list.append(res_html_code)
            res_loc_list.append(res_loc)
andyjpaddle's avatar
andyjpaddle committed
505
506
507
508
509
510
511
        return {
            'res_html_code': res_html_code_list,
            'res_loc': res_loc_list,
            'res_score_list': result_score_list,
            'res_elem_idx_list': result_elem_idx_list,
            'structure_str_list': structure_str
        }
WenmuZhou's avatar
WenmuZhou committed
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575

    def decode(self, text_index, structure_probs, char_or_elem):
        """convert text-label into text-index.
        """
        if char_or_elem == "char":
            current_dict = self.dict_idx_character
        else:
            current_dict = self.dict_idx_elem
            ignored_tokens = self.get_ignored_tokens('elem')
            beg_idx, end_idx = ignored_tokens

        result_list = []
        result_pos_list = []
        result_score_list = []
        result_elem_idx_list = []
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            elem_pos_list = []
            elem_idx_list = []
            score_list = []
            for idx in range(len(text_index[batch_idx])):
                tmp_elem_idx = int(text_index[batch_idx][idx])
                if idx > 0 and tmp_elem_idx == end_idx:
                    break
                if tmp_elem_idx in ignored_tokens:
                    continue

                char_list.append(current_dict[tmp_elem_idx])
                elem_pos_list.append(idx)
                score_list.append(structure_probs[batch_idx, idx])
                elem_idx_list.append(tmp_elem_idx)
            result_list.append(char_list)
            result_pos_list.append(elem_pos_list)
            result_score_list.append(score_list)
            result_elem_idx_list.append(elem_idx_list)
        return result_list, result_pos_list, result_score_list, result_elem_idx_list

    def get_ignored_tokens(self, char_or_elem):
        beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
        end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
        if char_or_elem == "char":
            if beg_or_end == "beg":
                idx = self.dict_character[self.beg_str]
            elif beg_or_end == "end":
                idx = self.dict_character[self.end_str]
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \
                              % beg_or_end
        elif char_or_elem == "elem":
            if beg_or_end == "beg":
                idx = self.dict_elem[self.beg_str]
            elif beg_or_end == "end":
                idx = self.dict_elem[self.end_str]
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \
                              % beg_or_end
        else:
            assert False, "Unsupport type %s in char_or_elem" \
                          % char_or_elem
        return idx
andyjpaddle's avatar
andyjpaddle committed
576
577
578
579
580


class SARLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
581
    def __init__(self, character_dict_path=None, use_space_char=False,
andyjpaddle's avatar
andyjpaddle committed
582
583
                 **kwargs):
        super(SARLabelDecode, self).__init__(character_dict_path,
tink2123's avatar
tink2123 committed
584
                                             use_space_char)
andyjpaddle's avatar
andyjpaddle committed
585

andyjpaddle's avatar
andyjpaddle committed
586
        self.rm_symbol = kwargs.get('rm_symbol', False)
andyjpaddle's avatar
andyjpaddle committed
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

    def add_special_char(self, dict_character):
        beg_end_str = "<BOS/EOS>"
        unknown_str = "<UKN>"
        padding_str = "<PAD>"
        dict_character = dict_character + [unknown_str]
        self.unknown_idx = len(dict_character) - 1
        dict_character = dict_character + [beg_end_str]
        self.start_idx = len(dict_character) - 1
        self.end_idx = len(dict_character) - 1
        dict_character = dict_character + [padding_str]
        self.padding_idx = len(dict_character) - 1
        return dict_character

    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
andyjpaddle's avatar
andyjpaddle committed
605

andyjpaddle's avatar
andyjpaddle committed
606
607
608
609
610
611
612
613
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if int(text_index[batch_idx][idx]) == int(self.end_idx):
andyjpaddle's avatar
andyjpaddle committed
614
                    if text_prob is None and idx == 0:
andyjpaddle's avatar
andyjpaddle committed
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
                        continue
                    else:
                        break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
630
631
632
633
            if self.rm_symbol:
                comp = re.compile('[^A-Z^a-z^0-9^\u4e00-\u9fa5]')
                text = text.lower()
                text = comp.sub('', text)
andyjpaddle's avatar
andyjpaddle committed
634
635
636
637
638
639
640
641
            result_list.append((text, np.mean(conf_list)))
        return result_list

    def __call__(self, preds, label=None, *args, **kwargs):
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
andyjpaddle's avatar
andyjpaddle committed
642

andyjpaddle's avatar
andyjpaddle committed
643
644
645
646
647
648
649
650
651
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)

        if label is None:
            return text
        label = self.decode(label, is_remove_duplicate=False)
        return text, label

    def get_ignored_tokens(self):
        return [self.padding_idx]