README.md 9.9 KB
Newer Older
1
2
[English](README_en.md) | 简体中文

dyning's avatar
dyning committed
3
## 简介
tink2123's avatar
tink2123 committed
4
5
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。

tink2123's avatar
tink2123 committed
6
**近期更新**
tink2123's avatar
tink2123 committed
7
- 2020.7.9 添加支持空格的识别模型,[识别效果](#支持空格的中文OCR效果展示)
8
- 2020.7.9 添加数据增强、学习率衰减策略,具体参考[配置文件](./doc/doc_ch/config.md)
9
- 2020.6.8 添加[数据集](./doc/doc_ch/datasets.md),并保持持续更新
tink2123's avatar
tink2123 committed
10
- 2020.6.5 支持 `attetnion` 模型导出 `inference_model`
tink2123's avatar
tink2123 committed
11
- 2020.6.5 支持单独预测识别时,输出结果得分
12
- [more](./doc/doc_ch/update.md)
dyning's avatar
dyning committed
13

dyning's avatar
dyning committed
14
## 特性
dyning's avatar
dyning committed
15
- 超轻量级中文OCR模型,总模型仅8.6M
dyning's avatar
dyning committed
16
17
    - 单模型支持中英文数字组合识别、竖排文本识别、长文本识别
    - 检测模型DB(4.1M)+识别模型CRNN(4.5M)
dyning's avatar
dyning committed
18
19
- 实用通用中文OCR模型
- 多种预测推理部署方案,包括服务部署和端测部署
dyning's avatar
dyning committed
20
21
- 多种文本检测训练算法,EAST、DB
- 多种文本识别训练算法,Rosetta、CRNN、STAR-Net、RARE
dyning's avatar
dyning committed
22
- 可运行于Linux、Windows、MacOS等多种系统
dyning's avatar
dyning committed
23

dyning's avatar
dyning committed
24
## 快速体验
tink2123's avatar
tink2123 committed
25

LDOUBLEV's avatar
LDOUBLEV committed
26
![](doc/imgs_results/11.jpg)
LDOUBLEV's avatar
LDOUBLEV committed
27

tink2123's avatar
tink2123 committed
28
29
上图是超轻量级中文OCR模型效果展示,更多效果图请见文末[超轻量级中文OCR效果展示](#超轻量级中文OCR效果展示)
[通用中文OCR效果展示](#通用中文OCR效果展示)[支持空格的中文OCR效果展示](#支持空格的中文OCR效果展示)
dyning's avatar
dyning committed
30

dyning's avatar
dyning committed
31
- 超轻量级中文OCR在线体验地址:https://www.paddlepaddle.org.cn/hub/scene/ocr
tink2123's avatar
revert  
tink2123 committed
32

dyning's avatar
dyning committed
33
- [中文OCR模型快速开始](./doc/doc_ch/quickstart.md) 
dyning's avatar
dyning committed
34

dyning's avatar
dyning committed
35
## 中文OCR模型列表
dyning's avatar
dyning committed
36

dyning's avatar
dyning committed
37
38
39
40
|模型名称|模型简介|检测模型地址|识别模型地址|支持空格的识别模型地址|
|-|-|-|-|-|
|chinese_db_crnn_mobile|超轻量级中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
|chinese_db_crnn_server|通用中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)
dyning's avatar
dyning committed
41

dyning's avatar
dyning committed
42
43
## 算法介绍
### 1.文本检测算法
tink2123's avatar
tink2123 committed
44
45

PaddleOCR开源的文本检测算法列表:
tink2123's avatar
tink2123 committed
46
- [x]  EAST([paper](https://arxiv.org/abs/1704.03155))
tink2123's avatar
fix url  
tink2123 committed
47
48
- [x]  DB([paper](https://arxiv.org/abs/1911.08947))
- [ ]  SAST([paper](https://arxiv.org/abs/1908.05498))(百度自研, comming soon)
tink2123's avatar
tink2123 committed
49

dyning's avatar
dyning committed
50
在ICDAR2015文本检测公开数据集上,算法效果如下:
tink2123's avatar
tink2123 committed
51

LDOUBLEV's avatar
fix doc  
LDOUBLEV committed
52
|模型|骨干网络|precision|recall|Hmean|下载链接|
53
|-|-|-|-|-|-|
dyning's avatar
dyning committed
54
|EAST|ResNet50_vd|88.18%|85.51%|86.82%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|
LDOUBLEV's avatar
fix doc  
LDOUBLEV committed
55
56
57
|EAST|MobileNetV3|81.67%|79.83%|80.74%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|
|DB|ResNet50_vd|83.79%|80.65%|82.19%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|
|DB|MobileNetV3|75.92%|73.18%|74.53%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|
LDOUBLEV's avatar
LDOUBLEV committed
58

MissPenguin's avatar
MissPenguin committed
59
使用[LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/datasets.md#1icdar2019-lsvt)街景数据集共3w张数据,训练中文检测模型的相关配置和预训练文件如下:
tink2123's avatar
tink2123 committed
60
61
|模型|骨干网络|配置文件|预训练模型|
|-|-|-|-|
dyning's avatar
dyning committed
62
63
|超轻量中文模型|MobileNetV3|det_mv3_db.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|
|通用中文OCR模型|ResNet50_vd|det_r50_vd_db.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|
tink2123's avatar
tink2123 committed
64

65
* 注: 上述DB模型的训练和评估,需设置后处理参数box_thresh=0.6,unclip_ratio=1.5,使用不同数据集、不同模型训练,可调整这两个参数进行优化
tink2123's avatar
tink2123 committed
66

67
PaddleOCR文本检测算法的训练和使用请参考文档教程中[文本检测模型训练/评估/预测](./doc/doc_ch/detection.md)
tink2123's avatar
tink2123 committed
68

dyning's avatar
dyning committed
69
### 2.文本识别算法
tink2123's avatar
tink2123 committed
70
71

PaddleOCR开源的文本识别算法列表:
tink2123's avatar
tink2123 committed
72
73
74
75
76
- [x]  CRNN([paper](https://arxiv.org/abs/1507.05717))
- [x]  Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [x]  STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))
- [x]  RARE([paper](https://arxiv.org/abs/1603.03915v1))
- [ ]  SRN([paper](https://arxiv.org/abs/2003.12294))(百度自研, comming soon)
tink2123's avatar
tink2123 committed
77

dyning's avatar
dyning committed
78
参考[DTRB](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
tink2123's avatar
tink2123 committed
79

dyning's avatar
dyning committed
80
|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接|
dyning's avatar
dyning committed
81
|-|-|-|-|-|
dyning's avatar
dyning committed
82
83
84
85
86
87
88
89
|Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|
|Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|
|CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|
|CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|
|STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|
|STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|
|RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|
|RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|
tink2123's avatar
tink2123 committed
90

MissPenguin's avatar
MissPenguin committed
91
使用[LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/datasets.md#1icdar2019-lsvt)街景数据集根据真值将图crop出来30w数据,进行位置校准。此外基于LSVT语料生成500w合成数据训练中文模型,相关配置和预训练文件如下:
tink2123's avatar
tink2123 committed
92
93
|模型|骨干网络|配置文件|预训练模型|
|-|-|-|-|
dyning's avatar
dyning committed
94
95
|超轻量中文模型|MobileNetV3|rec_chinese_lite_train.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|
|通用中文OCR模型|Resnet34_vd|rec_chinese_common_train.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|
tink2123's avatar
tink2123 committed
96

97
PaddleOCR文本识别算法的训练和使用请参考文档教程中[文本识别模型训练/评估/预测](./doc/doc_ch/recognition.md)
tink2123's avatar
tink2123 committed
98

dyning's avatar
dyning committed
99
### 3.端到端OCR算法
dyning's avatar
dyning committed
100
- [ ]  [End2End-PSL](https://arxiv.org/abs/1909.07808)(百度自研, comming soon)
tink2123's avatar
tink2123 committed
101

dyning's avatar
dyning committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
## 文档教程
- [快速安装](./doc/doc_ch/installation.md)
- [中文OCR模型快速开始](./doc/doc_ch/quickstart.md)
- 模型训练/评估/预测
    - [文本检测](./doc/doc_ch/detection.md)
    - [文本识别](./doc/doc_ch/recognition.md)
    - [yml参数配置文件介绍](./doc/doc_ch/config_ch.md)
- 预测部署
    - [基于Python预测引擎推理](./doc/doc_ch/inference.md)
    - 基于C++预测引擎推理(comming soon)
    - [服务部署](./doc/doc_ch/serving.md)
    - 端测部署(comming soon)
- [数据集](./doc/doc_ch/datasets.md)
- [FAQ](#FAQ)
- 效果展示
    - [超轻量级中文OCR效果展示](#超轻量级中文OCR效果展示)
    - [通用中文OCR效果展示](#通用中文OCR效果展示)
    - [支持空格的中文OCR效果展示](#支持空格的中文OCR效果展示)
- [技术交流群](#欢迎加入PaddleOCR技术交流群)
- [参考文献](./doc/doc_ch/reference.md)
- [许可证书](#许可证书)
- [贡献代码](#贡献代码)

## 效果展示

dyning's avatar
dyning committed
127
<a name="超轻量级中文OCR效果展示"></a>
dyning's avatar
dyning committed
128
### 1.超轻量级中文OCR效果展示
tink2123's avatar
tink2123 committed
129

LDOUBLEV's avatar
LDOUBLEV committed
130
![](doc/imgs_results/7.jpg)
tink2123's avatar
tink2123 committed
131

dyning's avatar
dyning committed
132
<a name="通用中文OCR效果展示"></a>
dyning's avatar
dyning committed
133
### 2.通用中文OCR效果展示
134
135
![](doc/imgs_results/chinese_db_crnn_server/11.jpg)

tink2123's avatar
tink2123 committed
136
<a name="支持空格的中文OCR效果展示"></a>
dyning's avatar
dyning committed
137
### 3.支持空格的中文OCR效果展示
tink2123's avatar
tink2123 committed
138
139
140

![](doc/imgs_results/chinese_db_crnn_server/en_paper.jpg)

dyning's avatar
dyning committed
141
<a name="FAQ"></a>
dyning's avatar
dyning committed
142
## FAQ
tink2123's avatar
tink2123 committed
143
1. **转换attention识别模型时报错:KeyError: 'predict'**  
MissPenguin's avatar
MissPenguin committed
144
问题已解,请更新到最新代码。  
tink2123's avatar
tink2123 committed
145

tink2123's avatar
tink2123 committed
146
2. **关于推理速度**  
root's avatar
root committed
147
图片中的文字较多时,预测时间会增,可以使用--rec_batch_num设置更小预测batch num,默认值为30,可以改为10或其他数值。  
MissPenguin's avatar
MissPenguin committed
148

tink2123's avatar
tink2123 committed
149
3. **服务部署与移动端部署**  
root's avatar
root committed
150
预计6月中下旬会先后发布基于Serving的服务部署方案和基于Paddle Lite的移动端部署方案,欢迎持续关注。  
tink2123's avatar
tink2123 committed
151

tink2123's avatar
tink2123 committed
152
4. **自研算法发布时间**  
root's avatar
root committed
153
自研算法SAST、SRN、End2End-PSL都将在6-7月陆续发布,敬请期待。  
MissPenguin's avatar
MissPenguin committed
154

155
[more](./doc/doc_ch/FAQ.md)
dyning's avatar
dyning committed
156

dyning's avatar
dyning committed
157
<a name="欢迎加入PaddleOCR技术交流群"></a>
dyning's avatar
dyning committed
158
## 欢迎加入PaddleOCR技术交流群
MissPenguin's avatar
MissPenguin committed
159
160
扫描二维码或者加微信:paddlehelp,备注OCR,小助手拉你进群~  
<img src="./doc/paddlehelp.jpg"  width = "200" height = "200" />
MissPenguin's avatar
MissPenguin committed
161

dyning's avatar
dyning committed
162
<a name="许可证书"></a>
dyning's avatar
dyning committed
163
164
165
## 许可证书
本项目的发布受<a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>许可认证。

dyning's avatar
dyning committed
166
<a name="贡献代码"></a>
LDOUBLEV's avatar
LDOUBLEV committed
167
## 贡献代码
dyning's avatar
dyning committed
168
我们非常欢迎你为PaddleOCR贡献代码,也十分感谢你的反馈。
tink2123's avatar
tink2123 committed
169
170

- 非常感谢 [Khanh Tran](https://github.com/xxxpsyduck) 贡献了英文文档。
LDOUBLEV's avatar
LDOUBLEV committed
171
- 非常感谢 [zhangxin](https://github.com/ZhangXinNan)([Blog](https://blog.csdn.net/sdlypyzq)) 贡献新的可视化方式、添加.gitgnore、处理手动设置PYTHONPATH环境变量的问题